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Abstract

We devise an algebraic method to uniformly construct a series of explicit exact solutions for the coupled Klein—
Gordon—-Schrodinger equations.
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1. Introduction
We consider the following coupled Klein-Gordon—Schrodinger (K-G-S) equations in three space dimension
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which describes a system of conserved scalar nucleons interacting with neutral scalar mesons. Here, ¥ represents a
complex scalar neucleon field and @ a real scalar meson field. The real constant u describes the mass of a meson, and p
is a coupling constant. The first study for the coupled K-G-S equations was done by Fukuda and Tsutsumi. By using
Galerkin method, they proved the existence of global strong solutions under the condition of initial boundary value [1].
Afterwards, much work has been done on the existence of global solutions, asymptotic behavior and stability for the K-
G-S equations [2-7], but explicit exact solutions are still unknown to our knowledge. In this work, we are interested in
solitary wave solutions and Jacobi doubly periodic wave solutions of K-G-S equations by using an algebraic method
proposed recently [8,9]. Compared with the existing tanh methods and Jacobi function method [10-15], our method
further exceeds their applicability in obtaining a series of exact wave solutions including the solitary wave, rational,
triangular periodic, Jacobi, and Weierstrass doubly periodic solutions. More importantly, the method provides a
guideline for the classification of the solutions based on the given parameters. The proposed method not only give an
unified formulation to construct various travelling wave solutions, but also provides a rule to classify the types of
solutions according to the given parameters. Furthermore, the proposed method is readily computerizable in solving
equation by using symbolic software like Mathematica or Maple. In the following Section 2, we simply describe the
proposed method, and then illustrate its application to the coupled K-G-S equations.
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2. Explicit exact solutions for coupled K—-G-S equations
Let recall our proposed method whose main steps are outlined as follows [8,9]:

Step 1. For a given equation
H(u,upy gy thyyy .. .) =0, (2)

we first use wave transformation u(x, ) = U(£) = U(x + ct), and change Eq. (2) into an ordinary differential equation
(ODE) as:

HU, U, U",...) =0. (3)

Step 2. We introduce a new variable ¢ = ¢(&) which is a solution of the following first-order ODE:

J

By virtue of the variable ¢, we expand the solution of Eq. (2) or (3) as the following series:

n

ulx,t) =U(¢&) = Za[(pi. (5)
=0
Balancing the highest derivative term with the nonlinear terms in Eq. (3) will give a relation for the positive integers n
and m, from which the different possible values of #n and m can be determined. These values lead to the series expansions
of the exact solutions for Eq. (2). For example, in the case of KdV equation

u, + 6un, + tye = 0, (6)
we have
m=n+2. (7)

If we take n = 1 and m = 3 in (7), we obtain the following series expansion of an exact solution of the KdV equation
(6) as

u=ay+aQ, (p':s\/co+c1go+czg02+C3(p3.

Similarly, if we take n = 2, m = 4 in (7), we have

u=ay+ai9p+ap’, @ =e\/co+cip+ e+ 3o} + ot

Step 3. Substituting the expansion (5) into Eq. (3) and setting the coefficients of all powers of ¢’ and ¢’ /Z;;o c;pl to

zeros, we obtain a system of algebraic equations, from which the constants c, a;, ¢; i =0,1,...,n, j=0,1,...,m) can
be found explicitly.

Step 4. Substituting the constants ¢; (j =0, 1,...,m) obtained in Step 3 into Eq. (4), we can then obtain all the possible
solutions. We remark here that the travelling wave solutions of Eq. (3) depend on the explicit solvability of Eq. (4). The
solution of the system of algebraic equations will be getting tedious with the increase of the values of n and m. When
m =4, Eq. (4) gives a series of interesting solutions such as solitary wave, rational, triangular periodic, Jacobi and
Weierstrass doubly periodic wave solutions. We then consider only the case m = 4 in this paper and hence

@ =eveo+ 1o+ 0’ + 307 + a0t (8)
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We have the following results:

Case A. If ¢c; = ¢4 =0, Eq. (8) possesses:
two polynomial type solutions

@ =¢e/coé, c1=c=0,¢>0

and

¢ 1
p=——F508, =0, c#0,
C 4

a exponential type solution
4 exp(ey/@), =L, 650
=— ey/c28), co=—-—, ¢ ,
@ 263 p 26 0 4 2
a triangular type solution

C| &cy .

o= —2—cz+2—cz sin(y/=¢28), co =0, ¢ <0

and a hyperbolic type solution
Cy &C

¢ = 72—62+2—62 sinh(2\/c;8), ¢y =0, ¢; > 0.

