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Many  means  in  inbred  rodent  models  promoted  long-term  graft  survival  or  donor-specific  tolerance,  but
less so in  nonhuman  primates,  outbred  rodents  or human  patients.  A  diverse  repertoire  of  memory  T
cells, derived  from  heterologous  immunity  or prior  to exposure  to alloantigen,  has  been  believed  to be
an important  part  of  this  barrier.  Memory  T cells  have  a unique  capacity  to  generate  effector  functions
quickly  upon  re-exposure  to antigen,  and  this  capacity  is  achieved  by reduced  activation  thresholds,  and
eywords:
emory T cell

mmunosuppressant
olerogenic dendritic cells
egulatory T cells

expressed  high  level  trafficking  and  adhesion  molecules,  which  is  likely  responsible  for  their  exhibiting
differential  susceptibility  to immune  therapeutics  compared  with  naïve  T cells.  This  review  outlines
recent  progress  on  characteristics  of  memory  T cells  and  focuses  on  these  potential  therapies  targeting
memory  T cells  which  are  likely  to ameliorate  allograft  rejection  by  inducing  transplant  tolerance.

© 2012 Elsevier B.V. All rights reserved.

lloreactivity

. Introduction

Immunological memory is a fundamental hallmark of adaptive
mmunity and plays a critical role in providing antigen-specific
rotective immunity in higher vertebrates [1].  The immune
epertoire is constantly being imprinted through exposure to envi-
onmental antigens, resulting in their rapid clearance following
e-exposure to the same antigen [1].  In adults, 40–50% of T cells
n the peripheral blood have memory phenotypes [2]. It is thought
hat memory T cells (TMs) are generated through continuous
xposure to bacterial and viral pathogens [3],  blood transfusions
r pregnancies, as well as transplantation [4–6]. Primed T cells
ake on characteristics indicative of prior activation and give rise

o a population of cells collective referred to as TMs. These TMs

ediate protective immune responses by invading pathogens and
re thought to provide an evolutionary survival advantage [1].

Abbreviations: TMs, memory T cells; MHC, major histocompatibility complex;
Ns, naïve T cells; TCR, T cell receptor; TCMs, central memory T cells; TEMs, effec-
or  memory T cells; TEs, effector T cells; HLA, human leukocyte antigen; EBV,
pstein–Barr virus; CTLA4, cytotoxic T-lymphocyte antigen 4; LFA-3, leukocyte
unction-associated antigen-3; GVHD, graft-versus-host disease; mAb, monoclonal
ntibody; S1P, sphingosine 1-phosphate; JAKs, janus kinases; �c, � chain; I�B,
nhibitor of kappa-light-chain-enhancer of activated B; NF-�B, nuclear factor kappa-
ight-chain-enhancer of activated B; Tregs, regulatory T cells; Tol DCs, tolerogenic
endritic cells; pDCs, plasmacytoid dendritic cells.
∗ Corresponding author. Tel.: +86 851 5600886; fax: +86 851 5600886.

E-mail address: luoguangheng1975@hotmail.com (G. Luo).

165-2478/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.imlet.2012.08.001
However, there is an increasing amount of evidence to indicate that
TMs can cross-react with alloantigens, partially accounting for the
high frequency of alloreactivity [7,8]. Alloreactive TMs can become
activated by specific pathogens, or due to a molecular resemblance
between a microbial antigen/self major histocompatibility com-
plex (MHC) and cross-reactivity with an allogeneic MHC  T cell
[9]. Such cross-reactivity of TMs can lead to pre-sensitization in a
potential recipient despite lack of exposure to tissues from a donor
[10,11].  In the context of transplantation, emerging evidence has
revealed the issues associated with TMs for transplant recipients.
The TMs generate antigen-specific protective immunity, and pose
a barrier to longtime allograft survival and transplant tolerance
by cross-reactivity with allogeneic antigens [3].  In this review, we
describe recent advances related to the characteristics of TMs, and
discuss their roles in allograft rejection and potential therapies.

