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Abstract 
While stable in CH2Cl2, hexane or THF, in the presence of MeOH, self-promoted dimerization of the 
tri-arylphosphine-alkene 1, a ligand for Pd-catalyzed reactions, produced an unusual racemic 
bis(phosphine) 2 in high yield. Reaction of 2 with Pd(dba)2, followed by oxidative addition of 
p-IC6H4NO2, yields a trans-chelated Pd(II) aryl iodide complex. 
Keywords: Phosphine, Ligand, Palladium, DFT calculations, Reaction mechanism 
 

1. Introduction 
The Morita-Baylis-Hillman (MBH) reaction[1,2] is a useful and atom-economical carbon-carbon bond 
forming reaction (Scheme 1), which involves nucleophile catalyzed addition of an alkene, which is 
activated by an electron-withdrawing group, to an electrophile, typically an aldehyde or imine. [3] As it 
has been used for the synthesis of a variety of natural and unnatural products[4-6], the MBH reaction has 
recently experienced an enormous growth in importance and use. [3, 7-19]  
 

 
Scheme 1: Morita-Baylis-Hillman (MBH) Reaction. EWG: electron-withdrawing group. 

 
However, the application of the MBH reaction had been limited in complex syntheses by slow 

reaction rates and low conversions[3, 20] as well as difficulty in controlling absolute stereochemistry. [8] 
Theoretical and experimental studies have provided insight into how to increase the rate of this 
reaction.[21-25]Often, nucleophilic catalysts such as DABCO, DBU, n-Bu3P are employed. [20] Slow 
reaction rates, [20] autocatalysis in the absence of proton donors, [22] formation of dioxanones, [26-27] and 
the rate acceleration observed in protic solvents, [28-32] are intriguing aspects of the MBH reaction, and 
recent DFT studies have begun to provide useful mechanistic insights. [33-35]  

A few examples of dimerization reactions have been reported, but they require a catalyst, [36-39] or 
high temperature, [39] or high pressure. [40] We report herein the unusual case of a self-promoted 
dimerization of a triarylphosphine-substituted vinylphenyl-ketone 1, which we have been exploring as 
a ligand in Pd-catalyzed reactions. [41-43] 
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2. Experiment and discussion 

 
Scheme 2: Self-promoted dimerization. 

 
The dimerization of 1 (Scheme 2) takes place under ambient conditions, in CH2Cl2/MeOH mixtures, 
requiring no additives, giving dimer 2 in ca. 80% isolated yield. In situ NMR experiments and DFT 
calculations, provide preliminary insight into the mechanism, including reaction order, solvent effects, 
etc. 

Initially, we used different solvent combinations (CH2Cl2/hexane, THF/hexane, and CH2Cl2/MeOH) 
to grow crystals of 1. We obtained crystals§ of 1 (Figure 1, left) from CH2Cl2/hexane and THF/hexane, 
but were surprised to obtain crystals of the dimer, 2, (Figure 1, right) from CH2Cl2/MeOH. Indeed, 
when pure 1 was dissolved in CH2Cl2 (ca. 20 mg/mL) and layered with twice the amount of MeOH, 
crystals§ of 2 were isolated in 81% yield after 4 d at room temperature. Compound 2 is clearly formed 
by dimerization of 1, by a process related to the MBH reaction, although no catalyst, acid or base was 
added. 

 
Figure 1: Molecular structures of 1 (left) and 2 (right) with phenyl H-atoms omitted for clarity and 

ellipsoids drawn at 30% probability. 
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Table 1: Yield of 2 at different times vs. CH2Cl2 / MeOH ratio. 

CH2Cl2/MeOH ratio 20:80 33:67 66:34 90:10 

24 hours 34% 34% 6% 0 
4 days 81% 81% 20% 6% 

 
The dimerization reaction can be carried out in air, in 20-33% CH2Cl2/CD3OD or in 20-33% 

