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Abstract Through research and bionics of biology survival
mode, game players with competition, cooperation and self-
adaptation capacity are introduced in the multi-objective
design. The dynamic behavior and bounded rationality in
game processes for players are considered according to
Chinese saying “In success, commit oneself to the welfare
of the society; in distress, maintain one’s own integrity”. An
evolution rule, Poor-Competition-Rich-Cooperation (short
for PCRC), is proposed. Then, the corresponding payoff
functions of competition and cooperation behavior are
established and a multi-objective design method based on
evolution game is proposed. The calculation steps are as
follows: 1) Taking the design objectives as different game
players, and calculating factors of the design variables to
objective and fuzzy clustering. The design variables are
divided into multiple strategy subsets owned by each game
player. 2) According to the evolution rule, each player deter-
mines its behavior and payoff function in this game round.
3) In their own strategy subsets, each game player takes their
payoff as mono-objective for optimization. It gives the best
strategy upon other players. And so the best strategies of all
players conform the group strategy in this round. The final
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equilibrium solution is obtained through multi-round game
based on convergence criterion. The validity and reliabil-
ity of this method are shown by the results of an example
of a tri-objective optimization design of passive suspension
parameters.
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1 Introduction

Many structural design problems have multi-objective opti-
mization issues. The essential characteristics of multi-
objective optimization are: 1) there exist several objective
interests; 2) The status of the various objectives are different
and have conflicts. Therefore, how to balance the inter-
ests of the objectives is the key to solve the multi-objective
problem. The predominant methods include the method of
reduction of dimension (main objective method), the eval-
uation function methods (linear weighting method, min–
max method, ideal point method, weight-square method
and virtual objective method), all of which convert the
multi-objective optimization problem into a single-objective
optimization problem. In addition to the above methods,
other frequently used methods are the sorting method, fea-
sible direction method, the center method and the inter-
active programming method, which are used to transform
multi-objective optimization problem into multiple single-
objective optimization problems. All these methods belong
to traditional areas of mathematical programming theory.
In recent years, considering the similarity between multi-
objective design and games, a multi-objective game method
has been used to solve multi-objective design problems
(Périaux et al. 2001; Xie et al. 2005).
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A typical minimum multi-objective optimal design can
be described as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

the design variables:X = (x1, x2, · · ·, xn) ∈ �n

let the objective functions be minimized:
F (X) = (F1 (X) , F2 (X) , · · ·, Fm (X)) → min

subject to constraint conditions:
gk (X) ≤ 0 (k = 1, 2, · · ·, q)

(1)

Where: n is the number of design variables. m is the num-
ber of objective functions. q is the number of constraint
conditions. �n is the feasible space of design variables.

Meanwhile, definition of game: G represents one game.
If G has m players (Illustration: the implication of number
of players is equal to the number of objective functions), the
sets of available strategies are denoted by S1, · · ·, Sm, then
Si is the strategy subset of player i. The payoff functions
are u1, · · ·, um and ui is the payoff function of player i.
Hence, the game with m players can be written as G =
(S1, · · ·, Sm; u1, · · ·, um).

When we use the game method to solve multi-objective
optimization problems, the key technique is to establish
the mapping relationships between factors of the multi-
objective optimization model and factors of the game model
(where, factors of multi-objective optimization model
include optimization objectives and objective functions,
design variables and constraints; factors of the game model
include game players and payoff functions, strategy subsets
and game constraints). We put forward the following three
mapping relationships: 1) Bionics mapping. m design objec-
tives are regarded as m game players with the intelligent
behaviors such as competition, cooperation and adaptive
behavior. 2) Payoff mapping. The mapping relationship
between payoff functions u and objective functions F need
to be constructed based on the different behaviors. 3) Set
mapping. Through the specific technological means, the
design variables X = [x1, x2, · · ·, xn] can be divided into
each game players strategy subsets: S1, S2, · · ·, Sm. Where,
S1 = {

xi · · · xj

}
, · · · , Sm = {xk · · · xl} are strategy

subset of m players and satisfy S1 ∪ · · · ∪ Sm = X; Sa ∩
Sb = 0 (a, b = 1, · · · , m; a �= b). Besides, the constraints
in multi-objective problems can be regarded as constraints
in the game method.

The differences between the traditional methods and the
game methods are as follows: 1) The traditional methods
generally get solutions by merging multiple objective func-
tions but the game methods get solutions by splitting design
variables. The design variables are divided into multiple
strategy subsets owned by each game player, which can
reveal the correlations between each optimization goal and
the corresponding design variables. Besides, the original
high-dimensional optimization problem is transformed into

multiple low-dimensional optimization problems, which
can reduce the complexity of problem. 2) The traditional
multi-objective optimization methods give consideration to
multiple objectives mainly through constructing evaluation
functions but the game methods give attention to multi-
ple objectives mainly through bionic mapping. For some
complex engineering optimization problems, designers and
engineering experts may have not much experience for
how to construct the evaluation functions. But they can
get solutions and deal with the target status by assigning
the appropriate behaviors to game players and construct-
ing game patterns between objectives based on the game
methods.

Currently, researches on solving multi-objective opti-
mization problems by game theory are as follows:

1. The most critical step for multi-objective game method
is dividing the design variables set into strategy subsets
of each player. A reasonable decomposition of strat-
egy subsets is critical for the computational efficiency,
accuracy and convergence of the multi-objective game
method (Chen and Li 2002). Unfortunately, in most ref-
erences, because of specialty in engineering projects,
there is an obvious physical association and affiliation
between the design variables and each objective so that
this step has been done empirically by researchers’
experience. But they don’t realize that this step is the
key technology for multi-objective game approach to
be universal. At present, computational methods about
how to decompose the design variables set into strat-
egy subsets for each player mainly contain an adaptive
method proposed by Clarich et al. (2004), which has
the characteristic that the strategy subset owned by
each player is dynamic during the whole game process.
Furthermore, a correlation analysis method (Xie et al.
2010) and a fuzzy clustering method (Lu et al. 2010)
are proposed by Neng-gang Xie et al. and a sensitivity
analysis method by Hu and Rao (2009).

