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String correlations are investigated in an infinite-size XXZ spin-1 chain. By using the infinite matrix product state
representation, we calculate a long-range string order directly rather than an extrapolated string order in a finite-size
system. In the Néel phase, the string correlations decay exponentially. In the XY phase (Tomonaga–Luttinger liquid
phase), the behavior of the string correlations shows a unique two-step decaying to zero within a relatively very large
lattice distance for any finite truncation dimension but its disappearance with zero string correlation in the
thermodynamic limit, which makes a finite-size study difficult to verify the non-existence of the string order. Thus, in
the Haldane phase, the non-vanishing string correlations in the limit of a very large distance allow to characterize the
phase boundaries to the XY phase and the Néel phase, which implies that the transverse long-range string order is the
order parameter for the Haldane phase. In addition, the singular behavior of the von Neumann entropy and the fidelity
per lattice site is shown to capture clearly the phase transition points that are consistent with the results from the
transverse long-range string order. The estimated critical points including a Berezinsky–Kosterlitz–Thouless transition
from the XY phase to the Haldane phase agree well with the previous results: �c2 ¼ 0 for the XY–Haldane phase
transition and �c3 ¼ 1:185 for the Haldane–Néel phase transition from the density renormalization group. From a
finite-entanglement scaling of the von Neumann entropy with respect to the truncation dimension, the central charges
are found to be c ’ 1:0 at �c2 ¼ 0 and c ’ 0:5 at �c3 ¼ 1:185, respectively, which shows that the XY–Haldane phase
transition at �c2 ¼ 0 belongs to the Heisenberg universality class, while the Haldane–Néel phase transition at
�c2 ¼ 1:185 belongs to the two-dimensional classical Ising universality class. It is also shown that, the long-range
order parameters and the von Neumann entropy, as well as the fidelity per site approach, can be applied to characterize
quantum phase transitions as a universal phase transition indicator for one-dimensional lattice many-body systems.
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1. Introduction

Since Landau introduced the theory of second order phase
transitions, understanding local order parameters character-
izing different quantum phases has become one of the main
paradigms in condensed matter physics.1,2) Local order
parameters are then known to detect a spontaneous
symmetry breaking for quantum phase transitions.3,4) In
some cases, however, this local order parameter approach
does not work because quantum phase transitions arise from
the cooperative behavior of a system due to emergence of
non-local order.5) Although a non-local order parameter
could not be directly probed in experiments, it can be useful
for understanding the underlying physics of quantum phases
as well as for marking phase boundaries. Thus, under-
standing non-local orders in low-dimensional spin systems at
absolute zero temperature have been an important subject in
quantum phase transitions in recent years.6–12)

A prototype example, in particular, is the spin-1
antiferromagnetic Heisenberg chain.13,14) The groundstate
of the spin chain is in a distinct phase with a finite
energy gap, but does not exhibit any local order parameter.6)

These properties of the groundstate are comprehensively
understood by a non-vanishing non-local string correlation15)

introduced by den Nijs and Rommelse,16) and by
understanding the Affleck–Kennedy–Lieb–Tasaki (AKLT)
Hamiltonians for interger-spin chains.17,18) The distinct
phase of the groundstate is called the Haldane phase.19)

The energy gap is also called the Haldane gap, which

has been manifested by experimental evidences found in
CsNiCl3

20) and the organic crystal Ni(C2H8N2)2NO2ClO4.
21)

Indeed, in order to characterize the Haldane phase, such
non-local string correlations have been extensively studied
in various finite-size spin systems such as anisotropic
spin-1 Heisenberg chains,14) frustrated antiferromagnetic
Heisenberg spin-1 chains,18) alternating Heisenberg
chains,22,23) spin ladders24–26) and tubes,11) restricted solid-
on-solid model,16) lattice boson systems,27) and so on. The
density matrix renormalization group (DMRG),28) the large-
cluster-decomposition Monte Carlo method,29) and exact
diagonalization with Lanczos method30,31) have been applied
for these studies. In a recently developed tensor network
(TN) representation, i.e., matrix product state (MPS)
representation,32) the DMRG method33) also has been
applied to explore a string correlation for a finite-size
lattice. The non-local string order inferred from the string
correlation behavior in such finite-size spin systems has been
used to characterize the Haldane phase from other
phases.14,33) In fact, it is then believed that string correlations
can characterize the Haldane phase. However, no character-
ization of the Haldane phase, to the best of our knowledge,
has been made by directly computing long-range string order
(LRSO) instead of the extrapolated behavior of string
correlations till now because all pervious studies have been
carried out in finite-size systems.

Thus, in this study, we will investigate string correlations
and their extreme values for very large spin lattices, i.e.,
directly computing the string order. To do this, we consider
the infinite-size spin-1 antiferromagnetic Heisenberg chain
with anisotropic exchange interaction �. We will employ�E-mail: sycho@cqu.edu.cn
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the infinite matrix product state (iMPS) representation34–36)

for the ground state wavefunction of the infinite lattice
system. The groundstate wavefunction can be obtained
numerically by using the infinite time evolving block
decimation (iTEBD) method35) within the iMPS representa-
tion. To investigate string correlations, we will introduce an
efficient way to calculate a non-local correlation and its
extreme value for a large-size lattice system in the iMPS
representation. It is found that, except for the Haldane phase,
the string correlations decay exponentially in the Néel phase,
while they show a unique behavior of decaying to zero
within very large lattice distance in the XY phase
(Tomonaga–Luttinger liquid phase). For the Haldane phase,
the string correlations are saturated to finite values, which
shows a LRSO as the lattice distance goes to infinity. Also,
from the LRSO with respect to the anisotropic interaction
parameter �, it is clearly shown that both the x- and
y-components rather than the z-component of the LRSO play
a role as the order parameters characterizing the Haldane
phase. As a consequence, the string order parameters enable
us to directly characterize the possible phases of the system
with respect to the anisotropic exchange interaction. More-
over, the von Neumann entropy and the fidelity per lattice
site (FLS) are calculated to show that their singular behavior
corresponds to the phase transition points. The central
charges from the finite-entanglement scaling quantify the
universality classes of the transition points. The FLS is
shown to capture a Berezinsky–Kosterlitz–Thouless (BKT)
type transition, in contrast to the fidelity susceptibility that
fails to detect it.

