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ABSTRACT

In this study, changes in daily weather states were treated as a complex Markov chain process, based
on a continuous-time watershed model (soil water assessment tool, SWAT) developed by the Agricultural
Research Service at the U.S. Department of Agriculture (USDA-ARS). A finer classification using total
cloud amount for dry states was adopted, and dry days were classified into three states: clear, cloudy,
and overcast (rain free). Multistate transition models for dry- and wet-day series were constructed to
comprehensively downscale the simulation of regional daily climatic states. The results show that the finer,
improved, downscaled model overcame the oversimplified treatment of a two-weather state model and is free
of the shortcomings of a multistate model that neglects finer classification of dry days (i.e., finer classification
was applied only to wet days). As a result, overall simulation of weather states based on the SWAT greatly
improved, and the improvement in simulating daily temperature and radiation was especially significant.
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1. Introduction

In recent years, widespread attention has been
given to statistical downscaling methods and appli-
cations that use a low-resolution atmospheric-oceanic
general circulation model (AOGCM) output to pro-
duce finer, spatial-scale, regional and local surface
climate information (e.g., temperature and precipita-
tion). Although the development of statistical down-
scaling techniques is still in progress, they can be or-
ganized into three broad categories: regression mod-
els, weather classification schemes, and weather gen-
erators (Chin, 1977; Ding and Zhang, 1989; Bardossy
et al., 1991; Bouraoui et al., 2002;). Weather genera-
tors comprise a set of statistical models that can con-
struct stochastic processes for climate variables. When
the evolution of daily weather events is treated as a
complex stochastic process, and a statistical model for

observational weather variables is used to obtain sta-
tistical model parameters, the statistical model can
then be employed to generate time sequences of cli-
mate variables. Thus, with this type of statistical
model, daily weather sequences can be simulated un-
der certain climate scenarios with using AOGCM out-
puts (e.g., future local monthly average temperature
and precipitation). Simulation experiments performed
in this study showed that simulated daily weather se-
quences associated with the current observed climate
conditions (e.g., local monthly average temperature
and precipitation) have very high similarities with the
observed daily weather sequences. If this similarity
persists in the future climate conditions, future cli-
mate characteristics based on the daily weather states
can be simulated with better precision.

One of the more popular weather generators is
based on Markov chain models. Richardson (1981)
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proposed a series of statistical models for precipi-
tation, temperature, and solar radiation to simulate
daily weather changes. Racsko et al. (1991) also de-
veloped various statistical modeling methods, includ-
ing the Markov chain method to simulate weather
event changes. Bardossy and Plate (1991) proposed
the semi-Markov chain model with the use of circula-
tion patterns (Ding and Niu, 1990; Ding, 1994; Ding
et al., 2008, 2009). In fact, the Markov chain pro-
cess has long been one of the major statistical models
used in statistical meteorological research and applica-
tions. Many publications have examined this subject
(Yao and Ding, 1990). Ding and Niu (1990) used a
multistate Markov chain model based on the Monte
Carlo method to create a statistical model for single-
site daily precipitation simulation. Validations showed
a high degree of similarity between model-generated
climate statistical parameters and the observed ones
(Katz, 1974; Richardson, 1981; Racsko et al., 1991; Pa-
lutikof et al., 2002). Liao et al. (2004) also developed a
first-order two-state Markov chain model based on two
parameters as a statistical weather generator for most
of the regions in China with reasonable results. Ding
et al. (2009) used this weather generator to simulate
daily precipitation at six representative stations (over
30 years) with excellent results. The studies show the
feasibility of using the Markov chain model as a basis
for statistical models for simulating daily meteorolog-
ical variable changes.

Yet, as a statistical weather generator, current
Markov chain models are not without shortcomings.
Two major problems have been identified: First, mod-
els did not account for the interannual variability in
the time sequences of daily weather (e.g., precipita-
tion) under current or future climate conditions, creat-
ing obvious inconsistencies with observations. In fact,
daily precipitation not only has obvious interannual
variability, it also possesses significant seasonal vari-
ability. For the latter, a simple treatment is to simu-
late events in different seasons or months based on dif-
ferent Markov chain models. Secondly, although the
two-state Markov chain model described in Bardossy
and Plate (1991) was improved, the classification of
dry or wet state remained subjective. For example,
no finer classification for dry days was used, and dry
and wet days were treated as the same state vector
with the same transformation characteristics, which
is inconsistent with the observations. The objective
of the current study was to solve the second problem
by constructing a multistate Markov chain model with
finer classification of both dry- and wet-day states so
that the weather sequences comprised of daily weather
states (including precipitation, temperature, humidity,
solar radiation, and other variables) could be simu-
lated comprehensively.