2. About the behaviors, the main behaviors have competi-
tion and cooperation. The typical cooperative behaviors
have three types, which are known as the “benefit one-
self but do not harm people”, “you win to have me,
I win to have you”, “all for one and one for all”
(Chen and Li 2002; Zhili and Jun 2009; Xie et al.
2007a, b; Dhingra and Rao 1995; Maali 2009; Chen
et al. 2009). Game patterns between objectives mainly
have pure competitive pattern (Clarich et al. 2012;
Özyildirim and Alemdar 2000), and pure cooperative
pattern (Spallino and Rizzo 2002; Sim et al. 2004; Wang
et al. 2003). Pure competitive pattern is defined as that
each game player benefits from competitive behavior
and pure cooperative pattern is known as that each game
player benefits from cooperative behavior.
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For the design objectives with unequal status (designers
have target preference), we can construct “principal and
subordinate” game pattern, such as Stackelberg Oligopoly
game model. The Stackelberg Oligopoly game belongs to
the dynamic game with the complete and perfect informa-
tion, which is defined as: uS is the payoff function of the
strong game player and uW is the payoff function of the
weak game player. SS is the strategy space owned by the
strong game player and SW is the strategy space owned by
the weak game player. sS ∈ SS , sW ∈ SW , where, sS is
an arbitrary strategy, which is adopted by the strong game
player and sW is an arbitrary strategy, which is adopted by
the weak game player. If there exists sup

s∗
W ∈R(s∗

S)
uS

(
s∗
S, s∗

W

) ≥
sup

s∗
W ∈R(sS)

uS

(
sS, s∗

W

) ∀sS ∈ SS , then
(
s∗
S, s∗

W

)
is called as

the Stackelberg game solution. Where, R(SS) is the reac-
tion function of the weak game player to the strong game
player. Because there exist both the strong game player
and the weak game player in the Stackelberg Oligopoly
game model, the satisfaction degree of the game players is
different. The strong game player can obtain greater and bet-
ter satisfaction than the weak game player. Hence, we can
take the preferred target as the strong game player and take
the other target as the weak game player. But it is a kind
of ideal situation that all the game players adopt the same
behavior. In nature and real life, game players have a variety
of behaviors and form the hybrid game pattern. Through the
bionics of the survival mechanisms of reproduction of lizard
species (Sinervo et al. 2006), a typical mixed game model
is presented (Lu et al. 2010), which consists of both com-
petitive behavior, and cooperative behavior of “all for one
and one for all” and “benefit oneself but do not harm other
people”. It should be explained that although the behavior
diversity and difference of all game players are considered
in the hybrid game pattern, the behavior of each game player
keeps unchanged in the whole game process. So, the game
adaptive ability and the dynamic characteristics of behav-
ior are not taken into account in the hybrid game pattern.
The players with active adaptive capacities can interact with
their surroundings and other players continuously. On this
basis, they can learn and gather experience. Besides, they
can adjust and change their expectations and behavior cor-
respondingly (namely dynamic behavior). Self-adaptation is
important ability of the player, which is the basic push factor
to development and evolution of the system. The method of
this paper is based on competition and cooperation behavior
and takes an adaptive ability into account, which is called
evolution game model. Hence, the differences between the
hybrid game method and the evolution game method are as
follows: 1) Game players have not the adaptive ability and
the behavior of each game player keeps unconverted in the
hybrid game method. But for the evolution game method,
game players have the adaptive ability and the behavior of

each game player keeps changed. 2) For the hybrid game
method, the key technology is that game players have been
assigned the appropriate and different behaviors in order to
form the mutual coordination relationship. But for the evo-
lution game method, the key technology is that the evolution
rules of behavior are constructed felicitously.

Currently, the most prevalent evolution rules are “TFT”
(Tit For Tat) (Axelord and Dion 1988) and “WSLS”
(win-stay-lose-shift) (Nowak and Sigmund 1993). TFT
rule means a player initially adopts cooperative behavior,
and then responds according to the opponent’s previous
response. That is, if the opponent previously was coop-
erative, the player is cooperative. If not, the player is
competitive. WSLS rule means a player repeats the previ-
ous behavior if the payoff has met its aspiration level. If not,
the player will change the previous behavior.

According to Chinese saying “In success, commit one-
self to the welfare of the society; in distress, maintain one’s
own integrity”, an evolution rule, Poor-Competition-Rich-
Cooperation (short for PCRC), is proposed in this paper
and a multi-objective optimization design model for passive
suspension parameters is solved.

2 The multi-objective method based
on evolution game

2.1 The basic idea

Bionics mapping, payoff mapping and set mapping need to
be built first when we solve the multi-objective optimization
based on game methods. The basic idea for multi-objective
method based on evolution game is: 1) there are m design
objectives which are seen as m players and the design
variables X is divided into strategy subsets S1, · · · , Sm

of the corresponding players by certain technical methods.
2) According to evolution rule, behavior (cooperation or
competition) of each player in one round is determined
and mapping relationships is established between the payoff
functions u and objective functions F corresponding to such
behavior. 3) Each player takes its own payoff function as its
objective and gets a single-objective optimal solution in its
own strategy subset. So this player obtains the best strat-
egy versus other players. The best strategies of all players
consist of the strategy permutation in one round game. Con-
clusively, the final equilibrium solutions can be obtained
through multi-round game according to the convergence
criterion.