This paper is organized as follows. In x2, a brief
explanation for the iMPS representation is given. We discuss
how to capture non-local correlations including string
correlations and string orders directly by exploiting the
iTEBD method. In x3, the spin-1 XXZ chain model is
introduced. We discuss the behavior of the string correlations
and Néel correlations as a function of the lattice distance for
given anisotropic interaction strengths in x4. The phase
diagram of the spin-1 XXZ chain model is presented based on
the non-local correlations and the string and Néel order
parameters in x5. In x6, we discuss local and non-local
properties of the iMPS groundstate that allow to introduce
pseudo symmetry breaking order for the XY phase for finite
truncation dimensions. In x7, the phase transitions and their
universality classes are discussed from the von Neumann
entropy and the central charges via the finite-entanglement
scaling. In x8, the groundstate FLS is shown to have a clear
pinch point that corresponds to a quantum phase transition. In
x9, our conclusions and remarks are given.

2. iMPS Representation and Non-local Correlations in
Numerical Method

Recently, significant progress has been made in numerical
studies based on TN representations32–41) for the investiga-
tion of quantum phase transitions, which offers a new
perspective from quantum entanglement and fidelity, thus
providing a deeper understanding on characterizing critical
phenomena in finite and infinite spin lattice systems.
Actually, a wave function represented in TNs allows to
perform the classical simulation of quantum many-body
systems. Especially, in one-dimensional spin systems, a

wave function for infinite-size lattices can be described by
the iMPS representation.32) The iMPS representation have
been successfully applied to investigate the properties of
ground-state wave functions in various infinite spin lattice
systems. The examples include Ising model in a transverse
magnetic field36) and with antisymmetric anisotropic and
alternative bond interactions,37) XYX model in an external
magnetic field,36) and spin-1/2 XXZ model.38) However, the
iMPS has not been applied much to explore spin correla-
tions. Few studies have shown the behavior of spin–spin
correlations in the infinite Ising spin chain.35) Furthermore,
non-local spin correlations have not been explored yet in
infinite-size systems with the iMPS representation. Then, in
this section, we will discuss how to calculate a non-local
spin correlation within the iMPS representation.

2.1 iMPS representation and iTEBD algorithm
For an infinite one-dimensional lattice system, a state can

be written as35,42)

j�i ¼
X
fSg

X
f�g

� � � � ½i�
�i
�½i�
�i;si;�iþ1

� ½iþ1�
�iþ1

�½iþ1�
�iþ1;siþ1;�iþ2

� ½iþ2�
�iþ2

� � �

� j � � � Si�1SiSiþ1 � � �i; ð1Þ
where jSii denote a basis of the local Hilbert space at the site
i, the elements of a diagonal matrix � ½i�

�i
are the Schmidt

decomposition coefficients of the bipartition between the
semi-infinite chains Lð�1; . . . ; iÞ and Rðiþ 1; . . . ;1Þ, and
�½i�
�i;Si;�iþ1

are a three-index tensor. The physical indices Si
take the value 1; . . . ; d with the local Hilbert space
dimension d at the site i. The bond indices �i take the value
1; . . . ; � with the truncation dimension of the local Hilbert
space at the site i. The bond indices connect the tensors � in
the nearest neighbor sites. Such a representation in eq. (1) is
called the iMPS representation.35) If a system Hamiltonian
has a translational invariance, one can introduce a transla-
tional invariant iMPS representation for a state. Practically,
for instance, for a two-site translational invariance, the state
can be reexpressed in terms of only the three-index tensors
�AðBÞ and the two diagonal matrices �AðBÞ for the even (odd)
sites,37) where f�; �g are in the canonical form, i.e.,

j�i ¼
X
fSg

X
fl;rg

� � � �A�A�B�B�A � � � j � � � Si�1SiSiþ1 � � �i; ð2Þ

where l and r are the left and right bond indices,
respectively. In Fig. 1(i), a state j�i with a two-site
translational invariance is pictorially displayed in the iMPS
representation for infinite one-dimensional lattice systems.
In a more compact form, further, the quantum state can be
reexpressed as the state in Fig. 1(ii) by absorbing the
diagonal matrices � into the tensors �.

Once a random initial state j�ð0Þi is prepared in the iMPS
representation, one may employ the iTEBD algorithm35)

to calculate a groundstate wavefunction numerically. For
instance, if a system Hamiltonian is translational invariant
and the interaction between spins consists of the nearest-
neighbor interactions, i.e., the Hamiltonian can be expressed
by H ¼P

i h
½i;iþ1�, where h½i;iþ1� is the nearest-neighbor two-

body Hamiltonian density, a groundstate wavefunction of
the system can be expressed in the form in eq. (2). The
imaginary time evolution of the prepared initial state j�ð0Þi,
i.e.,
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j�ð�Þi ¼ exp½�H��j�ð0Þi
k exp½�H��j�ð0Þik ; ð3Þ

leads to a groundstate of the system for a large enough �.
By using the Suzuki–Trotter decomposition,43) actually, the
imaginary time evolution operator U ¼ expð�H�Þ can be
reduced to a product of two-site evolution operators
Uði; iþ 1Þ that only acts on two successive sites i and
iþ 1. For the numerical imaginary time evolution operation,
the continuous time evolution can be approximately realized
by a sequence of the time slice evolution gates
Uði; iþ 1Þ ¼ expð�h½i;iþ1���Þ for the imaginary time slice
�� ¼ �=n � 1. A time-slice evolution gate operation con-
tracts �A, �B, one �A, two �B, and the evolution operator
Uði; iþ 1Þ ¼ expð�h½i;iþ1���Þ. In order to recover the
evolved state in the iMPS representation, a singular value
decomposition (SVD) is performed and the � largest
singular values are obtained. From the SVD, the new tensors
�A, �B, and �A are generated. The latter is used to update
the tensors �A as the new one for all other sites. Similar
contraction on the new tensors �A, �B, two new �A, one �B,
and the evolution operator Uðiþ 1; iþ 2Þ ¼ expð�h½iþ1;iþ2�Þ,
and its SVD produce the updated �A, �B, and �B for all
other sites. After the time-slice evolution, then, all the
tensors �A, �B, �A, and �B are updated. This procedure is
repeatedly performed until the system energy converges to a
groundstate energy that yields a groundstate wavefunction in
the iMPS representation. The normalization of the ground-
state wavefunction is guaranteed by requiring the norm
h�j�i ¼ 1 in Fig. 1(iii).