2. Improvement of the model

The multistate Markov chain model proposed by
Ding et al. (1989) was based on two assumptions: (1)
dry- and wet-day sequences follow a time-succession
rule and (2) the probability distribution for daily pre-
cipitation amount of a wet day takes a certain form.
Considering these two aspects, wet-day daily precipi-
tation amounts were classified into many states based
on their magnitude, and n states of wet days were as-
sumed to be s1, s2, . . . , sn. Obviously, a more complete
precipitation process can be built on terms of n + 1
states (s0, s1, s2, . . . , sn), where the state s0 denotes
a dry day. This classification of states is beneficial
to simulating the real daily precipitation process. The
results of our study show that classification yielded sig-
nificant improvement over the two-state Markov chain
weather generator. For example, the simulated maxi-
mum daily precipitation amount more closely matched
the observation data, but the simulation of the dry-day
state was very coarse. Dry days were classified into
clear, cloudy, and overcast (no rain) based on total
cloud amount and were combined with previously clas-
sified wet-day states to form a complete daily weather
state vector. The matrix of transition probabilities
was then calculated. Thus, the improved, mixed, daily
weather-state vector was expected to result in better
simulation of complete daily weather states.

A continuous-time watershed model (soil water
assessment tool, SWAT) developed at the U.S. De-
partment of Agriculture Agricultural Research Service
(USDA-ARS) can be used to simulate and predict the
long term impact of climate change and human ac-
tivities on water basin watersheds, sediment, and pol-
lutants. The weather generator of the SWAT model
is useful for generating complete meteorological data
or for interpolating missing records. But the short-
coming of the weather generator is its oversimplified
treatment of clear, cloudy, and rainy days. Also, the
empirical parameters and formulas of the SWAT model
are all based on observations in some major regions in
the United States and are hardly applicable in China.
For this reason, this investigators aimed to propose a
finer model for daily weather simulation to perform re-
gional climate downscaled numerical modeling, based
on the SWAT model weather generator and the afore-
mentioned proposal of classifying dry day into clear,
cloudy, and overcast (rain free) three states according
to total cloud amount.

2.1 The mixed multistate Markov chain model
for daily dry or wet states

As stated previously, a more complete state de-
scribing daily weather processes (s0, s1, s2, . . . , sn) is
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created when mixed dry- and wet-day states are de-
noted as n+1 states: s0, s1, s2, . . . , sn. The matrix
of transition probabilities is similar to that reported
in Ding and Zhang (1989). Because wet-day states
s1, s2, . . . , sn have corresponding precipitation states,
each state si(i = 1, 2, . . ., n) must correspond to one
probability distribution. The thorough study of Ding
(1994) showed that daily precipitation amount fol-
lows Gamma distribution. Apparently, due to a posi-
tive skew of daily precipitation with Gamma distribu-
tion, chances of small amounts of daily precipitation
are great and chances of extreme daily precipitation
are very small. Thus, it is better to classify wet-day
states based on the intervals of the daily precipitation
amount: smaller intervals for small daily precipitation
amounts, and bigger intervals for increased daily pre-
cipitation amounts (Ding and Zhang, 1989; Ding et al.,
2009). Based on several numerical experiments, this
study used wet-day classification intervals of daily pre-
cipitation that mimic a geometric series. For the sake
of calculation, some adjustments were applied to the
limits of the intervals. For dry days, three states [i.e.,
clear, cloudy, and overcast (rain free)] were assigned
based on total cloud amount (i.e., ranked 1–3, 4–6,
and 7–10, respectively). Studies have shown that to-
tal cloud amount has a U-shaped distribution. As a
result, if total cloud amounts are assigned to three
groups, then their distribution can be seen as uni-
form. In other words, dry-day state classification can
be adjusted to use s0, s1, s2 to denote clear, cloudy,
and overcast (rain-free) states, respectively. Because
the probability distribution of wet-day states follows a
positively skewed normal distribution with a long tail,
wet-day states s3 − sn−1 can be assumed to be uni-
formly distributed, then sn can be defined as displaced
exponent distribution to represent the characteristic
of the long tail of a positively skewed normal distri-
bution. The basis for this assumption is this: Daily
precipitation amount, in general, follows gamma dis-
tribution, especially in winter, and has an inversed “J”
shape, while in summer the distribution bears a single-
peak, positively skewed, normal distribution with a
long tail. Thus, except for sn, all other wet-day prob-
ability distribution density functions can be approx-
imated as square-shaped uniform distributions, while
the probability distribution density function for sn can
be approximated with an exponential function (Ding
and Zhang, 1989). In other words, the probability dis-
tribution function of states s0 − s2 is