The evolution game method proposed by this paper can
be used to solve multi-objective design problems, but there
still exist the following key technologies that need to be
solved: 1) The decomposition method of strategy subset
for each player. 2) Determining the behavior modes and
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constructing a payoff function u for each player. 3) The
evolution rule and the corresponding algorithm structure.

2.2 Game player’s strategy subset computation

By computing the design variable impact factor on the play-
ers and fuzzy clustering, then get each player’s strategy
subset S1, · · · , Sm.

Computation steps (Lu et al. 2010):

1. Optimize m mono-objectives, then obtain optimal solu-
tion F1

(
X∗

1

)
, F2

(
X∗

2

)
, · · · , Fm

(
X∗

m

)
, where, X∗

i ={
x∗

1i , x∗
2i , · · · , x∗

ni

}
(i = 1, 2, · · · , m).

2. Every xj is divided into T fragments with step length
�xj in its feasible space; �ji is impact factor, which
presents xj affecting on the objective fi and is shown as:

�ji =

T∑

t=1

∣
∣
∣Fi

(
x∗

1i , · · · , x∗
(j−1)i , xj (t), x

∗
(j+1)i , · · · x∗

ni

)
− Fi

(
x∗

1i , · · · , x∗
(j−1)i , xj (t − 1), x∗

(j+1)i , · · · x∗
ni

)∣
∣
∣

T · �xj

(2)

To avoid the different function’s self-affecting, make
impact factors dimensionless.

�ji = �ji
∣
∣Fi

(
X∗

i

)∣
∣

(3)

3. Let all samples classification � = {�1, �2, · · · , �n},
the classification of j is �j = {

�j1, · · · , �jm

}
(j = 1,

· · ·, n), �j means the impact factor set of j on all the
other players. The purpose is classifying highly simi-
lar samples as one classification; this paper uses similar
degree approach to reflect the samples’ similarity rela-
tion. Select any two samples �k and �l , analyze their
similarity relation; define a fuzzy relation function by
normal distribution.

μi (�k, �l) = exp

⎛

⎜
⎜
⎝− |�ki − �li |

1
m

m∑

i=1
|�ki − �li |

⎞

⎟
⎟
⎠

(k, l = 1, 2, · · · , n; k �= l;

i = 1, 2, · · · , m) (4)

Where, μi(�k, �l) presents the fuzzy relation between
Δk and Δl in the ith objective function.

The hamming distance of Δk and Δl is:

d (�k, �l) = 1

m

m∑

i=1

|μi (�k, �l) − 1|

(k, l = 1, 2, · · · , n; k �= l) (5)

The fuzzy closeness of Δk and Δl is:

σ (�k, �l) = 2
m∑

i=1

μi (�k, �l)
[

m +
m∑

i=1
μi (�k, �l)

]

(k, l = 1, 2, · · · , n; k �= l) (6)

The correlation degree of Δk and Δl is:

r (�k, �l) = 1

m

m∑

i=1

ξi (�k, �l)

(k, l = 1, 2, · · · , n; k �= l) (7)

Where, ξi(�k, �l) is the correlation coefficient of Δk

and Δl , and can be expressed as:

ξi (�k, �l) =
min

i∈{1,2,··· ,m} |1 − μi (�k, �l)| + 0.5 max
i∈{1,2,··· ,m}

|1 − μi (�k, �l)|
|1 − μi (�k, �l) | + 0.5 max

i∈{1,2,··· ,m}
|1 − μi(�k, �l)|

(k, l = 1, 2, · · · , n; k �= l; i = 1, 2, · · · , m) (8)
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Considering the above index, establish the similar
approach degree of �k and �l .

tkl = ωd [1 − d (�k, �l)]

+ ωσ σ (�k, �l) + ωrr (�k, �l)

(k, l = 1, 2, · · · , n; k �= l) (9)

Where, ωd is hamming distance weight, ωσ fuzzy close-
ness weight, ωr correlation degree weight, ωd + ωσ +
ωr = 1.

4. Establish the matrix T based on tkl and do fuzzy
clustering to matrix T.

T =

∣
∣
∣
∣
∣
∣
∣
∣
∣

t11 t12 · · · t1n

t21 t22 · · · t2n

...
...

...
...

tn1 tn2 · · · tnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

Classification results of Δ represent the classification
results of X because of one to one relationship between
Δ = {Δ1, Δ2, · · · , Δn} and X = {x1, x2, · · · , xn}.

5. According to fuzzy clustering, divide the design vari-
ables X into strategy subsets S1, · · · , Sm, and assign
the strategy subset to the corresponding player by the
average value of impact factors.

If the number of design variables (n) and the number
of objectives (m) are few, divide set X into player’s strat-
egy subsets S1, · · · , Sm directly according to impact factor
value. Otherwise, it needs fuzzy clustering. Meanwhile,
according to experience, variables with strong correlation
can be first classified as a sample to reduce the complexity
of clustering analysis.

2.3 Clustering steps

Input system’s classification control value M and maximal
sample number P ; each sample as one classification, the
system is Δ1, Δ2, · · · , Δn. The steps of clustering are as
follows (Lu et al. 2010):

1. Calculate similar approach degree tkl , and build simi-
lar approach degree matrix T (0); attention: tkl = tlk ,
tkl > 0.

2. Set maximum value of matrix T(0) to be tab, tab =
max

k,l∈{1,2,··· ,n} tkl , classify �a and �b into a new clas-

sification �s ; if the sample number is larger than P,
then combine the second maximal value of T(0), and
take this as analogizing;

3. Combine �c (c = 1, 2, · · · , n; c �= a, c �= b) and �s

into a new classification system, calculate its simi-
lar approach degree and build a new similar approach
degree matrix T (1), the similar approach degree of any
classification �c and �s is tcs = min {tca, tcb}.

