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Abstract—In clinical diagnosis, a grade indicating the severity
of nuclear cataract is often manually assigned by a trained oph-
thalmologist to a patient after comparing the lens’ opacity severity
in his/her slit-lamp images with a set of standard photos. This
grading scheme is often subjective and time-consuming. In this
paper, a novel computer-aided diagnosis method via ranking is
proposed to facilitate nuclear cataract grading following con-
ventional clinical decision-making process. The grade of nuclear
cataract in a slit-lamp image is predicted using its neighboring
labeled images in a ranked image list, which is achieved using
a learned ranking function. This ranking function is learned
via direct optimization on a newly proposed approximation to
a ranking evaluation measure. Our proposed method has been
evaluated by a large dataset composed of 1000 different cases,
which are collected from an ongoing clinical population-based
study. Both experimental results and comparison with several
existing methods demonstrate the benefit of grading via ranking
by our proposed method.

Index Terms—Computer-aided diagnosis (CAD), grade, nuclear
cataract, ranking, slit-lamp images.

I. INTRODUCTION

C ATARACT, the “clouding” or opacity developed in the
crystalline lens of human eyes, obstructs the passage of

light and is the leading cause of vision loss globally [1], [2]. In
a world health report published in 1998, about 43% of global
blindness was caused by cataracts [1]. This number had in-
creased to 47.8%, which represents about 18 million people, by
2002 [2]. Among various causes of cataracts, aging is the most
common one. It is due to the fact that proteins within the lens
of aged population are prone to bind (a process known as cross-
linking) and become stiffer to form cloudy spots (cataracts) [3].
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In the U.S., more than 50% of all Americans at the age of 65 or
above suffer from age-related cataracts. This number increases
to 70% among those over 75 years old [4]. In Singapore, about
35% of Singapore Chinese population over the age of 40 have
age-related cataracts [5].

Based on the locations of developed opacity, age-related
cataracts are categorized into three types: posterior subcapsular
cataract, cortical cataract, and nuclear cataract [6]. Among
them, posterior subcapsular cataract forms at the back of
the lens; while cortical cataract forms in the lens cortex and
extends its spokes from the outside of the lens to the center
[6]. Nuclear cataract, which forms in the nucleus, is the most
common type [2], [6]. Accurate diagnosis and timely treatment
of nuclear cataract is essential to prevent vision loss. Clinical
diagnosis of nuclear cataract is often conducted with the help
of slit-lamp photography, from which slit-lamp images are pro-
duced depicting eye conditions of patients for ophthalmologists
to diagnose their cataract disease [7], [8].

In clinical diagnosis, a grade of nuclear cataract is often man-
ually assigned by trained ophthalmologists to each slit-lamp
image by comparing its opacity severity with a set of standard
images [7], [8]. To measure the opacity severity quantitatively,
several grading systems have been established [9], [10]–[12].
For instance, Fig. 1 shows a set of four standard slit-lamp im-
ages used in the Wisconsin Cataract Grading System [9]. These
images together represent an increasing severity of cataract in-
dicated by increasing integer-valued grades (from 1 to 4). In
clinical grading, an ungraded slit-lamp image is compared with
these standard images and a/an decimal/integer-valued grade is
assigned to indicate its opacity severity. Hence, if a slit-lamp
image is assigned a grade 2.5 by ophthalmologists, it means that
the patient has a nuclear cataract disease that is not as severe as
the one depicted by the standard image of grade 3, but more
severe than the one of grade 2. Although this manual grading
scheme is utilized in clinical practice, it is often argued to be
subjective. In [9], it is reported that only around 65% inter-ob-
server agreement can be reached when different ophthalmol-
ogists are told to assign grades to the same slit-lamp images
following the same grading system. Furthermore, ophthalmolo-
gists are likely to suffer from fatigue after inspecting numerous
images and prone to unconsciously grade them imprecisely.

Therefore, nowadays, automatic, objective and quantitative
diagnosis of nuclear cataract in slit-lamp images becomes nec-
essary, and it has been investigated by several research groups.
The Wisconsin group [13], [14] extracted anatomical structure
on the visual axis of the lens. Sulcus intensity and intensity
ratio between anterior lentil and posterior lentil were selected
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Fig. 1. Standard images with grades indicating the severity of nuclear cataract
disease within slit-lamp images according to Wisconsin Cataract Grading
System.

Fig. 2. An illustration of lens structure.

as features using linear regression (Fig. 2). The nuclear cataract
grading task was considered as a classification problem [14].
The Johns Hopkins group also regarded the nuclear cataract
grading task as a classification problem. They analyzed the
intensity profile on the visual axis and three features were
extracted: nuclear mean gray level, slope at the posterior point
of profile, and the fractional residual of the least-square fit [15].
Hence, both of these studies considered the nuclear cataract
grading task as a classification problem, but they only utilized
features on the visual axis, whereas the whole area of the lens,
which is usually analyzed in the clinical diagnosis, is over-
looked. In [16] and [17], the lens contour was automatically
detected and features were selected from the segmented lens
area according to the Wisconsin cataract grading protocol.
This study considered the nuclear cataract grading task as a
regression problem and support vector regression was adopted
to predict grades. Generally speaking, existing studies on
automatic grading of nuclear cataract within slit-lamp images
are scarce, and most existing studies consider the grading task
as either a classification or regression problem.