fi (x) =
1

ci − ci−1
(ci−1 <x6ci , i = 0, 1, 2) , (1)

where ci and ci−1 are the upper and lower limits of the
dry-day cloud amount, respectively. Wet-day states

s3 − sn−1 also follow uniform distribution approxi-
mately:

fi(x)=
1

mi −mi−1
(mi−1 < x 6 mi, i = 3, . . . , n−1) ,

(2)
where mi denotes the upper limit of wet-day precipita-
tion amount, while the distribution for state sn is ap-
proximately defined by the following exponential func-
tion

fn(x) = λe−λ(x−b) x ∈ sn . (3)

Here fn(x) is called the probability density function
of displaced exponential distribution, λ is the dis-
tribution parameter，and b is the upper limit for
state sn−1. The matrix of transition probabilities for
s0, s1, s2, . . . , sn can be estimated from historical data
for the cloud amounts and for precipitation. Then
the corresponding probability distributions for each si

can be estimated using these historical data. Appar-
ently, once the boundaries of the states are known,
the probability density functions of the distribution
can be determined, while for exponential distribu-
tion its probability density function is mainly deter-
mined by estimating parameter λ. With all of these,
daily precipitation records can be simulated by uti-
lizing simulation methods for discrete random vari-
ables (Yao, 1984). Based on the Chapman–Kolmgoroff
equation (stationary transition formula) for homoge-
neous Markov chain, given an initial state and its prob-
ability vector p(0), the matrix of transition probabil-
ities at any first k steps can be derived. If an ini-
tial vector p(0) = [p0(0),p1(0), . . . . . .pn(0)] is known,
then the probability vector of daily precipitation pro-
cess reaching states s0, s1, s2, . . . , sn after k steps of
transition must be

p(k) = p(0)p(0, k) = p(0)pk (k = 1, 2, . . .) , (4)

where p(0, k) represents the transition probability
from time 0 to time k. Or it can be written as

p
(k)
j = p(0)pk , (5)

where p
(k)
j is a row vector in Eq. (5), and p(0) is initial

probability vector，pj(0) = 1，all others are 0，and
j can be any one of 0,1,. . . ,n (Green, 1970).

2.2 The simulation scheme for initial day and
its transition process

To eliminate seasonal effect on the results, in the
simulation daily weather changes in a year may be
divided into several stages based on the local season-
ality within the year. In this study, a scheme based
on monthly calculations was adopted. Specifically,
for each month, simulation data were obtained using
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the aforementioned model. The detailed simulation
scheme, which is the same as that of Ding and Zhang
(1989), is presented here.

2.3 The simulation scheme for daily solar ra-
diation, temperature, humidity

Studies (Ding and Zhang, 1989, Ding et al., 2009)
have shown that better simulation results of daily rain-
fall amount can be obtained using the Markov chain
model, while the Markov chain model simulation of
daily temperature and solar radiation have not been
as successful. This is because daily temperature and
solar radiation are continuous stochastic variables with
strong autocorrelation. To obtain statistical character-
istics of simulated daily temperature and solar radia-
tion to perform various numerical experiments under
different external climate conditions, we used autocor-
related, multivariate regression equations to simulate
daily temperature and solar radiation and their sta-
tistical characteristics. Here a multivariate linear au-
toregression model for daily temperature (mean, max-
imum, and minimum) and solar radiation was con-
structed. The autoregression model for daily maxi-
mum (minimum) temperature and solar radiation is

χt(j) = Aχt−1(j) + Bεt(j) , (6)

where χt(j) is a 3 × 1 matrix for standardized vari-
ables: maximum temperature (j = 1), minimum tem-
perature (j = 2), and solar radiation (j = 3) on the
given day t. Also, χt−1(j) is a 3×1 matrix for the same
corresponding variables on the previous day (day t−1).
Then