4. Repeat procedures 1–3) until system classification num-
ber equals control value M .

2.4 Evolution rule

According to Chinese saying “In success, commit oneself
to the welfare of the society; in distress, maintain one’s
own integrity”, an evolution rule, Poor-Competition-Rich-
Cooperation (PCRC for short), is proposed by the paper as
follows: 1) When the value of objective function represent-
ing for the player in this round is worse than that of the
initial design, the player will use competitive behavior in
next round; 2) When the value of objective function repre-
senting for the player in this round is better than that of the
initial design, cooperation behavior will be adopted in next
round; 3) In the first round of the game, all game players
adopt cooperative behavior. The advantages of this evolu-
tion rule are: (1) “Automatic”. Determine the evolution of
behaviors according to the satisfaction degree of their own
goals. (2) “Prompt”. It can quickly do adjustment in the
next round according to the satisfaction degree in the current
round. (3) “Friendly”. All game players first adopt cooper-
ative behavior. (4) “Explicit”. Evolution of the rules is clear
and easy to understand.

2.5 Behavior modes and construction of game
payoff functions

2.5.1 Competitive behavior mode

The characteristic of competitive behavior mode is egoism
and its corresponding game payoff function is as follows:

ui = Fi

F i

(10)

Where: F is a reference value, which can eliminate the
differences in the magnitude for each objective function. In
this paper, the initial design value is chosen to be F .

2.5.2 Cooperative behavior mode

Game players with cooperative behavior consider not only
their own payoff but also other game player’s payoff when
they pursue payoff, that is, “you win to have me, I win to
have you”.
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Its corresponding game payoff function is as follows:

ui = wii

Fi

F̄i

+
m∑

j=1(j �=i)

wij

Fj

F̄j

(11)

Where,
m∑

j=1
wij = 1, value of wii reflects the degree of

cooperator concerning about the extent of its own interest.
The greater the value is, the lower the cooperative degree is.

2.6 The algorithm of finding an equilibrium
solution for a game

When bionics mapping, payoff mapping and set mapping
have been built, the multi-objective optimization model is
changed into game model.

Definition of equilibrium solution of game: In a game
G = (S1, · · ·, Sm; u1, · · ·, um), each player’s strategy can
be assembled into a strategy permutation

(
s∗

1 , s∗
2 · ··, s∗

m

)
.

If an arbitrary game player i’s strategy s∗
i is the best

strategy to all the other players’ strategy permutation(
s∗

1 , · · ·, s∗
i−1, s

∗
i+1 · ··, s∗

m

)
, then for any sij ∈ Si , there

exists

ui

(
s∗

1 , · · · , s∗
i−1, s

∗
i , s∗

i+1, · · · , s∗
m

)

≤ ui

(
s∗

1 , · · · , s∗
i−1, sij , s

∗
i+1, · · · , s∗

m

)
(12)

Where,
(
s∗

1 , s∗
2 · ··, s∗

m

)
is called an equilibrium solution of

game G. (Illustration: The only one difference between the
definition of equilibrium solution here and the meaning of
the definition of Nash equilibrium solution is that the “≥” in
(12) is given in the definition of Nash equilibrium solution.
The payoff of the game is minimized as the pursuit for each
player in the paper, which is matched with the minimization
multi-objective problem in (1)).

At present, the main algorithms have the negotiations
algorithm and colonial competition algorithm. The algo-
rithm based on evolution game is as follows:

1) Obtain strategy subset S1, ···, Sm attached to each player
through computing impact factor indicators of design
variables to payoffs and conduct fuzzy clustering to
these indicators.

2) Generate the initial feasible strategies in the strategy
set of each player randomly and then form a strategy

permutation s(0) =
{
s
(0)
1 , s

(0)
2 , · · · , s

(0)
m

}
.

3) Payoff function ui to any ith player (i = 1, 2, · · · , m)
is constructed as follows according to evolution rule
proposed by this paper:

Each player uses cooperative behavior in the first round,

that is, ui = wii
Fi

F̄i
+

m∑

j=1(j �=i)

wij
Fj

F̄j
;

In the kth round of the game,

when F
(k−1)
i ≤ F i then cooperate

ui = wii

Fi

F̄i

+
m∑

j=1(j �=i)

wij

Fj

F̄j

when F
(k−1)
i > F i then compete ui = Fi

F̄i

(13)

4) Let s
(0)
1 , s

(0)
2 , · · · , s

(0)
m be the corresponding comple-

mentary set of s
(0)
1 , s

(0)
2 , · · · , s

(0)
m in s(0). For any player

i(i = 1, 2, · · ·, m), solve the optimal strategy s∗
i ∈ Si ,

and make payoff minimum ui

(
s∗
i , s

(0)
i

)
→ min;

5) Define strategy permutation s(1) = s∗
1 ∪ s∗

2 ∪ · · · ∪
s∗
m. Then judge the feasibility of s(1). If gk

(
s(1)

) ≤
0 (k = 1, 2, · · · , q) doesn’t satisfy, turn to step 2). Oth-
erwise, compute the distance between s(1) and s(0)

which is called the Euclidean norm. Then examine
whether the distance satisfies the convergence criterion∥
∥s(1) − s(0)

∥
∥ ≤ ε or not (ε is a decimal parameter given

in advance). If it satisfies, the game is over; if not, let
s(1) displace s(0) and turn to step 3) to repeat.

3 Tri-objective optimization of parameters
for passive suspension

3.1 Dynamic model of 8 degrees of freedom (DOF)
for full vehicle suspension

A full vehicle model with 8 DOF is considered for analysis,
as shown in Fig. 1. All the symbols are shown in nomen-
clature Appendix. The kinetic equation of the suspension
system is given as follows (Lu et al. 2010).