2. Characteristics of TMs

Naïve T cells (TNs) emerge from the thymus with a non-
activated phenotype characterized by T cell receptor (TCR) density
and limited adhesion molecules. The phenotypes of TNs remain
constant until they are primed by an antigen, at which point they
are then considered TMs [1].  The expression of chemokine, selectin,
and integrin receptors is altered after the activation of TMs. TMs also

express higher levels of CD2, CD11a and CD44 as compared with
their naïve counterparts. In humans, TMs express the RO isoform
of CD45 as opposed to the RA isoform, and possess direct cytolytic
functions in vivo [1].  In contrast to TNs, TMs exhibit enhanced

dx.doi.org/10.1016/j.imlet.2012.08.001
http://www.sciencedirect.com/science/journal/01652478
http://www.elsevier.com/locate/immlet
mailto:luoguangheng1975@hotmail.com
dx.doi.org/10.1016/j.imlet.2012.08.001
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ctivation, distinct phenotype trafficking, and functions related to
dhesion. Upon re-exposure to an antigen, they secret cytokines
aster than naïve T cells with reduced activation thresholds [12].

Emerging evidence has shown that TNs and TMs can cross-react
ith alloantigens, and the specificity of TNs and TMs pools is likely

o be quite different [13]. The issue of whether alloreactive fre-
uencies in TMs pools are higher, lower or equivalent as compared
ith TNs has been thoroughly discussed over the last two  decades.
ecently, research has shown that alloreactive TMs are likely to be

imited to a few discrete TCR clones when compared with TNs. This
s likely owing to the restricted TCR repertoires of TMs. However,
he frequency of a given clone is higher in TMs pools compared with
Ns pools [14,15].  TCR clones among TMs are therefore thought to
e responsible for higher alloreactivity than that seen in TNs. In
he context of transplantation, pre-existing donor-specific TMs are
elieved to participate in the development of acute and chronic
ejection.

.1. TM subsets

The phenotype of heterogeneous TMs has been classified into
wo subsets: central TMs (TCMs; CD62LhiCCR7+), which circulate
n non-lymphoid or lymphoid tissues and proliferate in response
o stimulation when an antigen is encountered; and effector TMs
TEMs; CD62LloCCR7−), which migrate to non-lymphoid tissues and
elease cytokines thereby providing an effector function at periph-
ral sites [1,16,17]. This classification highlights that the overall
requency within TMs pools may  be similar, but their behavior may
e distinct, depending on differentiation status.

.2. Models of TM generation

Whether TMs arise from naïve or effector T cells (TEs) remains
nclear, four models have been suggested to describe the genera-
ion of TMs. First, a separate lineage model suggests that effector and
Ms can be directly generated by homeostatic turnover of different
aïve precursors [18–20] (Fig. 1A). Second, naïve cells undergoing
heir first division produced unequal numbers of effector and mem-
ry populations [21] (Fig. 1B). Third, a linear progression model
ostulates that memory populations are derived from a pool of
rimed effector cells that experienced expansion and contraction
efore finally becoming TMs [22,23] (Fig. 1C). Fourth, during the

atter stages of an immune response, a remaining, small amount of
ntigen fails to adequately stimulate T cells; therefore, naïve T cells
ifferentiate into memory populations [24] (Fig. 1D).

. The role of TMs in allograft rejection

Using inbred rodent models, long-term graft survival or donor-
pecific tolerance has been achieved several times. Success has
een limited in nonhuman primates, outbred rodents, and human
atients. A diverse range of TMs derived from heterologous immu-
ity or prior exposure to alloantigens, are believed to be an

mportant part of this barrier [3,25–27]. A study by Felix and
llen suggested that alloreactive T cells have the ability to rec-
gnize many unrelated peptide sequences [28]. Burrows et al.
emonstrated that human leukocyte antigen (HLA)-B8-restricted
pstein–Barr virus (EBV)-specific T cells were cross-reactive with
LA-B14, -44, and -35 [29,30]. Therefore, alloreactive TMs could
ediate allograft rejection by cross-reacting with donor antigens.

t has been reported that pre-transplant frequency of donor-specific
Ms correlates with the risk of post-transplant acute rejection

pisodes [31]. Donor-reactive TMs can migrate into allograft tissues
ithin 24 h post-transplant [32]. Tolerance induction protocols in
aïve mice based on a co-stimulatory blockade of cytotoxic T-

ymphocyte antigen 4 (CTLA4-Ig) and anti-CD40L have been found
tters 148 (2012) 53– 58

to be ineffective in mice infected with lymphocytic choriomenin-
gitis virus [33]. In another study, depletion of CD8 TMs effectively
improved induction of chimerism and renal survival [34]. Taken
together, these data suggest that donor-specific TMs contributed to
graft destruction and a resistance in the induction of tolerance.