In this study, we, computer scientists and clinicians working
closely together, propose a novel computer-aided diagnosis
(CAD) method, which takes the grading of nuclear cataract
disease within slit-lamp images as a ranking task. Generally
speaking, ranking aims to sort a list of items according to a
system of rating or a record of performance, and the idea of
ranking has been adopted in several research works on eye im-
ages. In [18], a ranking of components of several color spaces
is provided to indicate that, the green component in RGB
color space is preferred for blood vessel detection in fundus
images. In [19], Spearman’s rank correlation coefficient, a
nonparametric rank correlation measure, is used to reveal the
relationship between the degree of retinal contraction and the
degree of metamorphopsia in retinal images. In [20], several
red-free fundus images are ranked according to their abilities
to discern the margin of internal limiting membrane peeling
to evaluate a proposed spectral imaging technique. Although
the idea of ranking has been incorporated in several research

efforts on eye images, none of them is related to the grading of
nuclear cataract disease within slit-lamp images.

The intuition to formulate nuclear cataract grading via
ranking is explained as follows. From the classification per-
spective, grading of nuclear cataract can be conducted by
classifying ungraded slit-lamp images to specific classes, and
their grades can be suggested by assigned classes therein
[13]–[15]. From the regression perspective, grades of nuclear
cataract can be directly predicted as outputs of a regression
procedure [16], [17]. For these methods, slit-lamp images with
clinicians’ grades are often used in their training process (i.e.,
tuning parameters in classifiers or regression procedures), but
these images are often not used explicitly in the subsequent
and most important phase—the grading process. In the con-
ventional clinical decision-making process of nuclear cataract
diagnosis, ophthalmologists usually utilize slit-lamp images
manually graded at previous clinical appointments in their
current appointment (a popular clinical decision support tech-
nique known as “case-based reasoning,” which handles new
cases based on clinical results of previous cases). Hence, it
inspires us to propose a new nuclear cataract grading scheme,
which can explicitly incorporate previously graded cases in the
interpolation of new ungraded cases following the conventional
clinical decision-making process. In this study, we consider the
nuclear cataract grading task as a ranking process following the
intuition, and ranking can provide a better fit to the task.

The flowchart of our “grading via ranking” scheme is illus-
trated in Fig. 3. The main idea is to sort slit-lamp images into
a ranked image list according to the degree of severity of the
nuclear cataract disease within all images. The grade of a new
slit-lamp image can be interpolated using its neighboring im-
ages with clinicians’ grades in the ranked list. In order to achieve
such a ranked slit-lamp image list, we incorporated the “learning
to rank” technique [21], which aims to learn a ranking function,
so that slit-lamp images can be sorted into a ranked list via the
learned ranking function. Generally speaking, there are many
“learning to rank” methods in literature, and many of them often
employ existing ranking evaluation measures (e.g., normalized
discounted cumulative gain (NDCG), mean average precision
(MAP) [22], [23]) to learn ranking functions with diverse indi-
rect optimization techniques [24]–[26]. The reason to conduct
indirect optimization, instead of adopting more intuitive direct
optimization techniques, is because existing ranking evaluation
measures are often neither continuous nor differentiable so that
direct optimization is usually infeasible to apply [22], [23].

In this study, we propose a new “learning to rank” method,
which incorporates a newly proposed approximation to a
ranking evaluation measure for learning ranking functions via
direct optimization, within our “grading via ranking” scheme.
The contribution of this study lies in two aspects. 1) Unlike
the conventional way to grade nuclear cataract disease within
slit-lamp images by considering it as either a classification
or regression task, our study is the first attempt to regard
nuclear cataract grading as a ranking task. 2) Technically, a
new “learning to rank” method is proposed with a new approx-
imation to a ranking evaluation measure, which can be directly
optimized for learning ranking functions. The organization of
the paper is as follows. In Section II, a brief review of “learning
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Fig. 3. Flowchart of our nuclear cataract “grading via ranking” scheme.

to rank” methodology is given. Several conventional ranking
evaluation measures are presented in Section II-A. Various
“learning to rank” methods are introduced and categorized
into three groups as well as their pros and cons discussed
in Section II-B. Section III presents our proposed “grading
via ranking” scheme. Section III-A and Section III-B cover
our newly proposed “learning to rank” method. First, a new
approximation to a ranking evaluation measure is introduced
in Section III-A. A corresponding learning algorithm incorpo-
rating direct optimization on the newly proposed approximation
for learning ranking functions is elaborated in Section III-B.
When ranked slit-lamp image lists are obtained, the nuclear
cataract grading strategy is introduced in Section III-C. In
Section IV, a large dataset composed of 1000 slit-lamp images
from 1000 cases with different nuclear cataract disease obtained
from an ongoing population-based study is used to evaluate
our “grading via ranking” scheme. Dozens of experiments are
conducted to evaluate the ranking performance of our newly
proposed “learning to rank” method with comparison to sev-
eral popular “learning to rank” methods. Then, our “grading
via ranking” scheme incorporating these “learning to rank”
methods is compared with two existing nuclear cataract grading
schemes to evaluate the nuclear cataract grading performance.
Experimental results are analyzed from a statistical point of
view as well. In Section V, the conclusion of this study is
drawn.

II. REVIEW OF LEARNING TO RANK APPROACH

“Learning to rank” is an emerging approach in machine
learning and information retrieval in recent years [21], [23].
Generally speaking, “learning to rank” is made up of two steps
in a sequence: learning and ranking.