2.2 Non-local correlations
In principle, once one obtains a groundstate wavefunction,

the expectation values of physical quantities can be
calculated. In Fig. 2, we depict the diagrammatic iMPS
representations for some examples of various expectation
value calculations. Figure 2(i) presents the computation of
successive spin operators such as magnetization36) hS�

i i,
dimer order44) hS�i S�

iþ1i, and chiral order45,46) hS�
i S

�
iþ1S

�
iþ2i

(�; �; � 2 fx; y; zg). On calculating the expectation values,

each spin operator acting on a site is sandwiched between a
given wave function j�i and its complex conjugate. The left
and right dominant eigenvectors of the transfer matrix
denoted by the black dots act on the tensor, for instance,
contracting the tensors A, A�, (or B, B�) and the local spin
operator Si for hS�

i i. This leads to the expectation value hS�i i.
This procedure can be simply expanded to the calculation

of spin–spin correlations as well as non-local correlations.
Examples are the string correlation OS,

16) the parity
correlation OP,

46) and the Néel correlation ON
44) given by,

respectively,

O�
Sði; jÞ ¼ � S�

i exp i	
Xj�1

k¼iþ1

S�
k

 !
S�
j

* +
; ð4aÞ

O�
Pði; jÞ ¼ exp i	

Xj

k¼i

S�
k

 !* +
; ð4bÞ

O�
Nði; jÞ ¼ ð�1Þi�jhS�i S�

j i; ð4cÞ
where i and j denote the site locations in the lattice and then
the lattice distance is ji� jj. Figures 2(ii), 2(iii), and 2(iv)
present the computation of the string, parity, and Néel
correlations, respectively, in the iMPS representation. Note
that, for the calculation of these correlations, the (i� j)
tensors are involved. For the parity correlation, the multi-site
operator expði	P S�

k Þ acts on each site between the site i
and site j. For the string correlations, the spin operators Si
and Sj act on sites i and j while the multi-site operator
expði	P S�

k Þ acts on the sites in between the sites i and j.
Compared to the string correlations, the Néel correlations
can be calculated by replacing the multi-site operator
expði	P S�

k Þ with the identity operator, i.e., Iiþ1 � � � Ij�1

while the parity correlation can be obtained by expanding
the multi-site spin operator to the both ends of the lattice
distance. Then, it should be noted that, in principle, the iMPS
representation allows to calculate any correlations in the
limit of the infinite distance, i.e., ji� jj ! 1. For numerical

Fig. 1. (Color online) (i) Diagrammatic infinite matrix product state

(iMPS) representation of a wavefunction j�i having two-site translational

invariance for infinite one-dimensional lattice systems. �AðBÞ denoted by

filled diamonds are a diagonal (singular value) matrix, respectively,

depending on the 2i-th (A) and 2iþ 1-th (B) bonds. �AðBÞ indicated by

filled circles are a three-index tensor for the 2i-th and 2iþ 1-th sites,

respectively. r and l indicate the bond indices. (ii) A compact form of the

pictorial representation in (i). (iii) The norm h�j�i of a given state j�i in
(i). The black dots indicate the left and right dominant eigenvectors that can

be determined for the dominant eigenvalue of the transfer matrix T . The

transfer matrix T is obtained by the contraction on the tensors A, A�, B, and
B� in the dashed-line box.

Fig. 2. (Color online) Diagrammatic representations in the iMPS repre-

sentation for (i) magnetization, dimer order, and chiral order, (ii) string

correlation, (iii) parity correlation, and (iv) Néel correlation (two point spin

correlation).
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calculations, in order to obtain the correlations in the limit of
the infinite distance, one can set a truncation error " rather
than the lattice distance, i.e., O�ði; jÞ � O�ði; jþ 1Þ < ". In
this study, for instance, " ¼ 10�8 is chosen.

As an example, for the spin-1 Haldane chain H ¼P
i Si � Siþ1, the exact-diagonalization calculations of a 14-

site lattice have estimated Oz
Sð1Þ ’ 0:38.47) The DMRG

methods have verified the existence of LRSO by estimating
Oz

Sð1Þ ¼ 0:37432509 for the Haldane chain.48) In Fig. 3, we
plot the string correlation O�

Sði; jÞ as a function of the lattice
distance ji� jj with the truncation dimension � ¼ 32. It is
shown clearly that the O�

Sði; jÞ starts to saturate around the
lattice distance ji� jj ’ 10 and Ox

Sði; jÞ ¼ Oy
Sði; jÞ ¼ Oz

Sði; jÞ
for the Haldane chain. The saturated value of the string
correlation from our iMPS representation approach is given
as O�

Sð1Þ ¼ 0:37434447, which agrees very well with the
value Oz

Sð1Þ ¼ 0:37432509 as well as the saturation
behavior of the string correlations from the DMRG
method in Fig. 5 of ref. 48. As is well-known, further,
the spin-1 AKLT model HS¼1

AKLT ¼P
i½ð1=2ÞSi � Siþ1 þ

ð1=6ÞðSi � Siþ1Þ2 þ 1=3� is exactly solvable and the string
order is given as the exact value 4/9.17,18) In our iMPS
representation, the value of the string order has been
confirmed to be 4/9 for the spin-1 AKLT model within
the machine accuracy.

3. Spin-1 XXZ Heisenberg Chain

Spin-1 Heisenberg chains are one of the prototypical
examples in understanding non-local correlations,8) i.e.,
string correlation. Then, to investigate non-local correlations
in one-dimensional spin systems, we consider an infinite
spin-1 XXZ Heisenberg chain described by the Hamiltonian

H ¼ J
X1
i¼�1

ðSx
i S

x
iþ1 þ Sy

i S
y
iþ1 þ�Sz

i S
z
iþ1Þ; ð5Þ

where S�
i (� ¼ x; y; z) are the spin-1 operators at the lattice

site i, J denotes the antiferromagnetic spin-exchange
interaction between the nearest neighbor spins, and � is
responsible for the anisotropy of the exchange interaction.
This model has been intensively studied for a couple of
decades.5–8,28–31,33,49–57) The studies have shown that there
are the four characteristic phases with respect to the
anisotropic exchange interaction �. If the anisotropic
interaction is much smaller than �1, i.e., � � �1, the
Hamiltonian can be reduced to a spin-1 ferromagnetic Ising
model H � �Pi S

z
i S

z
iþ1 and the system is in the ferromag-

netic phase. At �c1 ¼ �1, a first-order transition occurs
between the ferromagnetic phase and the XY phase. If the
anisotropic interaction is much greater than 1, i.e., � 	 1,
the Hamiltonian is reduced to a spin-1 antiferromagnetic
Ising model H �P

i S
z
i S

z
iþ1 and the system is in the

antiferromagnetic (AF) phase. At �c3 ¼ 1:17
 0:02, the
Haldane–Néel phase transition occurs, which belongs to the
two-dimensional Ising universality class.28,29) In between
the two phase transition points �c1 < � < �c3, the XY–
Haldane phase transition occurs, which has been thought to
be a BKT transition at �c2.

