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1 Introduction
In recent decades, different types of neural networks (NNs) with time delays have been
widely investigated due to their applicability in solving some image processing, signal pro-
cessing automatic control engineering, fault diagnosis, telecommunications, and pattern
recognition problems. The realistic applications heavily depend on the dynamical behav-
iors [1-7]. Thus, the analysis of the dynamical behaviors such as stability, periodic oscil-
lation, bifurcation and chaos is a necessary step for practical design of NNs. For instance,
in [1], by utilizing the Lyapunov-Krasovkii functional and combining with the linear ma-
trix inequalities (LMIs) approach, the authors analyzed the global exponential stability
of neutral-type impulsive NNs. By constructing a newly augmented Lyapunov-Krasovskii
functional, [3] established less conservative stability criteria in the form of LMIs.
Control and synchronization of chaotic systems have become an important topic since
the pioneering work of Pecora and Carroll in 1990 [8]. There exist many benefits of hav-
ing synchronization or chaos synchronization in some engineering applications, such as
secure communication, chaos generators design, chemical reactions, biological systems,
information science, efc. Some papers on synchronization of chaotic systems with time de-
lays have been published [9-11]. Since NNs can exhibit some complicated dynamics and
even chaotic behavior, the synchronization of chaotic NNs has also become an impor-
tant area of study. Recently, the synchronization for delayed NNs also has been reported
[12-14].
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When modeling real nervous systems, stochastic disturbances are probably the main re-
sources of the performance degradations of the implemented NNs. Moreover, in real time
dynamical systems, the time delays are unavoidably encountered in the implementation
of NNs, and may cause undesirable dynamic network behaviors such as instability. Hence,
it is of great importance to take into account the synchronization problem of stochastic
delayed chaotic NNs. To date, many researchers have studied the synchronization for de-
layed NNs with environmental noise [15-17]. In the practical operation, diffusion effects
cannot be avoided in the NNs and electric circuits when electrons are moving in a nonuni-
form electromagnetic fields. Therefore, it is essential to consider the state variables, which
vary in time as well as in space [18—25]. In [18], by using inequality techniques and the Lya-
punov functional method, the synchronization scheme is investigated for a class of delayed
RDNNs. In [19], an approach combining Lyapunov stability theory with stochastic analysis
and periodically intermittent control was taken to investigate synchronization problem.
In [20], the authors considered the global exponential stability and synchronization of the
delayed RDNNs with Dirichlet boundary conditions under the impulsive control in terms
of p-norm.

As far as we know, there are two main approaches to study the complex network syn-
chronization: one is based on the characteristics of the identical node and the coupling
matrix, by Lyapunov functional theory, the stable criteria in terms of LMIs were estab-
lished [26, 27]. However, if the nonlinear characteristics of the uncoupled nodes and the
coupling matrix are unknown, the methods given above will fail in the synchronization of
complex networks. The other is to adjust the time-varying coupling strengths to complete
the synchronization, such as [28—30]. For example, [28] presented a new robust adap-
tive synchronization approach for the global synchronization of complex dynamical net-
works without time delay. In [29], the synchronization of complex topologies using cou-
plings of time-varying strength was numerically reported and made a comparison between
fixed and varying coupling strength. [30] studied the synchronization for delayed complex
networks by adjusting time-varying coupling strengths. The update laws of the coupling
strengths were derived to realize the synchronization based on Lassalle-Yoshizawa the-
orem. Recently, a new adaptive control mechanism was proposed for nonlinear system
with unknown time-varying periodic parameters, the stability of the resulting closed-loop
system was proven by composite energy function in [31]. The method was extended to
the synchronization of two chaotic systems with unknown time-varying periodic param-
eters in [32] and the synchronization of complex dynamic networks with unknown time-
varying periodic coupling strength in [33-36], respectively.

As mentioned above, in this paper, we consider a challenging problem, i.e., how to incor-
porate adaptive control techniques for time-delay systems into learning control to solve
the synchronization of stochastic RDNNs with unknown time-varying parameters and
unknown time-varying delays. It is still an open problem how to control a system with
unknown time-varying parameters and unknown time-varying delays. Recently, on the
synchronization of chaotic systems with time-varying parameters, which are expressed
by ordinary differential equations, there have been a few research results [21-25]. Very
recently, based on the LaSalle invariant principle of functional differential equations, a
sufficient condition for the adaptive synchronization of considered system with unknown
time-varying parameters was obtained in [37]. To the best of our knowledge, adaptive syn-
chronization is seldom considered for the stochastic delayed RDNNs with unknown time-
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varying periodic coupling strengths. The main design difficulty is how to deal with the
unknown time-varying parameters and unknown time-varying delays. Fortunately, this
paper shows that this difficulty can be successfully overcome by constructing a Lyapunov-
Krasovskii-like composite energy function. By applying the Weiner process and inequality
techniques, an adaptive controller and an updating law are designed to ensure the states
of considered system to reach the desired synchronization manifold.

Notations: Throughout the paper, L*(2) is the space of scalar value Lebesgue measurable

functions on  and is a Banach space for the L?>-norm

Ivll2 = (/QIV(x)Idx)Z, v e LX(Q).