Learning A set of image lists
are provided with their cor-

responding relevance ,

denotes the number of images within the
list . A ranking function is learned from these training
data. Generally speaking, ranking function is defined in
terms of each individual image: ,
with its output as the score of each image (a real number).
The learned ranking function will be used to sort the image
collection in the ranking step.

Ranking For a list of images , the
purpose of ranking is to sort images within the list in a/an de-
scending/ascending order of relevance measured by the score of
each image calculated from the learned ranking function .

A. Conventional Ranking Evaluation Measures

There are several measures proposed to evaluate the ranking
performance, including winners take all (WTA), mean recip-
rocal rank (MRR), mean average precision (MAP), and normal-
ized discounted cumulative gain (NDCG) [22], [23]. WTA is
a simple measure which only takes the top-most image in the
ranked image list into consideration. If the top-most one is rele-
vant, ; otherwise, . MRR utilizes the recip-
rocal of the first relevant image’s position as its value. For MAP
and NDCG, they are more complex but popular than WTA and
MRR.

MAP is a ranking evaluation measure dedicated for the case
of binary relevance judgment, in which associated images are
assumed to be either relevant or irrelevant [23]. In a ranked
image list, precision at position is calculated to mea-
sure the ranking performance of top images

(1)

Then, average precision (AP) of the list is calculated as the av-
erage of all precisions at different positions where the images
are relevant. The definition is given in (2). Finally, MAP is cal-
culated as the mean of all AP among all lists [23]

image n is relevant
image n is irrelevant

(2)

NDCG, on the contrary, is suitable for the case of multiple-
level relevance judgement [22]. Its definition is as follows:

(3)
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where is a normalization term denoting the maximum of
discounted cumulative gain (DCG), represents positions in a
ranked image list composed of images, is the degree of
relevance of image located at position , is a gain func-
tion and is a discount function represented by a monoton-
ically increasing exponential function and a
monotonically decreasing logarithmic reduction factor

, respectively, in the original definition of NDCG
[22]. The range of NDCG is within , and higher values in-
dicate better ranking performance.

B. “Learning to Rank” Methods: Categories, Pros and Cons

For most “learning to rank” methods, the basic assumption
is that, if a ranking function can be learned by optimizing its
ranking performance in terms of a given ranking evaluation
measure on the training data, high ranking accuracy is expected
from the same measure when the learned ranking function is
used to rank other data. In general, most existing “learning
to rank” methods can be categorized into three types of ap-
proaches: pointwise approach, pairwise approach, and listwise
approach.

1) Pointwise Approach: For an image list
, pointwise approach

aims to assign each image a discrete category:
, in which

; is a set
of ordered categories, where denotes the relevance order
between various categories. Since elements in are ordered
discrete values, pointwise approach is also known as ordinal re-
gression, which is between regression (outputs: real values that
can be ordered) and classification (outputs: nonordered discrete
values) [27], [28]. Representative pointwise approaches include
constrained ordinal regression [28], Pranking [29], OAP-BPM
[30], ranking with large margin principals [31], etc. Although
pointwise approach is convenient to implement due to its close
resemblance to regression and classification, its drawback
is obvious: it can only deal with relevance judgement in the
form of absolute relevance. Nonabsolute preference, such as
pairwise preference and partial (total) list orders, cannot be
handled by pointwise approach.

2) Pairwise Approach: Unlike pointwise approach, which
takes separated images as instances, pairwise approach focuses
on image “pairs” instead. In learning, image pairs

are collected from an image

list . For each pair, a label
is assigned indicating the relative relevance of two

images shows is more relevant than ,
and to the contrary. The idea of pairwise approach is sim-
ilar to binary-class classification, and pairwise approaches often
formulate the ranking task as a classification problem accord-
ingly [24], [26], [32]. Conventional classification methods, such
as boosting, support vector machine (SVM), and neural net-
work, have been incorporated leading to corresponding pair-
wise methods, such as RankBoost [24], RankingSVM [26], and
RankNet [32], respectively.

There are several advantages with the pairwise approach.
First, existing classification methodologies can be conve-
niently adopted [24], [26], [32]. Second, pairwise preference,
rather than absolute relevance, is relatively easy to obtain for
some scenarios [26]. Nevertheless, there are also drawbacks
inherently. First, the ranking procedure is often considered
as a classification process, the problem of learning ranking
functions is accomplished by minimizing classification errors
therein. However, the purpose of ranking is not the same as that
of classification [24], [26]. Second, pairs are usually assumed
to be generated i.i.d (independent identically distributed). This
assumption is sometimes too strong to meet for some appli-
cations [32]. Third, the number of generated pairs may vary
largely from lists to lists. It is likely to result in learning ranking
functions biased towards lists with more data pairs [33].

3) Listwise Approach: Recently, more and more researchers
focus on another type of “learning to rank” method—list-
wise approach [25], [34], [35], [36]. In learning, a set of

image lists and their corre-

sponding relevance are given
. Listwise approach aims to learn a ranking

function to output a score for each image. A ranked image list
is achieved in a/an decreasing/increasing order of these scores

. The learning of a ranking
function is often carried out by minimizing a loss function in
terms of the difference between the generated ranked image list
and its ground truth. Representative listwise methods include
AdaRank [25], ListNet [34], RankCosine [35], FRank [36], etc.