[M] { ··
Z} + [C] { ·

Z} + [K] {Z} = [F] (14)

Where,{Z} is a displacement array;
{ ·
Z

}
is a speed array

and
{ ··
Z

}
is an acceleration array. {Z} = {z1 z2 · · · z8}T .

[M] is a mass matrix, [C] is a damping matrix, [K] is a
stiffness matrix, [F] is a pavement excitation matrix. [M] =
diag

{
m1 m2 Ip Ir m3 m4 m5 m6

}
; Ip is moment of inertia

for pitch and Ir is moment of inertia for roll.
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[C]=

⎡

⎢
⎢
⎢
⎢
⎣

c1 −c1 c1ls c1bs 0 0 0 0
−c1 c1 + c2 + c3 + c4 + c5 −c1 ls − c2lf − c3 lf + c4lr + c5lr −c1bs + c2br − c3bl − c4bl + c5br −c2 −c3 −c4 −c5
c1ls −c1ls − c2lf − c3lf + c4lr + c5lr c1l2s + c2l2

f
+ c3 l2

f
+ c4l2r + c5l2r c1 ls bs − c2br lf + c3bl lf − c4bl lr + c5 lr br c2lf c3 lf −c4 lr −c5lr

c1bs −c1bs + c2br − c3bl − c4bl + c5br c1bs ls − c2br lf + c3bl lf − c4bl lr + c5br lr c1b2
s + c2b2

r + c3b2
l

+ c4b2
l

+ c5b2
r −c2br c3bl c4bl −c5br

0 −c2 c2 lf −c2br c2 + c6 0 0 0
0 −c3 c3 lf c3bl 0 c3 + c7 0 0
0 −c4 −c4lr c4bl 0 0 c4 + c8 0
0 −c5 −c5lr −c5br 0 0 0 c5 + c9

⎤

⎥
⎥
⎥
⎥
⎦

[K]=

⎡

⎢
⎢
⎢
⎢
⎣

k1 −k1 k1 ls k1bs 0 0 0 0
−k1 k1 + k2 + k3 + k4 + k5 −k1 ls − k2 lf − k3lf + k4lr + k5 lr −k1bs + k2br − k3bl − k4bl + k5br −k2 −k3 −k4 −k5
k1ls −k1 ls − k2 lf − k3lf + k4 lr + k5lr k1l2s + k2l2

f
+ k3l2

f
+ k4 l2r + k5 l2r k1 ls bs − k2br lf + k3bl lf − k4bl lr + k5 lr br k2lf k3lf −k4 lr −k5 lr

k1bs −k1bs + k2br − k3bl − k4bl + k5br k1bs ls − k2br lf + k3bl lf − k4bl lr + k5br lr k1b2
s + k2b2

r + k3b2
l

+ k4b2
l

+ k5b2
r −k2br k3bl k4bl −k5br

0 −k2 k2lf −k2br k2 + k6 0 0 0
0 −k3 k3lf k3bl 0 k3 + k7 0 0
0 −k4 −k4 lr k4bl 0 0 k4 + k8 0
0 −k5 −k5 lr −k5br 0 0 0 k5 + k9

⎤

⎥
⎥
⎥
⎥
⎦

[F ] =
[

0 0 0 0 c6
·
f 1 (t) + k6f1 (t) c7

·
f 2 (t) + k7f2 (t) c8

·
f 3 (t) + k8f3 (t) c9

·
f 4 (t) + k9f4 (t)

]T

3.2 Multi-objective optimization design model

3.2.1 Design variables

Vehicle seat, suspension damping and stiffness are selected
as design variables. The damping and stiffness have the
same values on the left and right side due to vehicle sym-
metry, that is k3 = k2, k5 = k4, c3 = c2, c5 = c4,
and the design variables are X = {x1, x2, x3, x4, x5, x6} =
{k1, c1, k2, c2, k4, c4}.

3.2.2 Objective functions

Take ride comfort (RMS of acceleration of the seat), damage
of vehicles on the road (RMS of the tire relative to dynamic

Fig. 1 Dynamic model of 8 DOF for full vehicle suspension

load) and ride comfort (the maximum dynamic stroke sus-
pension) as objective functions (Lu et al. 2010), denoted as
F1, F2, F3.

Let RMS of acceleration of the seat be optimization
objective F1.

F1 =
[

1

T

∫ T

0
z̈2

1 (t) dt

] 1
2

→ min (15)

Where, T is driving time.
Let RMS of the tire relative to dynamic load be optimiza-

tion objective F2.

F2 =
⎡

⎢
⎣

1

T

∫ T

0

⎧
⎨

⎩

(
Fd1(t)

G1
+ Fd2(t)

G2
+ Fd3(t)

G3
+ Fd4(t)

G4

)

4

⎫
⎬

⎭

2

dt

⎤

⎥
⎦

1
2

→ min (16)

Where, G1 = m2g
lr

lf +lr

bl

bl+br
, G2 = m2g

lr
lf +lr

br

bl+br
, G3 =

m2g
lf

lf +lr

br

bl+br
and G4 = m2g

lf
lf +lr

bl

bl+br
are static loads of

four wheels. Fd1, Fd2, Fd3, Fd4 are dynamic loads of four
wheels.