χt(1) =
Tmx − Tmx,mon

σmx,mon
, (7)

χt(2) =
Tmn − Tmn,mon

σmn,mon
, (8)

χt(3) =
Hday −Rmon

σr,mon
, (9)

Where Tmx, Tmn, and Hday are daily maximum tem-
perature, minimum temperature, and solar radiation,
respectively (units of temperature are ◦C, units of so-
lar radiation are in MJ m−2); Tmx,mon, Tmn,mon, and
Rmon, are monthly average values of daily maximum
temperature, daily minimum temperature, and daily
solar radiation, respectively; and σmx,mon, σmn,mon,
and σr,mon, are the corresponding standard deviations
for daily maximum temperature, daily minimum tem-
perature, and daily solar radiation. In Eq. (6), εi is a
3×1 matrix for independent random residuals, and A,
B are 3× 3 matrices whose constant elements are au-
tocorrelation and cross-correlation coefficients of the

time series. Matrices A and B are defined as

A = M1 ·M−1
0 , (10)

B ·BT = M0 −M1 ·M−1
0 ·MT

1 , (11)

where M0 and M -1
0 are the cross-correlation matri-

ces for the three variables on the same given day and
the inverse matrix, respectively, and M1 and MT

1 de-
note a one-day, lagged, cross-correlation matrix and
its transpose, respectively. We have

M0 =




1 ρ0(1, 2) ρ0(1, 3)
ρ0(2, 1) 1 ρ0(2, 3)
ρ0(3, 1) ρ0(3, 2) 1


 (12)

M1 =




ρ1(1, 1) ρ1(1, 2) ρ1(1, 3)
ρ1(2, 1) ρ1(2, 2) ρ1(2, 3)
ρ1(3, 1) ρ1(3, 2) ρ1(3, 3)


 (13)

where ρ0(j, i) and ρ1(j, i) are cross-correlation coef-
ficients between j and i on the same day and one
day lagged, respectively, and j, i = 1, 2, 3 denote daily
maximum temperature, minimum temperature, and
solar radiation, respectively. In general, these matri-
ces can be calculated with observed data for a given
location. Based on the calculated values of the stan-
dardized variables and using Eqs. (6)–(13) and the
corresponding standardization formula, it is not diffi-
cult to obtain the simulated daily maximum tempera-
ture, daily minimum temperature, and solar radiation.
The specific equations are

Tmx = Tmx,mon + χt(1)σmx,mon , (14)
Tmn = Tmn,mon + χt(2)σmn,mon , (15)

Hday = Rmon + χt(2)σr,mon . (16)

Notably, the standard deviation σr,mon for daily
solar radiation during each month can be estimated as
1/4 of the difference between the maximum and the
mean values. The estimation formula (Neitsch et al.,
2002, 2005) may be written as

σr,mon =
Sxm −Rmon

4
, (17)

where Sxm represents the maximum values of solar
radiation (MJ m−2) that reach the Earth’s surface
on any given day in the month. In simulating the
aforementioned three variables, if the daily weather
states are not taken into consideration, then the simu-
lated daily maximum temperature, minimum temper-
ature, and solar radiation sequences are representative
of those under clear sky conditions. Thus, a correction
has to be made. A common approach is to adjust the
simulated sequences based on weather conditions. The
revised formula for daily maximum temperature under
wet-day conditions is

Tmx,mon,w = Tmx,mon,d − bT (Tmx,mon − Tmn,mon) ,
(18)
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where there is an implicit relationship:

Tmx,mondtot = Tmx,mon,wdwet + Tmx,mon,dddry , (19)

Tmx,mon,w denotes the average daily maximum tem-
perature for wet days in the month; Tmx,mon,d denotes
the average daily maximum temperature for dry days
in the month; and, dtot, dwet, and ddry represent the
total number of days, the number of wet days, and the
number of dry days in the month, respectively. More-
over, parameter bT is a scaling factor whose value can
be estimated from related data.

Similarly, the revision formula for dry day condi-
tions is

Tmx,mon,d = Tmx,mon + bT
dwet

dtot
(Tmx,mon − Tmn,mon) .