For many listwise approaches, their loss functions are de-
fined based on conventional ranking evaluation measures (e.g.,
NDCG, MAP, etc.). These position-based measures are often
neither differentiable nor continuous in terms of discrete posi-
tions in ranked lists. Hence, direct optimization is usually infea-
sible to implement for learning ranking functions, and various
indirect optimization techniques are utilized as alternatives [25],
[34]–[36]. In Section III, we introduce a new “learning to rank”
method based on the listwise approach, incorporating direct op-
timization for learning ranking functions within our “grading
via ranking” scheme.

III. METHODOLOGY

In this section, our newly proposed nuclear cataract “grading
via ranking” scheme is presented. First, a new “learning to rank”
method is introduced. A new approximation to a ranking evalu-
ation measure is proposed in Section III-A. The approximation
is utilized to learn ranking functions via a direct optimization
algorithm elaborated in Section III-B. Once ranked slit-lamp
image lists are obtained by learned ranking functions, the grade
of nuclear cataract in each slit-lamp image is interpolated with
the help of its neighboring images in the ranked image list. The
grading strategy is introduced in Section III-C.

A. “Learning to Rank” Part I-A New Approximation to
NDCG: S-NDCG

As mentioned in Section II-A, NDCG is a conventional posi-
tion-based ranking evaluation measure, which can handle mul-
tiple-level relevance judgement. It is chosen here because nu-
clear cataract grades annotated by ophthalmologists in this study
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are also in the form of multiple values. From the original NDCG
definition in [22], we have the NDCG for our application as
given below

(4)

where is a slit-lamp image and is the set of images to be
ranked, and are annotated grade of nuclear cataract
disease within image and position of image in the ranked
image list, respectively, is a normalization term denoting
the maximum of DCG as before, which can be obtained when
all images are sorted in a perfect order of decreasing severity of
nuclear cataract disease.

Unfortunately, optimization cannot be directly applied on
NDCG for learning ranking functions, since the measure itself
is neither continuous nor differentiable in terms of discrete
position . We first approximate position as follows:

(5)

where represents a -dimensional feature vector of slit-lamp
image , is the score of image computed from ranking
function , which can be in a linear form (i.e., ,

, where , denotes an inner product between and ).
Hence, is also a -dimensional vector performing scaling on
the -dimensional feature space and there are parameters in
it to learn). The ranking function can also be in a nonlinear
form [e.g., an exponential form: ] in
this study. is an signum function, whose value is
positive when and negative otherwise. Hence, when the
score of image is smaller than that of image (i.e., ),

becomes positive and becomes larger due
to (5), which matches the fact that images with lighter symptom
(reflected by smaller score ) should be ranked in the rear of
a ranked image list (i.e., larger value of position ) in a de-
scending order of severity of nuclear cataract disease.

Furthermore, we overcome the step transition characteris-
tics of signum function— ( denotes its variable) by
approximating it via a continuous hyperbolic tangent func-
tion— [37]. An illustration of this approximation is
shown in Fig. 4. The approximation step is as follows:

(6)

In this way, we can obtain a new continuous approximated po-
sition

(7)

Fig. 4. An illustration of approximating a discrete signum function via a con-
tinuous hyperbolic tangent function.

where, is a positive scaling constant. Hence, a new
continuous and differentiable approximation to NDCG, surro-
gate-normalized discounted cumulative gain (S-NDCG ), can
be proposed as follows:

(8)

B. “Learning to Rank” Part II-Ranking Functions Learning
via Direct Optimization On S-NDCG

A corresponding algorithm to directly optimize S-NDCG for
learning ranking functions is listed in Table I. The key step
here is to compute the gradient of S-NDCG with respect to the
learned parameter in Steps T4 and T5 of
Table I. Detailed derivation is elaborated in Appendix A. The
gradient can be computed as shown in (9) at the bottom of the
next page.

Since the local optimizer of gradient ascent cannot guarantee
a global optimal solution, we run iterations of ranking func-
tions learning initialized by previously learned , where

is the th iteration. Hence, after conducting the training phase
in Table I, there are ranking functions learned with their corre-
sponding learned . Then, a validation phase is incorporated af-
terwards to select an optimal ranking function as the one
with the highest NDCG value (4), after applying all learned
ranking functions from the training phase to rank the validation
set of images. Once is determined, it can be used to rank
new incoming images.

C. Nuclear Cataract Grading via Ranking of Slit-Lamp Images

When the learned optimal ranking function is applied
on the new incoming images, they can be sorted to form a ranked
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TABLE I
LEARNING RANKING FUNCTIONS VIA DIRECT OPTIMIZATION ON

S-NDCG IN OUR “LEARNING TO RANK” METHOD

image list in an order of nuclear cataract severity (according to
scores calculated using ). An ungraded slit-lamp image

is sorted together with other slit-lamp images with clinicians’
annotated grades in the ranked image list. Grade of the un-
graded slit-lamp image located at position of the ranked
image list is interpolated using both scores from itself and
its neighboring images as well as their annotated
grades . The grading strategy is as below

if

if

if
(10)

where ; ;
. In this study, interpolated grades are decimal

numbers, not integers.