THF/CD3OD; after 43 h in CH2Cl2/CD3OD, 31P{1H} NMR spectroscopy showed no evidence for P=O, 
whereas in THF/CD3OD ca. 8% of phosphine oxide was observed. After 4 d, ca. 9 and 18% P=O 
species were observed in CH2Cl2/CD3OD and THF/CD3OD, respectively. Thus, although both 1 and 2 
can be handled in air for brief periods without degradation, subsequent studies were carried out under 
N2 via in situ 31P{1H} NMR spectroscopy to monitor reaction progress. The reaction was ca. 4x faster 
in CH2Cl2/CD3OD than in THF/CD3OD, and ca. 70% yield of 2 was obtained within 2 d in the former 
case. As acids are known to promote MBH reactions, we examined both AR grade CH2Cl2 as well as 
that which had been purified by washing with aq. Na2CO3 followed by drying over CaCl2 and 
distillation from CaH2 under N2. There was no difference in the reaction rate in either case. We also 
examined the effect of the CH2Cl2/MeOH ratio over the range 20-90% CH2Cl2 (Table 1). After 24 h, ca. 
34% conversion was observed in either 20 or 33% CH2Cl2. In 66% CH2Cl2, the conversion was only ca. 
6% after 24 h. It required ca. 4 d to achieve 6% conversion in 90% CH2Cl2. Clearly, MeOH accelerates 
the reaction dramatically, and must play more than a spectator role in the reaction, vide infra. [39] 

Traditional nucleophilic catalysts for the MBH reaction were examined against control reactions 
under identical conditions. n-Bu3P (in THF/MeOH, to avoid any reaction with CH2Cl2) had no 
significant effect on the rate, but DABCO (in CH2Cl2/MeOH) actually slowed down the reaction 
dramatically. Acids, i.e., PhOH and CH3COOH, had little if any effect on the rate. 
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Figure 2: Second order rate plots of the above reactions at the 4 different intial concentrations of monomer (1). 

Condition: 1) 15.3 mg of 1 was dissolved in 400 µl of CD2Cl2 + 200 µl of CD3OD, [C]0= 0.06505 mol/L; 2) 30.6 
mg of 1 was dissolved in 400 µl of CD2Cl2 + 200 µl of CD3OD, [C]0= 0.1301 mol/L; 3) 45.9 mg of 1 was 

dissolved in 400 µl of CD2Cl2 + 200 µl of CD3OD, [C]0= 0.19515 mol/L; 4) 61.2 mg of 1 was dissolved in 400 µl 
of CD2Cl2 + 200 µl of CD3OD, [C]0= 0.2602 mol/L. 

 

It appears that the reaction is self-promoted, i.e., that the nucleophilic catalyst is the phosphine itself. 
Reactions carried out under otherwise identical conditions but with four different starting 
concentrations show that the rate depends on the initial concentration of the monomer. Plots of [1]-1 vs. 
time, obtained from in situ 31P{1H} NMR spectroscopy, were linear (R2 > 0.987 in all cases) with 
similar slopes (Figure 2), suggesting that the reaction is second order in [1]. 
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Figure 3: Dideuteration of 2 from reaction in CD3OD. 

 
When the reaction was carried out in CD2Cl2/CD3OD, D2-dimer was obtained exclusively, with 

the two diastereotopic protons at position 2a (α to the carbonyl, Figure 3) of 2 being deuterated. The 1H 
NMR spectrum showed that the two doublets of doublets at 3.63 and 3.14 ppm, normally observed for 
the gem H2 group, disappeared and the quartet (due to coupling to 2 protons and to 31P) for H(2b) at 
5.75 ppm collapsed to a doublet. The deuteration level (>90% D2) was confirmed by MS and 
HRMS(ESI+): m/z calcd. for C54H40

2H2O2P2 (M+H)+ 787.28584, found 787.28645. As both protons are 
potentially enolizable, in order to determine whether proton exchange occurred during or after the 
reaction, 2 was dissolved in CH2Cl2/CD3OD. Within 4 h, only the signal at 3.63 ppm disappeared, 
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whereas the signal at 3.14 ppm collapsed to a doublet and the signal at 5.75 ppm collapsed to a triplet. 
Thus, only one of the two diastereotopic H’s in 2 undergoes rapid enolization and D exchange, and this 
did not change within 3 d, as confirmed by 1H and 13C NMR spectroscopy and ESI-MS. Clearly, the 
other H at position 2a must become deuterated during the course of the dimerization reaction rather 
than after 2 is formed, again indicating the important role of MeOH/D in the reaction. [34] 

 