Then for any u = (uy,...,u,)”, the norm is defined as

llaell2 =

n
> llwill3.
i=1

C([-7,0] x R";R") = {p|¢ : [-1,0] x R — R" is continuous and with the uniform norm
llll2 = sup_, ;<o l(s)1}.

L%t([—r, 0] x R™; R") denotes the family of all 7, measurable, C([-t,0] x R"; R")-valued
stochastic variables ¢ = {¢(s,x) : =7 < s < 0} such that fiEl(p(s)lzds < 00, where E{}
stands for the mathematical expectation operator with respect to the given probability

measure P.

2 Problem statement and preliminaries
Consider the following delayed RDNNs with unknown time-varying coupling strengths:

) = S e (D M) — (8 (8, %) + £l %) 2 wigy (15(6,%))
+ ity %) D0, gt — 7(0),%)),  t>0,x€ W
ui(t,x) =0, (t,x) € (-1,+00) x IR,

u;i(s,x) = pi(s,x), (s,x) € (-1,0] x ,

where x = (x1,%),...,%,) 7 € Q, Q= {x||x;| <dj, [ =1,2,...,m} is a compact set with smooth
boundary dQ and mes 2 > 0 in space R”, d; > 0 is a constant; u(t, x) = (u1 (¢, %), ..., u,(t,x))"
denotes the state vector, associated with the # neurons at time ¢ and in space x; a; > 0 rep-
resents the rate, with which the ith unit will reset its potential to the resting state in isola-
tion when disconnected from the networks and external inputs; w;; denotes the strength
of the jth unit on the ith unit at time ¢ and in space x; /; are the synaptic connection
strength of the jth unit on ith unit at time # and in space x; gj(u;(¢, x)) denotes the activa-
tion function of the jth unit at time ¢ and in space x; 7;(t) denotes the time-varying delay
and satisfies 0 < 7;(t) < 7;, 0 < 7j(¢) < u <1, T = maXi<j<,{7;}, where 7; and p are constants;
D; = diag(Dxy, Dy, - . ., Dyy) with Dy = Dy (¢, %, u) > 0 stands for transmission diffusion op-
erator along the ith neuron; ¢;(s,x) is continuous and bounded function, i,j = 1,2,...,n,
1=1,2,...,m.
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Remark1 Recently, complex dynamical networks with time-varying or constant coupling
strengths have attracted much attention from researchers in different areas, such as phys-
ical science, engineering, mathematics, biology, and so on [28—30]. There are many in-
teresting collective phenomena in complex dynamical networks that can be described by
coupled differential equation equations, such as self-organization, synchronization, spa-
tiotemporal chaos and so on. Particularly, the synchronization phenomena have actively
been investigated due to past physics and potential engineering application, secure com-
munication, and so on [28-30, 34-37]. Although some methods have been developed
in the field of complex networks, only a few of them are concerning time-varying cou-
pling strengths. To the best of our knowledge, up to now, little work is reported on the
synchronization of stochastic RDNNs with unknown time-varying delays and unknown
time-varying coupling strengths. In this paper, using adaptive learning method on periodic
coupling strengths, the synchronization of stochastic delayed RDNNs will be considered.

In order to obtain our main results, we assume the following conditions hold.
(A1) There exist positive constants Ly such that

0< gj(01) — gi(02) <r;,

01 — 0y

forall 05,0, €R,j=1,...,n.
(A2) In system (1), unknown time-varying coupling strengths ¢;(¢,x), §(t,x) and ¢;(t, x)
satisfy the following equations:

gi(trx) = gl*(t)x) + gl’**r SZ(trx) = Ei*(trx) + %—i**’ {l(t)x) = é-i*(t,x) + ;i**’ (2)

in which ¢/(¢,x), §/*(¢,%), ¢;*(t,x) are unknown common period @ > 0 time-varying non-
negative parameters, i.e., ¢/ (t,x) = ¢/ (t — w, %), §(t,x) = £ (t — w,%), §(t, %) = {7 (t — w,%),

¢*, & and /" are unknown time-invariant nonnegative parameters.

Remark 2 Since ¢;(t,x) = ¢/ (t,x) + ¢/*, &(t,x) = §*(t, %) + &, ¢i(t,x) = {F(t,%) + &,
clearly, ¢/ (t,x), £'(t,x) and ¢;*(t,x) are unknown continuous periodic functions with a
known common period w. ¢/ (t,x), &/ (t,x) and ¢/ (t,x) are a finite unknown upper bound
s Exp and £y, respectively. ¢;(¢,x), £(2, %) and g;(¢, x) are bounded, that is, there are pos-
itive constants ¢, Sar, Ems Ents Cmy Car such that ¢, < ci(t, %) < car, & < &it,x) < &y and
Cm < it %) < Cur.