IV. EXPERIMENTS AND DISCUSSION

A. Data Description and Implementation of Our “Learning
to Rank” Method

The performance of our newly proposed “grading via
ranking” scheme has been evaluated with a large dataset

comprising of 1000 slit-lamp images from 1000 cases with
different nuclear cataract disease severity obtained from an
ongoing population-based study, the Singapore Malay Eye
Study (SiMES) [38]. All images were captured by a Topcon
DC-1 digital slit-lamp camera with FD-21 flash attachment.
The slit beam was adjusted to completely fill the pupil, bi-
secting the lens from 12:00 to 6:00 at a 45 of angle. Focus
was placed on the sulcus of the lens. Each slit-lamp image was
saved as a 24-bit color image of the size 2048 1536 pixels. A
clinical grade was provided to each slit-lamp image by senior
ophthalmologists indicating the severity of nuclear cataract
disease following the Wisconsin Cataract Grading System [9].
In this study, lens region, which is believed to be discriminative
in identifying and diagnosing nuclear cataract disease in its
conventional clinical diagnosis, was detected by an active shape
model (ASM) method [16], [17], [39]. A 6-D local feature
vector was extracted from the detected region within each
slit-lamp image following previously published clinical work
[9]. Detailed description of each feature vector dimension is
explained as below.

Mean intensity (first dimension): The average intensity in-
side the lens region (to assess the nuclear opacity).

Color on posterior reflex (second to fourth dimensions): The
posterior subcapsular reflex is suitable to judge the quality of
the opacity color [9]. The position of central posterior subcap-
sular reflex was obtained via ASM. Mean values in each channel
(hue, saturation and value) of the HSV color space in the region
of central posterior subcapsular reflex were utilized as the next
three dimensional features.

Visual axis profile analysis (fifth to sixth dimensions): Inten-
sity change along the visual axis is important for nuclear cataract
grading [9]. The visual axis profile was obtained from the inten-
sity distribution on a horizontal line through central posterior re-
flex. A low-pass Chebyshev filter [40] was applied to smooth the
profile. The first derivative of the profile was analyzed and the
edge of lens nucleus was obtained. The mean intensity within
the sulcus and intensity ratio between anterior lentil to posterior
lentil were used as the last 2-D features.

All 1000 slit-lamp images were equally divided into 10 sub-
sets for a ten-fold cross validation [41]: there are 800 training
images (8 subsets), 100 validation images (1 subset) and 100
testing images (1 subset), respectively, in each fold. For our
“learning to rank” method, we empirically set ,

, and as inputs in Table I.

(9)
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B. “Learning to Rank” Algorithms for Ranking Performance
Comparison

Besides our “learning to rank” method, we also incorpo-
rated three other popular “learning to rank” methods to learn
ranking functions within our “grading via ranking” scheme.
These methods include RankBoost [24], AdaRank [25] and
RankingSVM [26]. Their basic ideas as well as implementation
strategies in our experiments are explained below.

1) Rankboost: Freund et al. adopted the well-known
boosting approach [41] into “learning to rank” methods, and
proposed RankBoost as a pairwise approach to learn ranking
functions [24]. The learning of ranking function is conducted
by optimizing a total loss function defined on the sum of
losses from all lists (l) in an exponential form

(11)

where, denotes that image is more relevant than
image ; is a ranking function operating on image .
In our experiments, we used the toolbox from [42] for its im-
plementation. The parameter to specify in this method is the
number of iterations, which is of the same value as that of our
“learning to rank” method for consistent experimental settings.
The weak ranker of RankBoost was implemented as in its orig-
inal work: each weak ranker was derived from a ranking feature
by comparing its score on a given instance. Each weak ranker
has a binary output of [24].

2) AdaRank: Xu et al. proposed AdaRank as a listwise ap-
proach following adaptive boosting (AdaBoost [41]) to learn
ranking functions [25]. The basic idea of AdaRank is to re-
peatedly construct weak rankers and linearly combine them to-
gether to form ranking functions. After iterations, the learned
ranking function can be represented as follows:

(12)

where is the th weak ranker and is its weight to update,
is a permutation of images set resulted from ranking

function . is a ranking performance
measure assessing the agreement between ranked permutation

and its ground truth . In this study, we used Kendall’s
Tau coefficient [43] as the measure with a definition:

, where denotes the number of
images within set ; represents the number of
image pairs from set with images; and are numbers of
concordant and discordant pairs, respectively [43]. The range of

Kendall’s Tau coefficient is within , and an increasing
value implies a better agreement between and . In this
study, we constructed weak rankers as in its original work as
well: features having the optimal weighted performance among
all features are chosen as weak rankers [25]. For consistent
experimental settings, the number of iterations in AdaRank is
set to the same value as that of our “learning to rank” method.

3) RankingSVM: Joachims et al. extended the popular SVM
technique into a “learning to rank” method, and proposed Rank-
ingSVM as a pairwise approach [26]. The main idea of Rank-
ingSVM is similar to conventional SVM, which aims to tune
parameters by minimizing the sum of empirical loss and regu-
larizer[44]. The constrained optimization function in terms of
partial-order relationships within data pairs can be represented
as follows:

(13)

where is a normal vector perpendicular to the separating hy-
perplane, is a trade-off between empirical loss and regular-
izer, is a slack variable measuring the degree of misclassifica-
tion. The constraint reveals that image is
more relevant than . RankingSVM is well formulated in the
framework of structural risk minimization, and the ranking per-
formance of RankingSVM has been appraised in several studies
[26], [33], [45]. In our experiments, we used the binary codes
in svm-light toolbox [46] for implementing RankingSVM. The
trade-off (13) is empirically set as 0.01 as suggested.