4. TMs and immunosuppressants

Allograft recipients require long-term immunosuppression to
prevent acute and chronic rejection. Immunosuppressive agents act
in different ways to elicit their effects. Immunosuppression can be
carried out by blocking co-stimulatory signals (CTLA4-Ig); blocking
TCR and cytokine receptor signaling (cyclosporine A, FK506); T cell
depletion (antithymocyte globulin); mixed chimerism (bone mar-
row transfusion); and blocking trafficking (alefacept, FTY720). The
majority of immunosuppressive agents mentioned above focus on
naïve T cells. In renal transplant patients, treatment with antithy-
mocyte globulin resulted in a 90% depletion of TMs and TNs, with
CD45RO+CD62Llo TMs comprising the dominant lymphocyte pop-
ulation [35]. A blockade of co-stimulatory molecules (CD154/CD40
or ICOS/ICOSL) inhibited rejection response and prolonged graft
survival, but not in alloantigen-primed mice [36–38].  It has been
reported that using cyclosporine A alone shows a dose-dependent
enhancement of memory recall [39,40]. Growing evidence has
revealed that TMs exhibit different susceptibilities to immune
therapeutics, and this distinguishes them from TNs. Because of
this property, the potential number of immunosuppressive agents
available for targeting TMs is impressive (Table 1).

4.1. Effect of blocking TMs trafficking

TMs express higher levels of CD2 and CD11 compared with TNs,
and can rapidly traffic into grafts and mediate rejection by initi-
ating effector functions [41]. Thus, blockade of trafficking might
be one potential immunosuppressive strategy. A candidate agent
is alefacept, a dimeric, fusion protein consisting of the extracellu-
lar CD2-binding portion of human leukocyte function-associated
antigen-3 (LFA-3) linked to the Fc portion of human immunoglob-
ulin G. Several mechanisms are thought to attenuate allograft
rejection including complement-mediated lysis and blocking of
LFA-3 as the CD2 pathway is important in reactivation of TEMs
[42,43]. Alefacept is approved for the clinical treatment of psoriasis
by the FDA, and its therapeutic effects have been associated with
the ability to eliminate TMs. It has been reported that alefacept pro-
longs traditional co-stimulatory blockades. This is based on renal
allograft survival times in nonhuman primates [43]. Data acquired
from Shapira et al. showed that alefacept preferentially decreases
circulating TM subsets in refractory chronic extensive graft-versus-
host disease (GVHD) in humans [44]. In non-human primates, islet
transplantation with alefacept treatment prolonged allograft sur-
vival by targeting co-stimulatory blockade-resistant TEMs [45].

Efalizumab, an anti-human leukocyte function-associated
antigen-1 (LFA-1) monoclonal antibody (mAb), inhibits the inter-
action of LFA-1 with CD11a to interrupt TM trafficking (Fig. 2A). It
has been reported that anti-LFA-1 mAbs attenuate donor-reactive
memory recall responses and reduce T-cell trafficking to the allo-
graft in murine models of transplantation [46,47]. Phase 2 clinical
trials involving renal transplantation demonstrated that anti-LFA-1
mAbs have potential inhibitory effects on TMs [48].

FTY720 is a high-affinity agonist for sphingosine 1-phosphate
(S1P) receptors. It can inhibit lymphocyte migration from the thy-

mus and peripheral lymphoid tissues by down-regulating surface
expression of the S1P receptor [49] (Fig. 2A). FTY720 leads to
peripheral blood lymphopenia within 3–24 h after administration
to rats [50]. FTY720 promoted cyclosporine A-based skin, cardiac
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nto  memory populations by shortage stimulation of a small amount of antigen in t

nd renal allograft survival in rats and dogs [50–54].  Further stud-
es have proposed that FTY720 prolongs graft survival by inhibiting
lloantigen-specific CD4 memory T cells from trafficking to graft
ites.