8,28–30)

As is well-known, many antiferromagnetic spin systems
can be explored by the standard spin–spin correlations (Néel
correlations).44) However, in the Haldane phase, the spin–
spin correlations decay exponentially with a finite correla-
tion length33,48,49,58) and the Haldane gap exists. In this
aspect, the Haldane phase can be considered as a disordered
phase.12) Also, the XY phase is characterized by the power
law decay of the spin–spin correlations (Néel correlations)58)

with gapless excitations. Characterizing both the XY and
Haldane phases therefore is a non-trivial task in the aspect
of the spin–spin correlations. By investigating the spin
correlations, the transition point �c2 has been estimated to
be 0 . �c2 . 0:2 from the exact numerical calculations and
the finite-cell-scaling analysis,30) �c2 ¼ �0:01
 0:03 from
the phenomenological renormalization-group technique and
the finite-size scaling analysis with 16 spin sites,28) and
�c2 ¼ 0:068
 0:003 from the criterion exponents of the
spin correlations 
x ¼ 1=4 in the exact diagonalization
method with 16 spin sites.31) Investigating the excitation
gap, as the anisotropic interaction strength varies, is also a
method to characterize the Haldane phase. By using the
lowest-energy levels and finite-size scaling for energy gaps
from the Lanczos method, the critical point has been
conjectured to be at �c2 ¼ 0 in ref. 8. As an alternative way
to characterize the Haldane phase, the string order arising
due to the fully broken Z2 � Z2 hidden symmetry has been
investigated.6,7) The XY–Haldane transition point has been
estimated �c2 � 0 by exploring the string correlations from
a finite size analysis14) and by a finite-size scaling of the
string order.33)

4. String and Néel Correlations in Spin-1 XXZ Chain

A non-vanishing correlation in the limit of the infinite
lattice distance (ji� jj ! 1), i.e., a long-rang order reveals
that the system is in a ordered state. For the non-local
correlations, the string and Néel orders are respectively
defined by

O�
S ¼ lim

ji�jj!1
O�

Sði; jÞ; ð6aÞ
O�

N ¼ lim
ji�jj!1

O�
Nði; jÞ: ð6bÞ

For instance, the non-vanishing spin–spin (Néel) correlations
for ji� jj ! 1 indicate that the system is in an anti-
ferromagnetic state. Also, the ground state in the Haldane
phase is known to be characterized by the string order.7) In
the viewpoint of the string order, then, the Haldane phase
could be an ordered phase. Further, if the string order plays a
role as the order parameter for the Haldane phase, from the
string order, the phase transition boundary from the Haldane
phase to other phases can be captured. This view has been

Fig. 3. String correlation O�
Sði; jÞ for the Haldane spin-1 chain with

� ¼ 32.
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applied to the investigations of the Haldane phase of spin-1
systems.14,50–52) By using numerical-diagonalization, how-
ever, available system sizes were too small to convince
string order behavior as an order parameter. Thus, in ref. 33,
comparisons between the behavior of the string and the Néel
correlations from a finite size spin lattice (up to 300 sites),
and their finite-size scaling behavior has been used to
capture the phase boundary. However, directly capturing the
critical behavior of the string order near the transition point
was quite difficult due to a very limited lattice size.
Compared to such approaches, as discussed in x2, the iMPS
approach enables to explore the behavior of the string
order directly in the limit of the infinite lattice distance
(ji� jj ! 1).

In Fig. 4, we plot the string correlations O�
Sði; jÞ as a

function of ji� jj for various anisotropic interactions �. In
Figs. 4(c) for the Haldane phase and 4(d) for the Néel
(antiferromagnetic) phase, the string correlations show a
logarithmical decaying to its saturated value or zero as the
lattice distance ji� jj increases up to a few hundreds. While,
in the XY phase in Figs. 4(a) and 4(b), the string correlations
show a unique two-step decaying to zero for the finite
truncation dimensions. As the lattice distance ji� jj
increases, that is, the string correlations undergo a decaying
behavior for a few hundreds of the lattice distance, a
saturation-like behavior for a few thousands of the lattice
distance, and then eventually decaying again down to zero
around a few tens of thousands. Hence, in contrast to the
Haldane phase, there is no long-range string order in the XY

phase. Also, it should be noted that, near the transition point
in the XY phase in Fig. 4(b), such saturation-like behavior of
the string correlations occurs for a very wide range of the
lattice distance from a few hundreds to a few thousands, i.e.,
roughly 102 . ji� jj . 104. While, away from the transition
point in Fig. 4(a), such saturation-like behavior of the string
correlations occurs for a relatively narrow range of the
lattice distance roughly 2� 102 . ji� jj . 103.

In order to understand clearly the relaxation plateau
(saturation-like behavior) of the string correlation only for
the XY phase, we calculate the string correlation for various
truncation dimensions. In Fig. 5, we plot the string
correlations as a function of the lattice distance ji� jj for
� ¼ 16, 32, 50, and 64 in the XY phase (� ¼ �0:1). It is
shown that, as the truncation dimension becomes bigger, the
relaxation plateau persists for a longer distance. Also, the
end of the relaxation plateau, starting falling down to zero,
becomes farther and the amplitude of string correlation at the
end of the relaxation plateau becomes smaller. Then, from
the numerical tendency of the string correlation in the XY
phase, one may expect that the relaxation plateau disappears
in the thermodynamic limit if the truncation dimension goes
to the infinity. Further, to get more insight into the string
correlation in the thermodynamic limit, then, a numerical
fitting has been performed for the plateau parts of the string
correlations and a best fitting function is given by a form of
OSðxÞ ¼ ax�bð1þ cx�1Þ, where x ¼ ji� jj. The dashed lines
in Fig. 5 are the fitting functions with the numerical
parameters (i) a ¼ 0:608, b ¼ 0:290, and c ¼ 0:194 for
� ¼ 16, (ii) a ¼ 0:564, b ¼ 0:268, and c ¼ 0:328 for
� ¼ 32, (iii) a ¼ 0:571, b ¼ 0:246, and c ¼ 0:275 for
� ¼ 50, and (iv) a ¼ 0:550, b ¼ 0:225, and c ¼ 0:340 for
� ¼ 64. The exponent b in the fitting function becomes
smaller as the truncation dimension increases. As a
consequence, one may conclude that the relaxation plateau
is a finite truncation effect but would appear for any finite
(even much bigger) truncation dimension. Also, no long-
range string order in the XY phase would exist in the
thermodynamic limit, which allows to determine a phase
boundary between the XY phase and the Haldane phase.