C. Ranking Experiments and Statistical Analysis

1) Ranking Experiments: For the above three compared
“learning to rank” methods (i.e., RankBoost, AdaRank and
RankingSVM), 900 images except for the 100 test images
in each fold were used for training, as there is no validation
needed for these methods. A simple example to rank the same
20 slit-lamp images with ranking functions learned from the
same training images is shown in Fig. 5. The number below
each image is its clinical ground truth (in this case, they are
of integer-valued grades): 4 denotes the most severe symptom
of nuclear cataract disease, while 1 represents the lightest
symptom. It can be observed that our method achieved the least
ranking errors among all four “learning to rank” methods (Our
method—2 errors; RankBoost—16 errors; AdaRank—9 errors;
RankingSVM—4 errors).

In our experiments, for 100 test images in each fold, they are
divided into lists composed of small/medium/large numbers of
slit-lamp images. To be specific, 20/50/100 slit-lamp images
per list were specified for small/medium/large sets, respec-
tively (i.e., set 20/50/100). In our experiments, we also divided
training/validation images into different sub-lists of sizes
20/50/100 accordingly. Hence, the ranking function learning
is conducted by maximizing the average S-NDCG over all
sub-lists of the image data sets of the same size. The purpose is
to test the ranking capability and stability of different “learning
to rank” methods when handling various numbers of slit-lamp
images. NDCG values (4) were calculated from these ranked
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Fig. 5. An example of ranking the same 20 slit-lamp images (ranking errors are highlighted in red within brackets; the clinical ground truth is 4: first to sixth
images; 3: seventh to eleventh images; 2: twelfth to nineteenth images; 1: twentieth image). (a) Ranking results by our method. (b) Ranking results by RankBoost.
(c) Ranking results by AdaRank. (d) Ranking results by RankingSVM.

TABLE II
NDCG RESULTS OF ALL METHODS ON TEN-FOLD CROSS VALIDATION TEST FOR SETS OF 20 IMAGES (MEAN � STANDARD DEVIATION)

image lists to measure the ranking performance of different
“learning to rank” methods quantitatively.

Detailed NDCG results of all folds are listed in Tables II–IV
for set sizes of 20/50/100, respectively. For our newly pro-
posed “learning to rank” method, we incorporated both linear
ranking function (LRF) (i.e., ) and nonlinear
ranking function (non-LRF), which is of an exponential form
in this study: . From entries in Ta-
bles II–IV, it can be observed that, RankingSVM and our
method achieve better ranking performance compared with
RankBoost and AdaRank (Highest NDCG mean value in each
fold is highlighted). To be specific, for set size of 20 (Table II),
RankingSVM is superior among five out of the ten folds; while
our method dominates in the other five folds (i.e., two folds

by our method with LRF; the rest three folds by our method
with non-LRF). For set size of 50 (Table III), RankingSVM is
superior among four out of the ten folds; while our method is
better in five other folds (i.e., four folds by our method with
LRF and one fold by our method with non-LRF). For set size
of 100 (Table IV), our method performs the best among five
out of the ten folds, while RankingSVM dominates the other
four folds. For our method (with either LRF or non-LRF),
entries from the same fold of sets 20/50/100 (e.g., fold 1 in
Tables II–IV) share similar NDCG values, which is indicative
of the stability of our “learning to rank” method when ranking
image lists of various sizes.

Based on all NDCG values, three box-and-whisker plots of
NDCG were generated in Fig. 6 for the sets 20/50/100. In each
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TABLE III
NDCG RESULTS OF ALL METHODS ON TEN-FOLD CROSS VALIDATION TEST FOR SETS OF 50 IMAGES (MEAN � STANDARD DEVIATION)

TABLE IV
NDCG RESULTS OF ALL METHODS ON TEN-FOLD CROSS VALIDATION TEST FOR SETS OF 100 IMAGES (MEAN)

box, a red horizontal line is drawn across each box representing
the median of NDCG, while the upper and lower quartiles of
NDCG are depicted by blue lines above and below the median.
A vertical dashed line is drawn up from the upper and lower
quartiles to their most extreme data points, which are within a
1.5 IQR (Inter-Quartile Range) [47]. Each data point beyond the
ends of 1.5 IQR is marked via a symbol of plus. It can be ob-
served that, boxes of RankingSVM and our method (with both
LRF and non-LRF) are located higher than those of RankBoost
and AdaRank for all three cases (Fig. 6). It also substantiates
our early observation in Tables II–IV that, RankingSVM and our
method outperform RankBoost and AdaRank in ranking various
numbers of slit-lamp images.

2) Statistical Analysis: It can be observed from entries in Ta-
bles II–IV that, our method is comparable with RankingSVM in
ranking slit-lamp images. In order to evaluate it from a statistical
point of view, we further conducted a statistical analysis com-
posed of one-way analysis of variance (ANOVA) followed by a
post-hoc multiple comparison test [47].

In one-way ANOVA, means of NDCG values from all
methods are compared to test a hypothesis that all NDCG
means of various methods could be equivalent, against the
general alternative that at least one method is different. P-value
is used as an indicator to reveal whether exists or not. In
our study, p-values for set sizes of 20/50/100 are all 0, which
suggests that is an invalid hypothesis for all cases. Hence,
the next step is to do more detailed paired comparisons. The
reason to conduct paired comparison is because the generative
alternative against is too general to reveal which method
is superior from statistical point of view. Therefore, multiple
comparison test is adopted to investigate it Appendix B.