Case B. If ¢; = ¢; =0, Eq. (8) admits:
a bell shaped solitary wave solution

Q= /—z—jsech(\/é;cf), co=0, ¢ >0, ¢4 <O,

a kink shaped solitary wave solution

2

(&) oy [
=g /—=>tanh (/- = =2 0 0
Q=& 2, an ( 2@), Co 4C4’ <V, ¢y >0,

two triangular type solutions

@:1/7?%0(«/7025), co=0,c<0,c>0
4

c c c?
p=¢t Ztan —26 . co=-2,0>0, cs >0,
Cy 2 4C4

a rational type solution

and

e
(P——ﬁ,

three Jacobi elliptic doubly periodic type solutions

| ek [ o k(1 - k)
Q= C4(2k2—1)vn< 2k2_]5>7 C4<07 CZ>07 CO_C4(2]{2—1)27

B —i? [ a1 -k
Q= C4(2_k2)dn( 2—k2$)7 ¢y <0, ¢ >0, Cofm

60202207 C4>0,
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(12)

(13)

(14)

(16)
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(18)

(19)
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and

—crk? c ar?
—ey— . 0 0, co=—2—> 21
¢=¢ c4(k2+1)5“( [ ) azbasbhaos ey @b

where k is a modulus. The Jacobi elliptic functions are doubly periodical and possess properties of triangular functions:
sn?é +cen’é =1, dn’é=1—m’sn’E,
(sn&) =cnédné, (cné) = —snédné, (dné) = —m’snécné.
When k — 1, the Jacobi functions degenerate to the hyperbolic functions, i.e.
sné — tanh &, cné — sechl.
When k& — 0, the Jacobi functions degenerate to the triangular functions, i.e.
sné — siné, cné — cosé.
As k — 1, the Jacobi doubly periodic solutions (19) and (20) degenerate to the solitary wave solutions (14), and the
solution (21) degenerates to (15).

Case C. If ¢4 =0, Eq. (8) admits:
a bell shaped solitary wave solution

@:—Z—jsechz(\/Tc_zé), cw=c=0, c>0, (22)
a triangular type solution
¢:—9sec2(—rczé), co=c;1 =0, ¢; <0, (23)
C3 2
a rational type solution
1
p=—0375, co=c1=c=0 (24)
e

and a Weierstrass elliptic doubly periodic type solution

c
sz(§67g27g3>7 C2:07 C3 >0, (25)
where g, = —4c,/c3, and g3 = —4¢y/c; are called invariants of Weierstrass elliptic function.

Case D. If ¢y = ¢; =0, Eq. (8) admits:
a solitary wave solution

h*(1./c2¢
o cy8€ec (21\/6—2C) 60 (26)
28«/0204 tanh (5 \/0726) —C3

and a triangular type solution

B crsec® (3/=a¢)
2¢e/—Cyca tan (% —cch) +c’

In the case when ¢4 =0, the solution (26) and (27) degenerate to the solution (22) and (23) respectively. As
¢y = 2¢&,/cy¢4, the solution (26) degenerates to the following solution

_1 ) 1
o= Lo 21+ (bu) |

which is the same kind of solution with (13).

¢ = ¢ < 0. (27)
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Remark. The other types of travelling wave solutions such as csc¢&, cot &, csché, and coth ¢ can also be obtained by
considering the different values of ¢; (j =0,1,...,4) in Eq. (8). These solutions appear in pairs of the functions sec ¢,
tan &, sech & and tanh £. In this paper we also omit all singular solutions which consist of cscé, cot £, csch ¢, and coth ¢
and rational solution (24).

Now we consider the K-G-S equations (1). Let X = (x,y,z) and rewrite the Eq. (1) as

iV, + ¥+ ¥, +V.+pPP=0,
By — (P + By, + D) + 20 + p| P = 0.