In Fig. 6, a Néel correlation is displayed as a function of
the lattice distance ji� jj. It is shown that, in the Haldane
phase � ¼ 0:8, the spin correlations (Néel correlations)
decay exponentially to zero, which allows to characterize the
phase transition from the Néel phase to the Haldane phase.
As shown in Fig. 4(d), in the Néel phase, in contrast to the

Fig. 4. (Color online) String correlations O�
S as a function of the lattice

distance ji� jj with � ¼ 32 for (a) � ¼ �0:2 and (b) � ¼ 0:364 in the XY

phase, (c) � ¼ 0:6 in the Haldane phase, and (d) � ¼ 1:3 in the Néel phase.

In fact, for the truncation dimension � ¼ 32, the phase transition points are

given as �c2ð� ¼ 32Þ ¼ 0:366 and �c3ð� ¼ 32Þ ¼ 1:180 in Fig. 6.

Fig. 5. (Color online) String correlations Ox
Sði; jÞ in the XY phase

(� ¼ �0:1) for various truncation dimensions.
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z-component of the string correlations that survives for very
large distances, the x- and y-components of the string
correlations also decay exponentially to zero. Also, as shown
in Fig. 4(c), all the components of the string correlations in
the Haldane phase have non-zero values in the limit of the
infinite lattice distance. Then, alternatively, the x- and
y-components of the string order make it possible to
distinguish the Haldane phase from the Néel phase. Further,
in the XY phase in Fig. 4(b), all the components of the string
order become zero with the unique two-step decaying
behavior for finite truncation dimesions. As a consequence,
the x- and y-components of the string order play a role of a
true order parameter characterizing the Haldane phase from
the XY phase and the Néel phase.

5. Haldane Phase and Order Parameter

As discussed in x4, the LRSOs can characterize the
Haldane phase. In Fig. 7, we plot (a) the string orders O�

S

and (b) the Néel order parameter Oz
N as a function of the

isotropic exchange interaction strength � for the truncation
dimension � ¼ 32. It is shown that the Ox

S ¼ Oy
S have non-

zero values for 0:366 < � < 1:180, while the Oz
S has a finite

value for � > 1:180. The string orders become zero for
�1 < � < 0:366. Also, the Néel order parameter Oz

N has a
non-zero value for � > 1:180, which characterizes the Néel
phase. This implies that the Ox

S and Oy
S are the order

parameters for the Haldane phase. Then, the Haldane phase
exists in the range of the anisotropic interaction strength
0:366 < � < 1:180, which implies �c2 ¼ 0:366 and �c3 ¼
1:180 for the truncation dimension � ¼ 32. Thus, the XY
phase occurs for �1 < � < 0:366.

Actually, the transition points between the phases depend
on the truncation dimension �, i.e., �c2 ¼ �c2ð�Þ and
�c3 ¼ �c3ð�Þ. As the truncation dimension � increases from
a lower truncation dimension (e.g., � ¼ 8), the phase
transitions �c2ð�Þ and �c3ð�Þ occur starting at the lower
and the higher values of �’s, respectively. Then, the critical
points �c2ð1Þ and �c3ð1Þ in the thermodynamic limit can
be extrapolated to � ! 1. In Fig. 8, we plot the transition
points (a) �c2ð�Þ and (b) �c3ð�Þ as a function of the
truncation dimension �. We employ an extrapolation
function �ð�Þ ¼ aþ b��c, characterized by the fitting
constants a, b, and c, which guarantees that �ð1Þ becomes
a finite value. The numerical fittings give, respectively,
a ¼ 0:015, b ¼ 1:366, and c ¼ 0:387 for the phase transition
between the XY and Haldane phases and a ¼ 1:185,

b ¼ �1:748, and c ¼ 1:800 for the phase transition from
the Haldane phase to the Néel phase. In Fig. 8, in the limit of
the infinite truncation dimension, i.e., � ! 1, the fitting
function are shown to saturate well to the extrapolated value
�ð1Þ ¼ a which can be regarded as a critical point
�c ¼ �ð1Þ. As a result, our extrapolations give the critical
points �c2ð1Þ ¼ 0:015 and �c3ð1Þ ¼ 1:185. Our critical
points agree well with the results �c2 ¼ 0:068
 0:003 from
the exact diagonalization,31) �c2 ¼ �0:01
 0:03 from the
phenomenological renormalization group with the finite-size
scaling analysis,28) �c3 ¼ 1:17
 0:0228–30) and �c3 ¼
1:18633) from the DMRG.

6. XY Phase

The XY phase is known to have a power-law decay of the
spin–spin correlations with a gapless excitation. This implies
that there exists no long-range order in the XY phase in the
thermodynamic limit. Actually, in numerical approaches,

Fig. 6. (Color online) Néel correlations O�
Nði; jÞ in the Haldane phase

(� ¼ 0:8) with � ¼ 32.

Fig. 7. (Color online) (a) String order parameters Ox;y
S for the Haldane

phase and (b) Néel order parameterOz
N for the Néel phase as a function of �

with truncation dimension � ¼ 32. For the truncation dimension � ¼ 32, the

transition points are �c2 ¼ 0:366 and �c3 ¼ 1:180.

Fig. 8. (Color online) Phase transition points �c2ð�Þ and �c3ð�Þ as a

function of the truncation dimension �. Here, the truncation dimensions are

chosen as � ¼ 8, 16, 25, 32, 50, and 64.
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directly characterizing a XY phase from a power-law decay
of the spin–spin correlation is a non-trivial task. This may
be the reason why a level spectroscopy of numerical
approaches has been invented as a useful way to characterize
the XY phase. However, directly detecting a vanishing
excitation gap from numerical calculations near the transi-
tion point is also not a trivial work due to a very limited
lattice size. As discussed in x5, our iMPS approach has
verified that the transverse string order parameter and the
longitudinal Néel order parameter clearly characterize the
Haldane phase and the Néel phase, respectively, in Figs. 7(a)
and 7(b). Obviously, the longitude Néel order and all the
components of the string order become zero in the XY phase
even for the finite truncation dimension �.