 
Figure 4: Preliminary DFT studies of the dimerization reaction mechanism 

 
Preliminary DFT studies (B3LYP/6-31G*) of the reaction pathway clearly indicate that 

intramolecular activation via attack of the phosphorus atom on the carbon β-to the C=O group (C1b in 
Scheme 2) is prohibitively high in energy due to ring strain (formation of a 4-membered ring), whereas 
intermolecular attack of the phosphorus atom on C1b of a second molecule, while entropically 
disfavored, is enthalpically favorable, consistent with the observed 2nd order dependence of the reaction 
rate on [1].  The free energy of activation for the formation of the new C-C bond via a 6-membered 
ring transition state was computed to be ca. 27 kcal/mol lower than via intermolecular nucleophilic 
attack (Figure 4). In addition, the calculations show that MeOH plays an important role in the key 
proton transfer step, as noted previously (Figure 4).[34]  Assistance of MeOH lowers ∆G‡ for the proton 
transfer step by ca. 22 kcal/mol. Further comprehensive DFT studies (MPWpw91, 6-31+G*) of the 
mechanism of the dimerization, including solvent effects and all possible diastereomeric transition 
states, are ongoing. 
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Scheme 3: Reaction to form compound 3. 
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Compound 2 contains two P-donors separated by seven carbon atoms, and has one chiral carbon 
center. Thus, we decided to explore its potential as a ligand. When 2 was reacted with Pd(dba)2 
followed by addition of excess p-IC6H4NO2, the Pd(II) oxidative addition product 3 formed in 
essentially quantitative yield, as determined by in situ 31P{1H} NMR spectroscopy, and was isolated in 
73% yield (Scheme 3).  

The 31P{1H} NMR spectrum of 3 was strongly 2nd order even on a 700 MHz spectrometer, giving 
rise to an AB multiplet centred at 19.5 ppm with JP-P of ca. 400 Hz, clearly indicating a 
trans-disposition of the two P atoms, which was confirmed by X-ray diffraction (Figure 5).§ As 
oxidative additions of ArX to Pd(0) are believed to be concerted processes leading initially to 
cis-products, [44-46] it is likely that one arm of the ligand dissociates prior to oxidative addition. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: Molecular structure of 3 with phenyl H-atoms and disorder omitted for clarity and ellipsoids drawn at 
30% probability. Selected bond distances (Å): Pd-I 2.6977(5), Pd-P(1) 2.327(1), Pd-P(2) 2.334(1), Pd-C(1) 

2.003(3). 
 
§ Crystal data at T = 120 K: C27H21OP (1), Mr  = 392.41, monoclinic, space group P21/n, a = 
15.0231(9), b = 7.5594(5), c = 18.8798(11) Å, β = 101.263(8)°, V = 2102.8(2) Å3, Z = 4; C54H42O2P2 
(2), Mr = 784.82, monoclinic, space group P21/c, a = 10.6118(7), b = 20.8716(16), c = 18.5327(14) Å, β 
= 94.12(1)°, V = 4094.1(5) Å3, Z = 4; C60H46INO4P2Pd·½C6D6·1.65 CH2Cl2 (3) (the content of 
disordered CH2Cl2 is uncertain), Mr = 1322.42, triclinic, space group P-1, a = 11.8555(6), b = 
12.8611(8), c = 21.8617(11) Å, α = 79.13(2), β = 75.98(2), γ = 65.15(3)°, V = 2920.3(3) Å3, Z = 2; RF = 
0.038, 0.039 and 0.044 for 3967, 6936 and 10477 unique reflections with I > 2　(I), respectively. 
Supplementary data can be obtained free of charge from the Cambridge Crystallographic Data Centre 
via www.ccdc.cam.ac.uk/data_request/cif, CCDC 703071 (1), 703072 (2) and CCDC 703073 (3). 

3 Conclusion and future works 
In conclusion, we have observed the unusual self-promoted dimerization of a phosphine-alkene 
ligand leading to a new bis-phosphine capable of trans-chelation. Preliminary kinetic and 
mechanistic studies indicate a 2nd order process which is triggered by the nucleophilic attack of 
one phosphorus on the carbon β-to the carbonyl group of another molecule, and which only takes 
place in the presence of a protic solvent (i.e., MeOH). Further experimental and theoretical studies 
of the mechanism of the reaction and of the chemistry of the dimeric ligand are in progress. 
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