Entries in Tables V–VII are results of multiple comparison
test on NDCG by all methods for set sizes of 20/50/100, re-
spectively. Each row indicates a paired comparison between
two “learning to rank” methods, and there are two types of es-

timations for each paired comparison: one is single-value es-
timation, which estimates NDCG mean difference by a single
value; the other is an interval estimation conducted via a 95%
confidence interval (CI) Appendix C, which estimates a range
that the NDCG mean difference is likely to be included. For in-
stance, the second row of Table V is about the paired compar-
ison between our method (LRF) and RankBoost for set size of
20. The NDCG mean difference from single-value estimation is
0.1490 (our method (LRF) - RankBoost), which suggests that
our method (LRF) is better than RankBoost from single-value
estimation perspective. The NDCG mean difference is likely to
fall within a 95% CI . Since its upper and lower
bounds are both positive, it gives a strong indication
that, the NDCG mean difference (our method - RankBoost) is
positive. Hence, out method is superior to RankBoost for set
size of 20 from both single-value and interval estimation per-
spectives.

For paired comparisons between our method and Rank-
ingSVM (i.e., fourth rows of Tables V–VII for paired compar-
isons between our method (LRF) and RankingSVM; seventh
rows of Tables V–VII for paired comparisons between our
method (non-LRF) and RankingSVM), the analysis is sim-
ilar. For set size of 20 (Table V), our method (with LRF and
non-LRF) is 0.0028 and 0.0016 lower than RankingSVM, re-
spectively, from single-value estimation perspective. The 95%
CIs for the two paired comparisons are and

, which suggests RankingSVM is marginally
better than our method (RankingSVM is superior in 53.59% and
52.16% cases, respectively following a general assumption that
each CI is uniformly distributed). For set size of 50 (Table VI),
our method (LRF and non-LRF) is 0.0051 and 0.0043 higher
than RankingSVM, respectively from single-value estimation
perspective. The 95% CIs for the two paired comparisons are

and , respectively, which
suggests our method is marginally better than RankingSVM
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Fig. 6. Box-and-whisker plots of NDCG of achieved ranked image lists for sets
of 20/50/100 images (up to down).

(our method with LRF and non-LRF are superior in 54.77%
and 54.07% cases, respectively) for set size of 50. It is similar
for set size of 100 in Table VII, that our method is marginally
better than RankingSVM from both single-value and interval
estimation perspectives. To sum up, after conducting one-way
ANOVA followed by multiple comparison tests, our method
and RankingSVM are comparable in ranking slit-lamp images
from the statistical point of view.

D. Discussion

Given our method and RankingSVM are comparably effec-
tive in ranking performance, we further conduct a theoretical
analysis on the computational complexity of the two “learning
to rank” methods to compare their efficiency in ranking.

As mentioned in Section II-B2, RankingSVM is a pairwise
approach, which utilizes instance pairs as training
data in learning ranking functions [(13)]. The training phase
of RankingSVM needs to explicitly form all possible dif-
ference vectors (13) from all instance
pairs , and it sets up a standard classification pro-
cedure (i.e., SVM) for learning ranking functions. This
method is costly in the training phase. Its computational com-
plexity is of a quadratic order of training data size:
(indicated by the number of image pairs from images:

).
For our method (both LRF and non-LRF), it is a listwise ap-

proach (Section II-B3). All training images are fed into the
training phase simultaneously for learning ranking functions.
The computational complexity of our method is of an order

, where denotes the number of iterations in our
method. In this study, (number of training images for
ten-fold cross validation) and , an illustration of compu-
tational complexity of the two “learning to rank” methods with
respect to the number of training images is shown in Fig. 7.
It can be observed that RankingSVM is more costly than our
“learning to rank” method in computational complexity, espe-
cially when more and more images are incorporated in learning
ranking functions. When learned ranking functions are used in
performing the grading task, their computational complexity are
equivalent since all applied “learning to rank” methods in our
“grading via ranking” scheme use (10) for grades interpolation.
Thus, although RankingSVM and our method are comparable in
ranking performance, our method is more efficient than Rank-
ingSVM in learning ranking functions.

E. Nuclear Cataract Grading Test

To evaluate the nuclear cataract grading performance of our
“grading via ranking” scheme, we use the same dataset com-
posed of 1000 slit-lamp images. We compared our “grading
via ranking” scheme with two existing nuclear cataract grading
schemes: “grading via classification” [14] and “grading via re-
gression” [16] applied on the same data. Statistical results of
grading nuclear cataract within 1000 slit-lamp images are shown
in Table VIII. For our “grading via ranking” scheme, we incor-
porated our “learning to rank” method as well as three other
popular “learning to rank” methods in ranking slit-lamp im-
ages. Grades of slit-lamp images were then interpolated using
(10) after obtaining ranked images lists for them. For entries in
Table VIII, two measures are utilized to quantitatively measure
the grading performance. One is grading accuracy, in which ac-
curate gradings are assumed to be achieved when their grading
errors (between predicted grades and clinical ground truth anno-
tated by ophthalmologists) are within one integer grade (clini-
cally important); the other is mean error (average grading errors
of different schemes). It can be observed that, our newly pro-
posed “grading via ranking” scheme with the new “learning to
rank” method (LRF) achieves a 95.4% grading accuracy, which
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TABLE V
MULTIPLE COMPARISON TEST RESULTS OF NDCG AMONG ALL METHODS FOR SETS OF 20 IMAGES