However, such vanishing behavior of the long-range order
parameters in the XY phase does not guarantee the existence
of a XY phase in the iMPS representation. In this sense,
it would be worthwhile to discuss a practical way to
characterize the XY phase in the iMPS representation by
defining a pseudo order parameter for a finite truncation
dimension �. Then, some local or non-local properties of our
iMPS groundstate will be introduced as indicators that can
be used to distinguish a XY phase from other phases in the
iMPS representation.38,59)

6.1 Transverse Néel order for finite truncation dimensions
Let us consider the transverse Néel order in the XY phase.

In Fig. 9(a), we plot the transverse Néel order as a function
of the anisotropic interaction strength � for various
truncation dimensions. Here, the transverse Néel order is
defined by the sum of the x- and y-components of the Néel
order, Ot

Nð�Þ ¼ Ox
Nð�Þ þOy

Nð�Þ. It is shown that the
transverse Néel order has a finite value in the XY phase.
Actually, as the truncation dimension increases, as discussed
in x5, the interaction parameter range of the XY phase
becomes narrower because the transition point �c2ð�Þ
between the XY phase and the Haldane phase moves to a
lower value for a higher truncation dimension. Note that,
from the transverse Néel order, the transition points between
the XY phase and the Haldane phase (non-zero values of the
transverse Néel order) are the same with the values from the
string order parameter, while the ferromagnetic–XY transi-
tion point does not move at �c1 ¼ �1:0. Thus, the non-
vanishing transverse Néel order can be used as a pseudo
order parameter characterizing the XY phase for a finite
truncation dimension �.

Also, it should be noted that the overall amplitude of the
transverse Néel order becomes smaller as the truncation
dimension increases in Fig. 9(a). In order to understand the
transverse Néel order in the thermodynamic limit, i.e.,
� ! 1, in Fig. 9(b), we plot the transverse Néel order as a
function of the truncation dimension � for, as examples,
three anisotropic interaction strengthes � ¼ 0, �0:5, and
�0:7. It is shown clearly that the transverse Néel order
decreases as the truncation dimension increases. We perform
an extrapolation by especially introducing a power-law
fitting function Ot

Nð�Þ ¼ aþ b��c with respect to the
truncation dimension �. The numerical fittings give (i)
a ¼ 0:446� 10�4, b ¼ 0:948, and c ¼ 0:315 for � ¼ 0, (ii)
a ¼ 3:643� 10�3, b ¼ 0:936, and c ¼ 0:203 for � ¼ �0:5,
and (iii) a ¼ 0:897� 10�4, b ¼ 0:956, and c ¼ 0:156 for

� ¼ �0:7. Hence, the extrapolated values of the transverse
Néel order for � ! 1 are given as Ot

Nð1Þ ¼ 0:446� 10�4,
3:643� 10�3, and 0:897� 10�4 for � ¼ 0, �0:5, and �0:7,
respectively. This implies that, similar to the power-law
decay of spin–spin correlations with respect to the lattice
distance, the transverse Néel order follows a power-law
decaying to zero with respect to the truncation dimension �.
These results show that, in the XY phase, the transverse Néel
order as well as the longitudinal one also becomes zero,
O�

Nð1Þ ¼ 0. As a consequence, both the string and the Néel
long-range orders do not exist in the XY phase.

6.2 Pseudo local order for finite truncation dimensions
Recently, a pseudo local order has been suggested for a

XY phase in iMPS representations in ref. 38. The local order
can be defined as OL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSxi2 þ hSyi2

p
. In Fig. 10(a), we

plot the pseudo local order OL as a function of the
anisotropic interaction strength � for various truncation
dimensions. It is shown that the defined local order has a
finite value in only the XY phase. Similar to the transverse
Néel order, from the defined local order, the transition points
between the XY phase and the Haldane phase (non-zero
values of the defined local order) are detected at the same
values from the string order parameter for the same
truncation dimension �. Also, the ferromagnetic–XY transi-
tion points from the defined local order does not move at
�c1 ¼ �1:0. Compared with the transverse Néel order,
Fig. 10(a) shows that the overall amplitude of the defined
local order becomes smaller as the truncation dimension �
increases. In Fig. 10(b), we plot the psuedo local order as a
function of the truncation dimension � for, as examples,
three anisotropic interaction strengthes � ¼ 0, �0:5, and
�0:7. It is shown clearly that the defined local order
decreases as the truncation dimension increases. We perform
an extrapolation with respect to the truncation dimension �

Fig. 9. (Color online) (a) Transverse Néel order Ot
N ¼ Ox

N þOy
N as a

function of the anisotropic interaction � with for various values of the

truncation dimension �. (b) Transverse Néel order Ot
Nð�Þ as a function of

the truncation dimension �.

Y. H. SU et al.J. Phys. Soc. Jpn. 81 (2012) 074003 FULL PAPERS

074003-7 #2012 The Physical Society of Japan



by using the same fitting function OLð�Þ ¼ a��bð1þ c��1Þ,
with a, b, and c being a real number, given in ref. 38.
Figure 10(b) shows the behavior of the defined local order
for the XY phase agrees well with the results of spin-1/2
XXZ model in ref. 38. Hence, similar to the transverse Néel
order, the defined local order can be used as a pseudo order
parameter characterizing the XY phase for a finite truncation
dimension �.