.2. Effects of blocking signaling through the cytokine receptor

In mammals, Janus kinases (JAKs) are a family of cytoplas-
ic  tyrosine kinases consisting of four members: Jak1, Jak2, Jak3,

nd tyrosine kinase 2 which are predominantly expressed in
ematopoietic cells and highly regulated with cell development
nd activation. JAKs share a common � chain (�c) surface receptor
or IL-2, -4, -7, -9, -15, -17, and -21, which regulates the develop-

ent, activation, proliferation, and survival of T, B, NK, and NKT
ells [55]. Recent studies have suggested that cytokines, including

L-2, -7 and -15, play an important role in generation, maintenance
nd proliferation of TMs [56] (Fig. 2A). Therefore, JAKs are a poten-
ial molecular target for blockade of cytokine signals used by TMs. A
ighly selective and potent JAK3 inhibitor, tasocitinib (also known

able 1
herapeutic agents targeting TMs.

Therapeutic agents Effects on TMs 

Alefacept Blockade of TMs trafficking
Efalizumab 

FTY720 

Tasocitinib Blockade of signaling through the cytokine receptor 

Bortezomib Induction of TMs apoptosis 

Tolerogenic dendritic cells Induction of TMs tolerance

Regulatory T cells 
by homeostatic turnover of different TNs; (B) TNs undergoing their first division
ol of primed TEs that experienced expansion and contraction; (D) TNs differentiate
er stages of an immune response.

as CP-690550), has been shown to prevent allograft rejection in
mice subjected to heart transplants, and in non-human primates
that have undergone kidney transplants [57,58].

4.3. Effects of inhibiting nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-�B) nuclear
translocation

Bortezomib (Velcade), an FDA-approved dipeptidyl boronic acid
analog, is the first proteasomal inhibitor that prevents degra-
dation of inhibitors of �B (I�B) and thus blocks NF-�B nuclear
translocation [59] (Fig. 2A). It has been reported that bortezomib
mediates apoptosis in alloreactive human T cells [60]. A recent
study demonstrated that bortezomib can suppress the proliferation

of rapamycin-resistant TMs populations in non-human primates
[61]. More importantly, bortezomib was  shown to preserve the
function of regulatory T cells (Tregs) while inhibiting the activation
of donor-reactive TMs. Thus, Bortezomib and a newer generation

Mechanism of action References

Block leukocyte LFA-3:CD2 pathway [35–38]
Inhibit the interaction of LFA-1 and CD11a, and
attenuate TMs recall responses

[39–41]

Down-modulate of the surface expression of S1P
receptor

[42–47]

Block the signals of cytokines such as IL-2, IL-7 and
IL-15 which play an important role in generation,
maintenance and proliferation of TMs

[48–51]

Prevent degradation of I�B and thus blocks NF-�B
nuclear translocation

[52–54]

Inhibit allo-immune responses of TMs, induce anergy
and hyporesponsiveness in TMs

[55,60–67]

Inhibit allo-immune responses of TMs [67,73]
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. TMs and tolerogenic dendritic cells (Tol DCs)

Overcoming the resistance of TMs to tolerance induction con-
inues to present a serious challenge in transplantation. Tol DCs
re a promising, novel immunotherapeutic tool for inhibiting naïve

 cell-mediated immune rejection [62] (Fig. 2B). The mechanisms
y which Tol DCs induce tolerance include TNs deletion, anergy,
ytokine deviation, and/or the induction of Tregs [63–66].  Several
ecent studies have addressed the importance of Tol DCs in toler-
nce induction of TMs. It was previously shown that monoclonal
nti-CD3 or fixed DCs induced hyporesponsiveness in TMs but not
n TNs [67–69].  Co-cultures of dexamethasone-conditioned human

Cs induced anergy in terms of proliferation and cytokine produc-

ion [70]. Tolerance induction protocols based on human Tol DCs
enerated with dexamethasone induced anergy in allogeneic CD4+

Ms, which retained their capacity to produce large amounts of
ailable for targeting TMs, (I) include Alefacept, Efalizumab, and FTY720 which block
mib which induces TMs apoptosis; (B) Tol DCs could induce tolerance of TMs which
s could inhibit allo-responses of TMs which may  prolong graft survival.