(20)
Thus, the formula for daily maximum temperature in
wet days can be written:

Tmx,w = Tmx,mon,w + χt(1)σmx,mon . (21)

And the formula for daily maximum temperature in
dry days is

Tmx,d = Tmx,mon,d + χt(1)σmx,mon . (22)

Formulas for daily minimum temperature in dry and
wet days can also be derived in similar fashion.

The revision formula for daily solar radiation in dry
days is

Rmon,d = bRRday,d (23)

Where an implicit relationship exists:

Rmondtot = Rmon,wdwet + Rmon,dddry . (24)

In Eq. (24), Rmon,w and Rmon,d are the average daily
solar radiation in wet and dry days in the month, re-
spectively. Parameter bR can be estimated from re-
lated data. From Eqs. (20) and (21), we have

Rmon,d =
Rmondtot

bRdwet + ddry
. (25)

Herein, formula for daily solar radiation in wet days
can be written:

Rday,w = Rmon,w + χt(2)σr,mon . (26)

Formula for daily solar radiation in dry days is

Rday,d = Rmon,d + χt(3)σr,mon . (27)

Simulation of relative humidity follows similar proce-
dures; details are not included here.

3. Numerical simulations

3.1 Simulation of precipitation

To compare simulated results from different sim-
ulation schemes, scheme A was used to denote first-
order multistate Markov chain model; scheme B was
used for a first-order two-state Markov chain model
(rainfall follows gamma distribution); scheme C was
used for a first-order two-state Markov chain model
(rainfall follows skewed distribution); scheme D was
used for a first-order two-state Markov chain model
(rainfall follows exponential distribution); and scheme
E was used for an improved multistate Markov chain
model (cloud amount in dry days is considered), re-
spectively. Taking Beijing station as an example, Ta-
ble 1 lists the simulated results of rainfall character-
istics from these five schemes. Based on the observed
daily precipitation in 30 years (1961–1990), daily pre-
cipitation in each month over 54 years was simulated.
Table 1 compares the simulated with observed precipi-
tation data in seven characteristics (i.e., number of dry
runs, number of wet runs, monthly rainy days, stan-
dard deviation of daily rainfall, daily rainfall, standard
deviation of monthly rainfall amount, and maximum
of daily rainfall) to assess the five simulation schemes.
To obtain stable rainfall simulation, five simulations
were created, and the average of these five simulations
was used for each scheme. As shown in Table 1, sim-
ulations of dry and wet runs and monthly rainy days
for all schemes were relatively accurate (relative errors
are generally <5%). Simulation of average daily rain-
fall was also very good. This was especially true for
those months in which average daily rainfall is rela-
tively small (January and April in Table 1) with the
absolute errors between the simulated rainfall and the
observation data of 60.1 mm. For those months of
larger mean daily rainfall (July and October in Table
1), the relative errors between the simulated rainfall
and the observations data are also <5%. However,
standard deviation of daily rainfall, standard devia-
tion of monthly rainfall, and maximum of daily rain-
fall, simulations from all the schemes had some er-
rors. Among these the simulations with schemes A
and E were closer to the observed distribution and
were markedly better than the simulations of the other
three schemes. To compare the ultimate results from
various simulation schemes, Table 2 presents the com-
parison of simulated rainfall frequencies with those ob-
served in April at Beijing. As far as the comparison
of the χ2 statistic is concerned, schemes A and E were
closer to the observed distribution. This is consistent
with the results shown in Table 1.

Simulated average monthly rainy days at Shanghai
from schemes A and E are shown in Fig. 1, in which
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Table 1. Simulations results (the average of five simulations with each schemes) of rainfall characteristics in January,
April, July, and October at Beijing from five simulation schemes.

Model Number of Number of Monthly Variance of Daily Variance of Max of daily
Month scheme dry runs wet runs rainy days daily rainfall rainfall monthly rainfall rainfall

Jan. A 24.1 1.5 1.9 0.69 0.1 4.96 14.5
B 22.4 1.7 2.2 0.66 0.1 4.32 10.6
C 21.0 1.5 2.1 0.69 0.1 3.91 14.2
D 21.7 1.6 2.2 0.59 0.1 4.31 9.00
E 22.7 1.5 2 0.7 0.1 4.49 14.9
Average 22.4 1.6 2.1 0.7 0.1 4.4 12.6
Observed 22.7 1.6 2 0.6 0.1 4.5 14.6
Error(%) 1.4 2.5 4 4.1 0 1.8 13.4