7. Entanglement Entropy, Central Charge, and
Universality Class for Phase Transitions

Instead of using order parameters, recently, various types
of quantum entanglement measures have been proposed as
an indicator characterizing quantum phase transitions.2,60)

One of successful measures is the von Neumann entropy
for a bipartite system.61–64) Singular behavior of bipartite
entanglements for a pure state reveals quantum critical
behavior, which has been verified as being universal by
extensive studies in many one-dimensional systems.65,66)

Von Neumann entropy singularities. In the iMPS ap-
proach, the von Neuman entropy can be explored. Let us
recall the diagonal matrix � . As discussed in x2, the
elements of the diagonal matrix � ½i�

�i
are the Schmidt

decomposition coefficients of the bipartition between the
semi-infinite chains Lð�1; . . . ; iÞ and Rðiþ 1; . . . ;1Þ.
This implies that eq. (1) can be rewritten by j�i ¼P�

�¼1 ��j¼L
� ij¼R

� i, where j¼L
� i and j¼R

� i are the Schmidt
bases for the semi-infinite chains Lð�1; . . . ; iÞ and
Rðiþ 1; . . . ;1Þ, respectively. For the bipartition, then,
the von Neumann entropy S can be defined as67) S ¼
�Tr½%L log %L� ¼ �Tr½%R log%R�, where %L ¼ TrR % and
%R ¼ TrL % are the reduced density matrices of the
subsystems L and R, respectively, with the density matrix
% ¼ j�ih�j. For the semi-infinite chains L and R in the
iMPS representation, the von Neumann entropy S is given
by

S ¼ �
X�
�¼1

�2
� log �

2
�: ð7Þ

In Fig. 11(a), we plot the von Neumann entropy as a
function of � for � ¼ 32. In the entropy, there are three
singular points that consist of two local peaks (� ¼ 0:366
and 1.180, respectively) and one discontinuous point
(� ¼ �1:0). In fact, the singular points correspond to the
transition points from the string order parameters and the
Néel order parameter for the same truncation dimension. It is
shown that the von Neumann entropy captures the phase
transitions. The discontinuity of the von Neumann entropy
indicates that a discontinuous phase transition occurs
between the ferromagnetic phase and the XY phase. The
two singular peaks show that the XY–Haldane phase
transition and the Haldane–Néel phase transition belong to
a continues phase transition.

In Fig. 11(b), the von Neumann entropies are plotted as a
function of � near the XY–Haldane phase transition points
for various truncation dimensions � ¼ 8, 16, 32, and 64.
As the truncation dimension increases, the singular point
indicating the transition between the XY phase and the
Haldane phase moves to a smaller value of the anisotropic
exchange interaction �. In fact, the transition points from
the von Neumann entropies are consistent with those from
the string order parameters in Fig. 8(a). As a consequence,
the singularities of the von Neumann entropies for the finite
truncation dimensions estimate the same critical point
�c2 ’ 0 for the XY–Haldane phase transition. Hence, it
should be noted that, in our iMPS representation, the
von Neumann entropy can detect the BKT phase transition
between the XY phase and the Haldane phase.

Central charge and universality class. For one-dimen-
sional quantum spin models, in general, the logarithmic
scaling of von Neumann entropy was conformed to exhibit

Fig. 11. (Color online) (a) Von Neumann entropy S as a function of the

anisotropic interaction � for the truncation dimension � ¼ 32. The

transition points are seen at �c1 ¼ �1:0, �c2 ¼ 0:366, and �c3 ¼ 1:180.

(b) Von Neumann entropy S as a function of � near the XY–Haldane phase

transition points for various truncation dimensions �.

Fig. 10. (Color online) (a) Pseudo local order OL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hSxi2 þ hSyi2

p
for

the XY phase as a function of the anisotropic interaction�. (b) Pseudo local

order OLð�Þ as a function of the truncation dimension �.
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conformal invariance68) and the scaling is governed by a
universal factor, i.e., a central charge of the associated
conformal field theory. In fact, in the iMPS representation, a
diverging entanglement at quantum criticality gives simple
scaling relations for (i) the von Neumann entropy S and
(ii) a correlation length � with respect to the truncation
dimension � as68–70)

S � c�

6
log�; ð8aÞ

� � 
��; ð8bÞ
where c is a central charge and � is a so-called finite-
entanglement scaling exponent. Here, 
 is a constant. By
using eqs. (8a) and (8b), then, a central charge can be
obtained numerically at a critical point.

In the iMPS approach, the correlation length � can be
obtained from the transfer matrix T defined in Fig. 1(c).
Actually, for a given �, the finite correlation length in
the iMPS representation can be defined as �ð�Þ ¼
1=logj0ð�Þ=1ð�Þj, where the 0 and 1 are the largest
and the second largest eigenvalues of the transfer matrix T ,
respectively. In Fig. 12, we plot (a) the correlation length �
and (b) the von Neumann entropy as a function of the
truncation dimension � at the critical points �c2 ¼ 0:0 and
�c3 ¼ 1:185. Here, the truncation dimensions are taken as
� ¼ 8, 16, 25, 32, 50, and 64. It is shown that both the
correlation length � and the von Neumann entropy S diverge
as the truncation dimension � increases. In order to obtain
the central charges, we use the numerical fitting functions,
i.e., Sð�Þ ¼ aþ b log� and �ð�Þ ¼ 
��. From the numerical
fittings of the von Neumann entropies S, the fitting constants
are given as a ¼ 0:139 and b ¼ 0:218 for �c2 ¼ 0, and
a ¼ 0:343 and b ¼ 0:166 for �c3 ¼ 1:185. Also, the power-
law fittings on the correlation lengthes � give the numerical
fitting constants as � ¼ 1:306 and 
 ¼ 0:330 for �c2 ¼ 0,
and � ¼ 1:955 and 
 ¼ 0:023 for �c3 ¼ 1:185. As a result,
the central charges are given by c ¼ 1:001 for �c2 ¼ 0 and
c ¼ 0:509 for �c3 ¼ 1:185. Our central charges are very
close to the exact values c ¼ 1 and 0.5, respectively.
Therefore, the XY–Haldane phase transition at �c2 ¼ 0

belongs to the Heisenberg universality class, while the
Haldane–Néel phase transition at�c2 ¼ 1:185 belongs to the
two-dimensional classical Ising universality class.

8. Fidelity Per Lattice Site for Phase Transitions

For a quantum phase transition, the groundstate of a
system undergoes a drastic change in its structure at a critical
point.71–73) In fact, the groundstates in different phases
should be orthogonal because the states are distinguishable
in the thermodynamic limit.36,72) It implies that a comparison
between quantum many-body states in different phases can
signal quantum phase transitions regardless of what type of
internal order exists in the states. Thus, as an alternative way
to explore quantum phase transitions, the groundstate fidelity
has been used in the last few years.71–81) In contrast to
quantum entanglement, the fidelity is a measure of similarity
between two states. An abrupt change of the fidelity can then
be expected across a critical point (in the thermodynamic
limit). Based on understanding such a property of the
groundstate fidelity near critical points, several measures
have been suggested such as FLS,72) reduced fidelity,74)

fidelity susceptibility,75) density-functional fidelity,76) and
operator fidelity.77) However, it is known that the fidelity
susceptibility cannot detect a BKT type phase transition.56,78)

Thus, the fidelity approaches have been thought to be a
model-dependent indicator for quantum phase transitions.
In order to show that a BKT type phase transition can be
captured by the FLS approach, therefore, we discuss the FLS
in the iMPS representation in this section.