In order to obtain the travelling wave solutions of system (28), we make the transformation
¥ =U(exp(in), @ =V(Q),

where & = x + ¢y +dz + et, 1 = px + qy + rz + st and reduce system (16) to the following system of ODEs:
1+ +dHU" — (s+p*+q¢*+1)U + pUV =0,
(e —1=c—d W'+ 2V — pU* =0,
e+p+gqc+dr=0. (29)

Suppose that

n ny

U=Y ag', V=2 bo
i=0 i

and ¢ satisfies (4). Balancing the highest linear term with the nonlinear terms in (29) gives

m—24+m=2n, n —2+m=n +n.
By choosing m = 4, n; = n, =2 we have

U=ay+ai@+a@*, V=>by+bio+ b (30)
Substituting (30) into (29) leads to the following system of algebraic equations

—2pad 4+ 21%by + 4 (€ — 1 — > — d*)byey + &2 (e — 1 — ¢ — d*)bic; = 0,

—4paga, + 21°by + 66%(e* — 1 — * — d*)bye; + 8% (e — 1 — * — d*)bycy = 0,

—2pa? — 4pagay + 2uPby + 8&X(e* — 1 — ¢* — d*)byey + 36X (e — 1 — ¢ — d*)bic3 = 0,

—4paja; + 106> (> — 1 — ? — d*)bycs + 4e*(* — 1 — P —d*)bicy = 0,

—2pd3 + 12e*(e* — 1 — ¢* — d*)byey = 0,

—2(s+p* + ¢* + g + 2paghy + 4e*(1 — & — d*)(azco + arey) =0,

“2(s+p*+ ¢ +P)ay + 2p(arby + aghy) + 66 (1 — & — d*)(aze; + arcz) = 0,

—2(s +pP 44+ rz)az + 2p(azby + arby + aph,) + 882(1 — = dz)(azcz +aic;) =0,

20(axby + a1by) + 82(1 — 7= dz)(10a263 +4ajcs) =0,

2pazb; +1262(1 — & — dz)a204 =0.

Since ¢ = &1 implies that &* = ¢, we may eliminate the variable & from the above system. With the aid of Math-
ematica, we obtain two kinds of solutions, namely,

2
b
cp=c3=a =b =0, ao=u7
pa
(31)
po b _wli-@) o pla—b)
0 pas’ 2 a3 4 6e2b,

where ay, by, ¢, d, e, p, ¢, r and s being constants satisfying
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A+d :ag—i-b%(ez— 1)

szz
e, sHP P+ ="52, et+ptgetrd=0
by — a3 @
and
2
b
¢ =c4=a,=b, =0, GO*M 17
2pa;
_ b _ (bl —a)) - 2p(ai —bi)
' 2pa2 ! 4perat 7 3eb;

y=0,2z=0,t=0
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Fig. 1. The solitary wave solution ¥ (x, y, z, t), where parameters satisfy (32). (a) The real part; (b) the imaginary part; (c) the modulus

(32)

(33)
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Fig. 2. The Jacobi doubly periodic solution ¥,(x, y, z, t), where parameters satisfy (32). (a) The real part; (b) the imaginary part; (c) the
modulus.

where ay, by, ¢y, ¢, d, e, p, q, r and s being constants satisfying

a+bi(E-1)
b —a

2b2
s+P2+qz+I’2=%7 etp+qgc+rd=0. (34)
1

Ard=
By using (14), (19) and (31), we obtain two kinds of travelling wave solutions, namely, a bell-shaped solitary wave
solution

2

by 3
p, =2 exp(m){l — 5 sech’ (L b — ach) }

pay 26‘(12

212
by 3 2of M 2 2

@ =P Dsecn?( H\Jp2 -

! pa%{ 2% (Zeaz 2@
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Fig. 3. The Weierstrass doubly periodic solution ¥;(x, y,z,¢), where parameters satisfy (34). (a) The real part; (b) the imaginary part;
(c) the modulus.

two Jacobi doubly periodic wave solutions
2 2 2 _ 2
Wby . 3k o mo by —a;
Y, =—= [ i
2= a eXp(I”){ 20— 1) \ 2ear V2R —1°)
) O e AN
T pdd 2022 = 1) 2ea; V22 —1° ) [

where ¢ =x + ¢y +dz + et, § = px + qy + rz + st, among them all parameters satisfy (31) and (32). As k — 1, the Jacobi
doubly periodic wave solutions (36) degenerates to the solitary wave solution (35).

(36)
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In the case of (33), by using (25), we obtain a Weierstrass elliptic doubly periodic wave solution

: *b ¢
Y, = exp(m){g‘[)—al-i-alp(g@gbﬁ) }7

1

272
,ubl /<3
D3 = +b -—
3 Zpa% 1@( ) $,8,8 ),

where E =x+cy+dz+et, n=px+qy+rz+st, g = —4c/c; and g3 = —4c¢y/c3, among them all parameters satisfy
(33) and (34). Since @, ¥, and @; have similar properties with the modulus of ¥,, ¥, and ¥;, we only draw some
figures for the solutions ¥, ¥, and ¥; (see Figs. 1-3).
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