Fd1 = c2
(
ż5−ż2+lf ż3−br ż4

)+k2
(
z5−z2+lf z3−brz4

)

+ m3z̈5

Fd2 = c3
(
ż6 − ż2 + lf ż3 + bl ż4

)

+ k3
(
z6 − z2 + lf z3 + blz4

) + m4z̈6

Fd3 = c4 (ż7−ż2−lr ż3+bl ż4)+k4 (z7−z2−lrz3+blz4)

+ m5z̈7

Fd4 = c5 (ż8 − ż2 − lr ż3 − br ż4)

+ k5 (z8 − z2 − lr z3 − brz4) + m6z̈8
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Table 1 The processes of evolution game

Round of the game Behavior of players Objective function values

F1 F2 F3 F1(m/s2) F2 F3(mm)

Initial strategy – – – 0.081457 0.026446 5.24494

1 cooperation cooperation cooperation 0.061261 0.025677 4.20556

2 cooperation cooperation cooperation 0.053452 0.027349 4.24319

3 cooperation competition competition 0.063605 0.025777 4.78693

4 cooperation cooperation cooperation 0.066909 0.025060 4.16212

5 cooperation cooperation cooperation 0.057370 0.026645 4.02969

6 cooperation competition cooperation 0.081928 0.024708 4.43856

7 competition cooperation cooperation 0.055801 0.024894 4.14170

8 cooperation cooperation cooperation 0.055791 0.024895 4.14174

Let the maximum value of dynamic travel among four
suspensions of right front, left front, left rear and right rear
be optimization objective F3.

F3 = max
i∈{1,2,3,4}

{

max
t∈[0,T ]

[
fdi (t)

]
}

→ min (17)

Where, fd1 = z2−lf z3+brz4−z5, fd2 = z2−lf z3−blz4−
z6, fd3 = z2+lr z3−blz4−z7 and fd4 = z2+lr z3+brz4−z8

are suspension dynamic travel distance.

3.2.3 Constraint conditions

The suspension stroke fd is defined as the maximum com-
pression distance allowed by the suspension from the equi-
librium position of vehicle. Suspension stroke fd should
be appropriate with [fd ].Otherwise, the suspension will hit
against the block frequently. Let the suspension stroke be
constraint condition: 0 ≤ fdi ≤ [

fd

]
(i = 1, 2, 3, 4).

4 Calculation and analysis

4.1 Computational illustrations

According to a particular vehicle, the parameters of the
paper are in Guclu (2005) and the values are in Appendix
nomenclature. Time-domain data of roughness for the left
and right front wheels can be seen in the Figs. 3 and 4 of Lu
et al. (2010).

4.2 Computation steps

Refer to Lu et al. (2010), S1 = {x1, x2} is the strategy subset
of F1. S2 = {x3, x6} is the strategy subset of F2. S3 = {x4,
x5} is the strategy subset of F3.

The computation steps are as follows:

1) Take the corresponding values of the initial design in
strategy subsets S1, S2 and S3 as the initial feasi-
ble strategies s

(0)
1 , s

(0)
2 and s

(0)
3 . Then form a strategy

permutation s(0) =
{
s
(0)
1 , s

(0)
2 , s

(0)
3

}

Table 2 Parameters comparison of game design and initial design

Design plan x1 (kN/m) x2 (N·s/m) x3 (kN/m) x4 (kN·s/m) x5 (kN/m) x6 (kN·s/m) F1 (m/s2) F2 F3 (mm)

Initial design 15.000 150.000 15.000 2.500 17.000 2.500 0.0815 0.0264 5.245

Fuzzy optimization 10.679 172.645 16.280 2.989 22.489 2.561 0.0679 0.0253 4.989

(Lu et al. 2008)

Nash equilibrium game 10.532 220.217 20.432 3.716 23.277 2.019 0.0699 0.0246 4.402

Cooperation game 8.270 184.169 22.291 3.614 21.705 3.424 0.0624 0.0254 4.172

Mixed game 10.112 211.625 20.433 3.614 21.705 2.018 0.0681 0.0248 4.148

(Lu et al. 2010)

Evolution game 10.533 220.217 22.288 3.716 23.274 3.426 0.0558 0.0249 4.142



Multi-objective design method based on evolution game and its application for suspension 215

0 20 40 60 80 100 120
-8

-6

-4

-2

0

2

4

6

8

10
x 10-3

t/s

initial design
game design

m
z

/
1

Fig. 2 Comparison of seat displacement between evolution game
design and initial design

2) Perform the following three single-objective
optimization

a) Seek the optimal strategy s∗
1 ∈ S1 and minimize the

payoff of game, u1

(
s∗

1 , s
(0)
2 , s

(0)
3

)
→ min

b) Seek the optimal strategy s∗
2 ∈ S2 and minimize the

payoff of game, u2

(
s
(0)
1 , s∗

2 , s
(0)
3

)
→ min

c) Seek the optimal strategy s∗
3 ∈ S3 and minimize the

payoff of game, u3

(
s
(0)
1 , s

(0)
2 , s∗

3

)
→ min

The construction method of the payoff functions u1, u2

and u3 is as follows:
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Fig. 3 Comparison of seat velocity between evolution game design
and initial design
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Fig. 4 Comparison of seat acceleration between evolution game
design and initial design

For the first round of the game

ui = wii

Fi

F̄i

+
3∑

j=1(j �=i)

wij

Fj

F̄j

; (i = 1, 2, 3)

For the kth round of the game,

when F
(k−1)
i ≤ F then cooperate

ui = wii
Fi

F i
+

m∑

j=1(j �=i)

wij
Fj

F j

when F
(k−1)
i > F then compete

ui = Fi

F i

;

(i = 1, 2, 3)

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

t/s

T
ire

's
 r

el
at

iv
e 

D
yn

am
ic

 L
oa

di
ng

initial design
game design

Fig. 5 Comparison of relative dynamic loading for tire between
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Fig. 6 Comparison of the power spectral density for seat acceleration

Where, F i (i = 1, 2, 3) is chosen from the corre-
sponding objective value of the initial design. Weight
coefficients are w11 = w22 = w33 = 0.5 and w12 =
w21 = w13 = w31 = w23 = w32 = 0.25. These
weight coefficients are determined in accordance with
the following principles: One is the principle of equal-
ity, including two meanings: 1) treat self-interest and
altruism equally, that is, wii = 0.5; 2) treat objec-
tive interests of other two players equally except that
of its own, that is, wij = 0.25(i �= j); The other is
the “reciprocate” principle. How the other players treat
objective interest of one player, so does the player, that
is, wij = wji .