IL-10. Anergy in TMs did not induce Tregs and could be partially
reversed by IL-2 [62]. Our data demonstrated that RelB-silenced
DCs induced hyporesponsiveness in CD4+ TNs and CD4+ TMs. Upon
re-stimulation with mature DCs, CD4+ TNs primed with RelB-
silenced DCs maintain responsiveness, while CD4+ TMs primed
by RelB-silenced DCs maintain hyporesponsiveness in terms of
proliferation and cytokine production. This would suggest that
RelB-silenced DCs induce a hyporesponsive state in CD4+ TNs and
CD4+ TMs in a distinct manner [71]. CD8+ TMs also are potent
barrier to transplant tolerance induction. Research has demon-
strated that CD8+ TMs are susceptible to tolerance induction when
cognate antigens are expressed in DCs [72]. A recently study has
shown that CD4+ TMs responses could be terminated by steady-
state DCs expressing cognate antigen [73]. Plasmacytoid dendritic
cells (pDCs) are associated with tolerance to allografts in experi-

mental animal models, and adoptive transfusion of donor-derived
pDCs significantly prolonged allogeneic heart graft and skin graft
survival. Moreover, pDCs could suppress responses in unfraction-
ated allogeneic CD3

+ T cells that contain both TNs. and TMs [74]. The
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mportant ability of Tol DCs to induce tolerance of TMs underscores
he potential of these cells to regulate allo-immune responses in
ransplant patients.

. TMs and Tregs

Tregs are a subpopulation of T cells, defined by their role in
nhibiting immune reactions and inducing tolerance [75]. Tregs
lay a crucial role in maintaining donor-specific hyporesponsive-
ess in renal and liver transplant patients [76–78].  In rodent
odels, adoptive transfer of Tregs prevents allograft rejection and

rolongs survival of grafts [79] (Fig. 2C), suggesting that Tregs could
unction as a potential therapy by inhibiting TNs. Because of the
esistance of TMs immunomodulation, researchers have addressed
he impact of Tregs on TMs. Anti-OX40L prolonged graft survival
y inhibition and apoptosis of TMs in pre-sensitized recipients.
nti-OX40L, LF-15-0195, and anti-CD45RB restored heart allograft

olerance in pre-sensitized model by induction of Tregs. How-
ver, following CD25+ T-cell depletion, heart grafts were rapidly
ejected, despite pre-sensitized recipients being co-administered
hree immunosuppressants [80]. This indicates that Tregs target-
ng TMs are crucial for tolerance induction in pre-sensitized heart
ransplant recipients. CD8+ Tregs induced by pDCs suppressed the
llo-responsiveness of TMs [74]. These finding are highly relevant to
linical transplantation, and support the use of Tregs as a potential
pproach to induce tolerance of recipient allo-reactive TMs.

. Conclusion

Over the past decade, studies published have definitively
emonstrated that TMs pose a potent barrier in obtaining long-term
llograft survival and transplant tolerance because heterogeneous
Ms develop different susceptibilities to traditional immunosup-
ressive agents. In this study, we summarized two  strategies for

mmunosuppressive and cellular therapy. Immunosuppressants
an be divided into three types according to their different effects
n TMs. Cellular therapies mainly use two cell types: Tol DCs and
regs. Some immunosuppressants are already used clinically. How-
ver, because their effects are mainly based on inhibition of TM
ctivation and proliferation, there can be many side effects on trans-
lant patients, thereby limiting their extensive use. Because the
im of cellular therapy is to induce tolerance of TMs, leading to
nergy and hyporesponsiveness of TMs to transplant allografts, it is
ore likely to have fewer side effects and maintain allograft func-

ions. Although most cellular therapies are still in the early stages,
ome animal studies have already showed great potential in pre-
enting rejection, prolonging survival time, and maintaining the
unctions of allografts. We  believe that cellular therapy will become
he preferred solution for clinical transplant rejection in the future.

In summary, with advances in understanding the mechanisms
f TM generation, activation, function, or trafficking, and the identi-
cation of biomarkers, potential approaches targeting TMs should
liminate or attenuate allograft rejection.
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