TABLE VI
MULTIPLE COMPARISON TEST RESULTS OF NDCG AMONG ALL METHODS FOR SETS OF 50 IMAGES

TABLE VII
MULTIPLE COMPARISON TEST RESULTS OF NDCG AMONG ALL METHODS FOR SETS OF 100 IMAGES

Fig. 7. An illustration of computational complexity comparison between our
“learning to rank” method and RankingSVM.

is the highest among all grading schemes. Its mean error is
0.3432, which is the lowest. Also, the newly proposed “grading

via ranking” scheme with our “learning to rank” method as
well as RankingSVM perform apparently better than that with
AdaRank and RankBoost, which suggests that better ranking
performance can lead to better grading results in our “grading
via ranking” scheme. Grading results achieved from ranked im-
ages lists of various sizes by our “grading via ranking” scheme
with one particular “learning to rank” method are similar (e.g.,
grading accuracy of 95.7%, 95.2%, 95.4%, respectively, for set
sizes of 20/50/100 for our method with LRF). For the two ex-
isting nuclear cataract grading schemes, numbers of slit-lamp
images per list do not affect their grading performance since
all training slit-lamp images (in our ten-fold cross validation,
900 training images in one fold) are fed into the training phase
to tune their parameters simultaneously. Their tuned parame-
ters are used in grading 100 images in each fold and statistical
grading results of all ten folds are listed in Table VIII. From the
comparison of the nuclear cataract grading performance of our
“grading via ranking” scheme against them, it can be observed
that, ours performs significantly better.

A histogram of the difference between ground truth of
grades and predicted grades of the newly proposed “grading
via ranking” scheme with our new “learning to rank” method
(LRF) for set size of 20 is shown in Fig. 8. It can be observed
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TABLE VIII
STATISTICAL RESULTS OF NUCLEAR CATARACT GRADING BY OUR PROPOSED GRADING SCHEMES WITH COMPARISON OF OTHERS

Fig. 8. Histogram of the difference between ground truth of grades and pre-
dicted grades of the newly proposed “grading via ranking” scheme with our
“learning to rank” method (LRF) for sets of 20 images.

that, most results are within one integer grade error. An il-
lustration of comparison between ground truth of grades and
predicted grades of the newly proposed “grading via ranking”
scheme with our “learning to rank” method (LRF) for set size
of 20 is shown in Fig. 9. Points scattered between the two red
lines denote incidences of grading errors less than one integer
grade. To sum up, it can be concluded that the newly proposed
“grading via ranking” scheme with our new “learning to rank”
method performs better than existing schemes compared in this
study in grading nuclear cataract in 1000 slit-lamp images.

V. CONCLUSION

A novel nuclear cataract grading scheme is proposed fol-
lowing conventional clinical decision-making process in the
paper. Grade of an ungraded slit-lamp image is predicted with
the help of its neighboring images in a ranked image list, which
is achieved using an ranking function learned via a newly
proposed “learning to rank” method. A new approximation to
a ranking evaluation measure is proposed to incorporate direct
optimization on learning ranking functions. Our grading via
ranking scheme has been evaluated by a large dataset composed
of 1000 slit-lamp images. Experimental results demonstrate
that our grading scheme performs better than the other existing
grading schemes in grading nuclear cataract disease in the
slit-lamp images dataset. Our grading via ranking scheme can

Fig. 9. Comparison between ground truth of grades and predicted grades of
the newly proposed “grading via ranking” scheme with our “learning to rank”
method (LRF) for sets of 20 images.

easily accommodate different ranking methods to learn ranking
functions. It has been demonstrated that both our “learning to
rank” method based on direct optimization of S-NDCG and
RankingSVM are comparable in ranking performance, while
our proposed “learning to rank” method has less computational
complexity. Our grading via ranking scheme can be utilized as
a training tool for junior clinicians to learn diagnostic decision
from images with similar disease severity (neighboring images
in a ranked image list) and their diagnosis results given by senior
clinicians. It can be used in research to analyze different diag-
noses with similar symptoms as well. In the future work, we plan
to explore the nuclear cataract grading task via other techniques,
such as ordinal regression [48]. We also plan to incorporate other
recently proposed methods [49], [50] to efficiently implement
RankingSVM in our “grading via ranking” scheme.

APPENDIX A
DERIVATION OF THE GRADIENT OF S-NDCG

After applying the chain rule, the gradient of
with respect to becomes

(14)



106 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 1, JANUARY 2011

where, the first term of (14) is derived as follows:

(15)
Furthermore, we rewrite in (15) as follows:

(16)

Apply the chain rule to the second term of (14) after incorpo-
rating results in (16)

(17)

Hence, after substituting derivation results of (15) and (17) into
(14), it becomes (18) shown at the bottom of the page which is
the (9).

APPENDIX B
MULTIPLE COMPARISON TEST

The reason to adopt multiple comparison test, instead of or-
dinary t-test in statistics here is because, there are many pairs
of methods to compare. If an ordinary t-test is applied in this
situation, (Appendix C) would apply to each comparison, so
the chance of incorrectly finding a significant difference when
there is no real difference would increase with the number of
comparisons. Multiple comparison tests can avoid this situation

since it provides an upper bound on the probability in the case
that any comparison will be incorrectly found significant.

APPENDIX C
95%

A significance level is specified for determining the cutoff
value of the t statistic. Commonly, is applied to insure
that, when there is no real difference, one will incorrectly find a
significant difference no more than 5%. Hence, the confidence
level is in this case.
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