Apr. A 8.6 1.6 4.6 3.39 0.7 21.96 49.4
B 8.1 1.6 4.9 2.92 0.8 17.84 36.6
C 8.0 1.5 4.8 3.01 0.7 19.51 41.7
D 8.3 1.6 4.8 2.41 0.7 15.01 29.4
E 8.4 1.6 4.8 3.69 0.8 21.64 48.4
Average 8.3 1.6 4.8 3.1 0.7 19.2 41.1
Observed 8 1.5 4.8 3.2 0.7 24.5 51.0
Error(%) 3.5 5.3 0.4 3.6 5.7 21.5 19.4

Jul. A 2.7 2.2 13.7 15.4 6.1 99.5 173.8
B 2.7 2.2 13.8 13.8 5.7 78.4 173.9
C 2.8 2.2 13.8 15.1 5.4 87.6 192.2
D 2.6 2.3 14.3 10.9 6 68 96.5
E 2.7 2.1 13.6 14.9 6 85.0 153.0
Average 2.7 2.2 13.8 14.0 5.8 83.7 157.9
Observed 2.7 2.2 14.0 15.8 5.9 98.3 244.2
Error(%) 0 0 1.1 11.2 1.0 14.9 35.3

Oct. A 7.5 1.6 5.4 3.8 0.7 22.8 65.1
B 7.3 1.5 5.4 2.9 0.7 17.7 40.7
C 7.1 1.6 5.7 3.5 0.7 21.9 62.3
D 7.2 1.6 5.6 2.4 0.7 14.7 24.7
E 7.5 1.6 5.4 3.9 0.8 26.4 73.3
Average 7.3 1.6 5.5 3.3 0.72 20.7 53.2
Observed 7.3 1.6 5.5 3.5 0.7 22.7 49.4
Error(%) 0.3 1.3 0.0 6.4 2.9 8.6 7.7

Table 2. Comparison of simulated rainfall frequency distribution from five schemes with the observed in April at Beijing,
the units for rainfall is mm d−1.

Rainfall A B C D E Observed

p <0.1 923.2 980.6 940.9 932.4 923.8 919
0.16 p <6.3 413.7 335.4 414.3 446.3 411.2 418
6.36 p <50.7 293.7 320.5 280.3 278.2 291.1 296
p 650.7 43.4 37.5 38.5 17.1 45.9 41
χ2 Statistic 0.2110 16.7125 1.5398 16.2645 0.8024

simulation results have a correlation coefficient of 0.97
with the observed distribution for scheme A and 0.98
for scheme E. Therefore, the simulated rainfall features
from both schemes A and E have considerable accu-
racy. Simulations of daily rainfall for all months at
other sites showed that simulated results from schemes
A and E are all very close to the observed distribu-
tion, with correlation coefficients >0.97 (figures not
shown). In addition, according to Yao (1984), the

matrices of transition probabilities based on 30-year
samples are very stable. Thus, roughly speaking, er-
rors due to sampling are very small. Consequently,
simulation results of rainfall characteristics from both
schemes A and E are better than those from the first-
order two-state Markov chain model (gamma distri-
bution) and from the weather generator defined in the
original SWAT model. The multistate Markov chain
scheme with improved state classification (scheme E)
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Fig. 1. Comparison of simulated monthly average rainy
days at Shanghai.

 )

-2

Fig. 2. Comparison of simulated cumulative frequency
distribution from SWAT (a) and improved SWAT (b)
for daily solar radiation with the observed in April at
Ha’erbin.

is more reasonable, in theory, because the cloud
amount in dry days is divided into three states: clear,
cloudy, and overcast (rain free).

3.2 Simulation of solar radiation and temper-
ature

To increase the accuracy in simulating solar radi-
ation and temperature, the weather generator in the

original SWAT model had to be improved. To do so,
we incorporated cloud amount in a first-order Markov
chain model with a gamma distribution simulation
method to create a first-order multistate Markov chain
model (using gamma distribution simulation for pre-
cipitation, whereas joint autoregression simulation was
used for temperature and solar radiation). Still using
the aforementioned six representative stations as ex-
amples, we used 30 years of observation data (1961–
1990) to build the models and compared the simula-
tions (46 years at Beijing, 30 years at Shanghai, and
43 years at other stations) with the corresponding ob-
servations over the same period of time. The results
show that time series of simulated solar radiation and
temperature from improved SWAT model with added
cloud amount are much better than those from the
original SWAT model.