Once one obtains the groundstate as a function of the
anisotropic interaction strength �, the groundstate fidelity is
defined as Fð�1;�2Þ ¼ jh¼ð�2Þj¼ð�1Þij. Following ref. 82,
we define the groundstate FLS as

ln dð�1;�2Þ � lim
L!1

lnFð�1;�2Þ
L

; ð9Þ

where L is the system size. The FLS is well defined in the
thermodynamic limit even if Fð�1;�2Þ becomes trivially
zero. From the fidelity Fð�1;�2Þ, the FLS has several
properties as (i) normalization dð�;�Þ ¼ 1, (ii) symmetry
dð�1;�2Þ ¼ dð�2;�1Þ, and (iii) range 0  dð�1;�2Þ  1.
Within the iMPS approach, the FLS dð�1;�2Þ82) is given by
the largest eigenvalue 0 of the transfer matrix T up to the
corrections that decay exponentially in the linear system size
L. Then, for the infinite-size system, dð�1;�2Þ ¼ 0.

In Fig. 13, the groundstate FLSs d are displayed as a
function of the anisotropic interaction parameters ð�1;�2Þ
with the truncation dimension � ¼ 32. In the FLS surfaces, it
is shown that there are three pinch points in the spin-1 XXZ
model. Each pinch point corresponds to the transition points
identified from the order parameters for the same truncation
dimension. In Fig. 13(a), the fidelity undergoes an abrupt
change, which means that the first-order phase transition
between the ferromagnetic phase and the XY phase occurs at
the pinch point. It is consistent with the discontinuous
entropy in Fig. 11(a). In Fig. 13(b), the pinch point
corresponds to the XY–Haldane phase transition point.
Actually, as the truncation dimension increases from � ¼ 8

to 64, we find that the pinch point indicating the transition
between the XY phase and the Haldane phase moves to
a smaller value of the anisotropic exchange interaction �

(not shown in this paper). Also, the pinch point for each
truncation dimension is consistent with the transition point
from the string order parameters in Fig. 8(a). As a result, the

Fig. 12. (Color online) (a) Correlation length � and (b) the von Neumann

entropy S as a function of the truncation dimension � at the critical points

�c2 ¼ 0 and �c3 ¼ 1:185, respectively.
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extrapolated value of the pinch points gives the same critical
point for the XY–Haldane phase transition. Contrasted to the
fidelity susceptibility, then, it is shown that the FLS is able to
detect a BKT transition successfully, which is consistent
with the result of our von Neumann entropy as well as the
order parameter. Figure 13(c) shows another continuous
phase transition, i.e., the Haldane–Néel phase transition.
Hence, it is shown that the FLS approach can be applied
to characterize quantum phase transitions as a universal
indicator.72,82)

9. Conclusions and Remarks

We have investigated the string correlations in an infinite-
size lattice of a spin-1 XXZ chain. In order to obtain a LRSO
directly rather than an extrapolated string order in a finite-
size system, the iMPS presentation has been employed and
the groundstate wavefunction of the infinite lattice system
has been numerically generated by the iTEBD algorithm.
It was shown that the x- and y-components of the string
correlations decay exponentially in the Néel phase, while
they show a unique behavior of two-step decaying to zero
within a relatively very large lattice distance in the XY
phase for any finite truncation dimension. In the thermo-
dynamic limit, the unique behavior disappears with zero
string correlation. That is, there is no long-range transverse
string order in the XY phase and the Néel phase. However,
in the Haldane phase, the string correlations are saturated to
finite values for a relatively smaller lattice distance, which
shows clearly the existence of a LRSO. Consistently, the
Néel order does not exit in both the XY phase and the
Haldane phase. This result verifies that both the x- and

y-components of the LRSO are the order parameters
characterizing the Haldane phase. The estimated critical
points agree well with the previous results as �c2 ¼ 0 for the
XY–Haldane phase transition and �c3 ¼ 1:185 for the
Haldane–Néel phase transition.

Further, the behavior of the von Neumann entropy and
the FLS has been discussed at the phase transition points.
Both the von Neumann entropy and the FLS capture the
corresponding phase transition points including the BKT
point, which is consistent with the results from the string
order parameter. Consequently, the von Neumann entropy as
well as the fidelity approach based on the FLS can be applied
to characterize quantum phase transitions as a universal
phase transition indicator. Moreover, from a finite-entangle-
ment scaling of the von Neumann entropy with respect to
the truncation dimension, the central charges are obtained as
c ’ 1 at �c2 ¼ 0 and c ’ 0:5 at �c3 ¼ 1:185, respectively,
which shows the XY–Haldane phase transition at �c2 ¼ 0

belongs to the Heisenberg universality class while the
Haldane–Néel phase transition at�c2 ¼ 1:185 belongs to the
two-dimensional classical Ising universality class.

Contrary to other approaches, a feature of the iMPS
approach is that, just from the iMPS groundstate, its critical
behavior can be captured irrespective of whether a system
has a finite excitation energy gap or not because, in
principle, local and non-local order parameters can be
calculated directly. Furthermore, von Neumann entropy and
FLS can be used as a universal phase transition indicator for
quantum phase transition in the iMPS representation. Hence,
this iMPS approach would be widely applicable for
capturing quantum critical phenomena in one-dimensional
lattice many-body systems.
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Fig. 13. (Color online) Fidelity per lattice site (FLS) dð�1;�2Þ as a

function of the anisotropic interactions �1 and �2 for the truncation

dimension � ¼ 32. The pinch points are seen at (a) � ¼ �1:0, (b) � ¼
0:366, and (c) � ¼ 1:180. These pinch points in the FLS are consistent with

the phase transition points from the order parameters in Fig. 6.
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71) P. Zanardi and N. Paunković: Phys. Rev. E 74 (2006) 031123.

72) H.-Q. Zhou and J. P. Barjaktarevič: J. Phys. A 41 (2008) 412001;
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