3) Define strategy permutation s(1) = s∗
1 ∪ s∗

2 ∪ s∗
3 .

Then justify the feasibility of s(1). If s(1) doesn’t
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Fig. 7 Comparison of the power spectral density for dynamic stroke
(the right front wheel)
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Fig. 8 Comparison of the power spectral density for dynamic stroke
(the left front wheel)

satisfy constraint conditions, turn to step 1). Other-

wise, compute

√
6∑

j=1

{[(
x

(1)
j − x

(0)
j

)/
x

(0)
j

]2
/

6

}

and

examine whether it satisfies the convergence precision
ε (ε is 0.0001 in this paper). If it satisfies, the game is
over; if not, let s(0) = s(1) and turn to step 2) to iteration
loop.

4.3 Computation results

The game processes of evolution game are shown in Table
1. For comparison, Nash equilibrium game model (pure
competitive pattern), cooperation game model (pure cooper-
ative pattern, cooperative behavior of “you win to have me,
I win to have you”.), mixed game model in Lu et al. (2010)
(where: matching behavior are F1– co-opetition behavior of
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Fig. 9 Comparison of the power spectral density for dynamic stroke
(the left rear wheel)
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Fig. 10 Comparison of the power spectral density for dynamic stroke
(the right rear wheel)

“benefit oneself but do not harm people”, F2– competition
behavior and F3– cooperative behavior of “you win to have
me, I win to have you”.) and multi-objective fuzzy optimiza-
tion method (one of traditional multi-objective optimization
method) (Lu et al. 2008) are proposed in this paper to solve
the problem. All results are shown in Table 2. From Table
2 we can see, the initial design values of the tri-objective
functions F1, F2 and F3 are 0.0815, 0.0264 and 5.245, and
the design values of the evolution game model are 0.0558,
0.0249 and 4.142, where F1, F2 and F3 are decreased by
31.53%, 5.68% and 21.03% respectively compared with
initial values. Compared with mixed game method, tradi-
tional multi-objective optimization method and other game
methods (shown in Table 2), the evolution game design has
comprehensive advantage on tri-objective functions.

As shown from Figs. 2, 3, 4 and 5, the seat displacement,
velocity, acceleration, and relative dynamic loading of the
tire are significantly decreased.

In the automobile design, power spectral density is used
to describe the distributing situation of the power along
with the frequency for the accumulation index. Figure 6
demonstrates the distributing situation of the power spectral
density along with the frequency for the seat acceleration.
The distributing situations of the power spectral density
along with the frequency for the dynamic stroke of the

wheel are shown from Figs. 7, 8, 9 and 10. From Figs. 6,
7, 8, 9 and 10, we can see that the result obtained by the
evolution game method is the best and its response is the
least. As human body is very sensitive to vertical vibration
and the most sensitive frequency range is 4 ∼ 8 Hz, the peak
values of the power spectral density for the seat acceleration
are given in Table 3. From Table 3 and Fig. 6 we can see that
the peak value of the initial design is the maximum and is
close to 4 Hz. The peak value of the evolution game design
is the minimum and is far from 4 Hz, so the ride comfort has
been improved.

5 Conclusion

1) Optimization objectives are considered to be the
different game players with competitive, cooperative
and adaptive behaviors in the evolution game method.
The design variables are divided into strategy subset
owned by the corresponding game players and strate-
gies can be seen as bargaining resource held by game
players (In this paper, F1 (game player 1) can only
change the value of x1 and x2 to improve its own payoff
and F2 (game player 2) can only change the value of x3

and x6 to improve its own payoff and F3(game player
3) can only change the value of x4 and x5 to improve
its own payoff). Optimization results are seen as game
players’ mutual negotiation and compromise, in which
game players decide to compete or cooperate with other
players based on PCRC evolution rules. The relatively
satisfied equilibrium solution can be obtained through
the iterative loop.

2) Currently, pure competitive game model and pure coop-
erative game model are used to solve multi-objective
optimization problems, in which the behavior keeps
unchanged. On this basis for further consideration,
in Lu et al. (2010), a mixed game model is pro-
posed according to the diversity of behaviors caused
by differences in the resources and endowment of each
player. However, regardless of pure competitive game
model, pure cooperative game model, or mixed game
model, they only consider competition and cooperation
in the behaviors without considering the player’s adap-
tive ability. Self-adaptation is also the very important

Table 3 Comparison of the
power spectral density for the
seat acceleration

The power Initial Fuzzy Nash Cooperation Mixed Evolution

spectral density design optimization equilibrium game game game

for the seat game

acceleration

Peak value/db 1.522 1.252 1.268 1.098 1.256 0.979
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capacity for players, which helps the system devel-
opment and evolution. In response to this deficiency,
this paper presents an evolution game model of PCRC
according to Chinese saying that “In success, commit
oneself to the welfare of the society; in distress, main-
tain one’s own integrity” by comprehensively consider-
ing competition, cooperation and adaptive capacities of
the players.