Based on our assumption in the SWAT model,
maximum temperature, minimum temperature, and
solar radiation under clear and cloudy conditions all
had normal distribution. Sample sizes under clear and
cloudy conditions, however, were not the same, and
thus the stability of the samples is not the same. For
instance, both dry-day and wet-day maximum tem-
perature followed normal distribution, but the wet-
day sample size was smaller than dry-day sample size.
Thus, wet-day normal distribution was less stationary
than that of dry days. To make the wet-day normal
distribution more stationary, we modified the simple
definition in SWAT model by defining those rain-free
days with cloud amount >70% as cloudy days to in-
crease the sample size of cloudy days. At the same
time, the distribution with the two definitions for dry
days were nearly equally stationary, but the modified
definition with respect to cloud amount made cloudy
day maximum temperature distribution more station-
ary and led to an apparent decrease in dispersion in
sample data. A similar improvement was achieved for
daily minimum temperature. As a result of the mod-
ified definition, daily solar radiation values improved
and became more stationary even more remarkably.

Figures 2a and 2b show the comparison graphs of
simulated cumulative probability of solar radiation (43
years) from the original SWAT model and the im-
proved SWAT model with cloud amount included with
the observation data. It can be seen from the figure
that simulated cumulative probability of daily solar
radiation from the improved SWAT model with cloud
amount included is remarkably close to the observa-
tions (i.e., they almost completely overlap). However,
a larger discrepancy was seen between simulated and
observed cumulative probability for daily solar radia-
tion from the original SWAT model and the observa-
tion data was in the range of 15–25 MJ m−2. This
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Fig. 3. Comparison of frequency distributions from sim-
ulated daily solar radiation with improved SWAT model
with cloud amount with the observation in April at
Ha’erbin.

Fig. 4. Comparison of frequency distributions from sim-
ulated daily solar radiation with improved SWAT model
with cloud amount with the observation in October at
Chengdu.

means that the improved model is superior in solar
radiation simulation (Figs. 2a and 2b).

Figure 3 displays the simulated solar radiation fre-
quency distribution in April at Ha’erbin. From this
figure, the frequency curve from the improved SWAT
model can be seen; the cloud amount is closer to that
of the observation data. The correlation coefficient of
the original SWAT model curve with that of the obser-
vation data is only 0.87, whereas that of the improved
SWAT model with that of the observation data is as
high as 0.96. The increase in accuracy in solar radi-
ation simulation from the improved SWAT model is
obvious. Figure 4 shows the comparison curves of the
simulations of two models and the observed frequency
of solar radiation in October at Chengdu. In terms
of the observed frequency, the simulated solar radia-
tion (October) at Chengdu shows an apparent negative
skew, whereas the simulated frequency curve from the

improved SWAT model with cloud amount is closer
to the observation data, manifested by a correlation
coefficient of 0.91. The correlation coefficient between
the original SWAT model simulated curve and that
of the observation data, on the other hand, is merely
0.87. The simulation results of daily solar radiation in
various months at the aforementioned representative
stations show obvious progress in the improved SWAT
model simulations. In fact, the models were built by
modifying the definition of clear and cloudy days and
are more stationary; the simulated solar radiation is
therefore destined to better approximate the observa-
tions.

Taking Wuhan station as an example, Table 3 dis-
plays several climatic statistics of simulated tempera-
ture and solar radiation by two models compared with
those of the observation data. The simulated max-
imum temperature and minimum temperature from
both models have high accuracy with a relative error
of <5% (except for January near 0 average minimum
temperature results in a larger relative error, but the
absolute error is <0.7◦C). At the same time, the accu-
racy in simulating the extreme values of daily max-
imum and minimum temperatures is also relatively
high (except for January, for the aforementioned rea-
sons), and the relative error for the improved SWAT
model is smaller than the original SWAT model. Al-
though the simulation errors are bigger due to the
skewness in the simulated solar radiation from both
models, the accuracy of the improved SWAT model
with cloud amount, relatively speaking, is higher, con-
siderably so in some months. For example, at Wuhan
station the relative error of the simulated daily solar
radiation from the improved SWAT model with cloud
amount is only 4% in April and is 4.9% in October,
whereas the relative errors from original SWAT model
are 19.5% and 17.1%, respectively. This demonstrates
that improved SWAT model with cloud amount has
advantages in simulating solar radiation. Notably, the
aforementioned skewedness of daily solar radiation was
referred to as resulted skew coefficient of simulated or
observed frequency distribution under the assumption
that in the SWAT model solar radiation follows nor-
mal distribution in theory, which was chosen as one of
the indicators to assess the simulation.