3) Comparing this paper and Lu et al. (2010), we find
that it is the same for hybrid game method and evolu-
tion game method to split the design variables to game
players. But algorithm structure of two methods is obvi-
ously different. For the evolution game method, due to
the behavior adaptive ability of all design objectives,
the game pattern of game players is decided by evo-
lution rules. For the hybrid game method, although
behaviors of all game players exist difference and
diversity and game players form the mutual coordina-
tion hybrid pattern, the behavior of each game player
keeps unchanged. Because the simulation approxima-
tion degree of natural system decides the rationality and
effectiveness of the game solutions, calculation results
of the evolution game method are more reasonable than
the hybrid game method, which is shown in Tables 2
and 3.

4) Through dynamic evolution of the behavior between
mutual competition and cooperation of the players,
the method based on an evolution game model is that
at the end of each round of the game, all players
(design objectives) can adjust their behaviors accord-
ing to evolution rules, and then adjust payoff func-
tions. Eventually, game results in the next round will
be affected and each player will achieve the survival
adaptation (corresponding payoffs). From the method-
ological point of view, as the decision-making process
of the game is an objective natural selection, its aim is
to achieve a harmonious existence of things. Therefore,
equilibrium and coordination of the ultimate combi-

nation of strategy for each player determines the sta-
bility of the existence of things. From the theoretical
point of view, strategy combination (equilibrium solu-
tion) through game decision theory has a consistent
projection, which means the solution is stable and self-
enforced. Because the solution based on the traditional
methods may be the fragile optimal solution under
specific conditions and it is extremely sensitive to the
change of material properties or external load. So, it
will be dangerous if this seemingly optimum, but fragile
solution is adopted. In consideration of external com-
plex engineering environment, it is necessary to adopt
the stable solutions based on the game method.

5) Taking tri-objective optimization of parameters for pas-
sive suspension as an example. It is revealed that the
correlations of F1 with x1 and x2, F2 with x3 and x6, F3

with x4 and x5 are strong, which is not revealed through
the traditional multi-objective optimization method.
Evolution game results show that the objectives of the
root mean square values of the acceleration of seat and
relative dynamic load of tire and the maximum dynamic
stroke suspension are better than the traditional multi-
objective optimization method (Lu et al. 2008), which
shows the effectiveness of this method. For the complex
problems of more design variables and reanalysis of the
structure in engineering optimization, the advantages of
game method, compared with traditional optimization
method, are that the design variables are decomposed
into the strategy subset owned by each player and that
the original high-dimensional optimization problem is
transformed into three low-dimensional optimization
problems, which can reduce the complexity of problem.
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Appendix

Symbol Parameters Name Unit Value

z1 vertical driver seat DOF m dynamic varying range
z2 vertical body displacement DOF m dynamic varying range
z3 Pitching DOF rad dynamic varying range
z4 Roll DOF rad dynamic varying range
z5 front right wheel’s vertical DOF m dynamic varying range
z6 front left wheel’s vertical DOF m dynamic varying range
z7 back right wheel’s vertical DOF m dynamic varying range
z8 back left wheel’s vertical DOF m dynamic varying range
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Symbol Parameters Name Unit Value

q1(t) front right wheel road roughness incentives m input data
q2(t) front left wheel road roughness incentives m input data
q3(t) back left wheel road roughness incentives m input data
q4(t) back right wheel road roughness incentives m input data
k1 driver Seat’s spring stiffness coefficient kN/m 7.5 ≤ k1 = x1 ≤ 22.5 initial 15
k2 front right suspension spring stiffness coefficient kN/m 7.5 ≤ k2 = x3 ≤ 22.5 initial 15
k3 front left suspension spring stiffness coefficient kN/m 7.5 ≤ k3 = x3 ≤ 22.5 initial 15
k4 back left suspension spring stiffness coefficient kN/m 8.5 ≤ k4 = x5 ≤ 25.5 initial 17
k5 back right suspension spring stiffness coefficient kN/m 8.5 ≤ k5 = x5 ≤ 25.5 initial 17
k6 front right tire spring stiffness coefficient kN/m 250
k7 front left tire spring stiffness coefficient kN/m 250
k8 back left tire spring stiffness coefficient kN/m 250
k9 back right tire spring stiffness coefficient kN/m 250
c1 driver Seat’s damping coefficient N·s/m 75 ≤ c1 = x2 ≤ 225 initial 150
c2 front right Suspension damping coefficient kN·s/m 1.25 ≤ c2 = x4 ≤ 3.75 initial 2.5
c3 front left Suspension damping coefficient kN·s/m 1.25 ≤ c3 = x4 ≤ 3.75 initial 2.5
c4 back left Suspension damping coefficient kN·s/m 1.25 ≤ c5 = x6 ≤ 3.75 initial 2.5
c5 back right Suspension damping coefficient kN·s/m 1.25 ≤ c6 = x6 ≤ 3.75 initial 2.5
c6 front right tire spring damping coefficient kN·s/m 0.15
c7 front left tire spring damping coefficient kN·s/m 0.15
c8 back left tire spring damping coefficient kN·s/m 0.15
c9 back right tire spring damping coefficient kN·s/m 0.15
m1 driver seat mass kg 90
m2 suspension mass kg 1100
m3 front right tire’s mass kg 25
m4 front left tire’s mass kg 25
m5 back left tire’s mass kg 45
m6 back right tire’s mass kg 45
Ir roll moment of inertia kg·m2 550
Ip pitch moment of inertia kg·m2 1848
lf Body mass center to front axle distance m 1.2
lr Body mass center to back axle distance m 1.4
ls vertical body mass distance between seats m 0.3
bl body mass to left wheel distance m 1.0
br body mass to right wheel distance m 0.5
bs body mass seat to the horizontal distance m 0.25
v vehicle’s driving velocity m/s 20
[fd ] the suspension’s restricted maximum compression stroke m 0.1
T running time s 120
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