4. Conclusions

In this study, a total cloud amount and finer classi-
fication of dry states were used, based on a continuous-
time watershed model (soil water assessment tool,
SWAT) developed at the USDA-ARS. Dry days were
classified into three states: clear, cloudy, and overcast
(rain-free). A new kind of model with a finer classifica-
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Table 3. The climatic statistic of simulated and measured results from two models for temperature and radiation over
Wuhan.

Month Scheme Mean of Mean of Mean of Skewness of Std of monthly
max temp min temp daily radiation daily radiation radiation

Jan. A(S) 8.2154 −0.4792 7.6995 0.1660 37.514
Observed 8.2558 0.1350 7.2311 0.0945 59.568
Error % 0.49% 454.87% 6.48% 75.54% 37.02%
B (S) 8.0769 −0.4257 7.6129 0.0422 37.698
Observed 8.2558 0.1350 7.2311 0.0945 59.568
Error % 2.16% 415.27% 5.28% 55.41% 36.71%

Apr. A(S) 21.2042 12.4646 13.2820 0.1551 50.948
Observed 21.2400 12.7050 12.6990 0.1298 80.796
Error % 0.17% 1.90% 4.60% 19.52% 36.94%
B (S) 20.7524 12.1258 12.9010 0.1246 56.412
Observed 21.2400 12.7050 12.6990 0.1298 80.796
Error % 2.30% 4.56% 1.60% 4.00% 30.18%

Jul. A (S) 32.783 25.1014 19.0810 −0.3405 72.672
Observed 32.884 25.4880 18.3880 −0.5320 122.230
Error % 0.31% 1.52% 3.77% 35.99% 40.54%
B (S) 32.7136 25.1094 18.8884 −0.4044 77.194
Observed 32.884 25.4880 18.3880 −0.5320 122.230

　 Error % 0.52% 1.46% 2.72% 23.98% 36.84%
Oct. A (S) 22.5730 13.4600 11.2700 −0.1231 52.567

Observed 22.7830 13.8410 10.8190 −0.1485 63.001
Error % 0.92% 3.48% 4.17% 17.08% 16.56%
B (S) 22.7574 13.5350 11.2462 −0.1413 53.0278
Observed 22.7830 13.8410 10.8190 −0.1485 63.001
Error % 0.11% 2.21% 3.95% 4.87% 15.83%

Note：A(S)：SWAT；B(S)：SWAT with cloud amount.

tion of weather states for daily weather simulation was
used to accomplish a comprehensive and downscaled
simulation of regional daily climatic states and to im-
prove the SWAT model simulations. Main conclusions
are as follows.

(1) An improved scheme for classification of dry-
and wet-day states in the SWAT model, based on a
first-order multistate Markov chain model has been
proposed. Specifically, a complete daily weather state
vector was formed by combining three states (i.e.,
clear, cloudy, and overcast) for dry days classified
based on total cloud amount and a wet-day state clas-
sified in the original SWAT model to calculate the ma-
trix of transition probabilities. The improved daily
weather-state vector was more effective in the compre-
hensive simulation of the complete structure of daily
weather states (including precipitation, temperature,
solar radiation, and other characteristics).

(2) Numerical simulation results of representative
stations demonstrate that simulated daily precipita-
tion with scheme A (first-order multistate Markov
chain model) and scheme E (improved multistate
Markov chain model with total cloud amount) are very
close to the observation data. For temperature and

solar radiation, the improved SWAT model with total
cloud amount is more effective. Regarding the im-
proved SWAT model, the weather generator in the
original SWAT model was modified to first become
a first-order multistate Markov chain weather genera-
tor with which daily weather states (i.e., clear, cloudy,
overcast, and rainy) were determined. Then rainfall
was simulated with gamma distribution, and temper-
ature and solar radiation were simulated using a joint
autoregression model.

(3) The improved, finer classification, downscaling
model can be used to predict future climatic states,
but it can be used to interpolate missing temporal–
spatial data and to extrapolate data as well.
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