We consider model (1) as the drive system. The response system is

dity(t,%) = [, 7 (D822 — a;6,(8, )it %) + &t %) X, wiigy (iy(6,))

+ G(t,%) Y7L hygi(iy(t — 7(0), %)) + vilt, )] dt

+ 20 0iei(t,x), €t — Ti(2), x)) dwy(e), t>0,x€, 3)
(6, %) =0, (t,%) € (-1,+00) X 3,

u;i(s,x) = @i(s,x), (s,x) € (-1,0] x 2,

where #(t,x) = (#1(t, %), ...,4,(t,x))T is a n dimensional state vector of RDNNSs; v(t,x) =

(1 (&%), ...,vu(t,x))T is a control input to be designed; o = (0ij)nxn is the noise intensity
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matrix and the stochastic disturbance w(¢) = (w1 (£), ..., w,(£))T € R" is a Brownian motion
defined on (2, F,P) and E{dw(t)} = 0, E{dw?(t)} = dt; e;(t,x) = u;(t,x) — u;(t, %) is an error
signal; ¢;(s,x) € L}, ([-7,0] x R™;R").

Remark 3 This type of stochastic perturbation can be regarded as a result from the occur-
rence of the internal error when the simulation circuits are constructed such as inaccurate
design of the coupling strengths and some other important parameters [17].

Subtracting Eq. (1) from Eq. (3),we have the following error system:

m a a ; , n .
d@@@:[z:a#?ﬂeﬁfg—ﬂgﬁmmm@+§:wﬁﬁww@ﬁwh

I=1 j=1

+ Yl 0 (et - (0),x)) + vi(t,x):| dt

Jj=1

+ Y oy(t 3,68, %), €5t - 7(8), %)) dw(8), (4)

=
where g (¢j(t, %)) = gi(ii;(t,)) — g(1(t, %)),

§(e(t - 7(0),x)) =g (@ (t - 7(0), %)) - gi(w(t - 7;(0), %))
Then we design controllers by

W60 =~ 2 [E (00 + 860+ 560+ - 00) + (- 0,0

+ 87— 0,0)edt,x) = [ 67 (6,2) + E7(6,) + 17 (&%) |eilt, %), ©)

where &*(t,x), £5(t,x), {F(t,x), &7 (t,%), E(t,x), {*(t,x) are estimations to ¢(t,x),
EX (%), CF(6,%), 67 (6,%), £7(,%), £7*(t,%), respectively.

To prove our results, the following assumptions are necessarily in this paper.
(A3) There exist positive constants p; such that

~ S 2 -~ = .
|03, 2, 11, 71) = 038,26, T2, 112) | < o (1M = Ma® + |7 = 721?), 03(£,%,0,0) =0,
for all 1y, 71, M2, 72 € R, iLj=1,...,n.

To ensure negative feedback, the time-varying periodic adaptive gains and time-

invariance update law are designed as follows:

SH(t — w,x) + mi(t, x)ei(t, %)%, £ € [0,+00),

Sci*(t:x) =
0, t € (-w,0],

2 A'* - w, i\Ly i\l 2) 0) )

£5(t,%) = £ (t — w, %) + n2(t, x)e;(t, %) t€[0,+00) ©)
0, t € (-w,0],

£(t,x) = Ei*(t —w,x) + n3i(t, x)e;(t,x)?, te0,+00),

0, t € (~w,0],
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where

0, 0<t<io, 0, 0<t<iow,
mi(t,x) = { %), t0 <t <o, mi(t,%) = | ai(t,%), s <t < 2o,

1, t> %a), 1, t> %a),

0, 0<t<;jo,

USi(t;x) = T_)gi(t,x), %a) <t< %a),

1, t> %a),

we can choose 7j;;(£, %), 0 < 7;(t,x) <1, j =1,2,3 such that ny;(¢, %), 72:(¢, %) and n3;(¢, %) are
increasing and continuous functions. ;*(¢,x) = —6ye;(¢, %)%,

E(60) = ~Onei(t, %), & (6x) = ~Osie(t x)?, )

in which 6;;, 0 < 6; <1, =1,2,3 are positive constants.

Remark 4 The adaptation law is a difference-type pointwise integration over the period
[t — w,t], which takes the place of the differential-type adaptation law. Due to ¢/(¢,x) =
sH(t—-w,x), &5 (t,x) = Ef (t—w,%), {7 (t,x) = {*(t—w, ), for any time instant iw < t < (i+ 1),
ie N*={1,2,...}, we have

sHtx)=¢lt-w,x) = = ¢/t —iw,x),
‘i:i*(t)x) = Sl*(t - w’x) == gl*(t - ia)rx)r
g,‘*(t:x) = (i*(t— w,x) == ;L'*(t— iw,x).

This means that ¢/ (¢, ), £/(t,x), {/(t,x) can be treated as a ‘constant’ when it is sampled
at any interval, which is the integer multiple of the period w. The periodic updating law
(6) in the interval of one period w is a difference-type integrator for such a ‘constant’

Next, we introduce the definition of asymptotic synchronization in the mean square
sense for the two coupled RDNNs (1) and (3), and then present some preliminary lemmas,
which are needed to prove our main results.

Definition1 The two coupled RDNNS (1) and (3) are said to achieve asymptotic synchro-
nization in the mean square sense, if there is a control v;(t,x), i = 1,2,...,n, such that for
any given initial,

E||Zt(t,x) - u(t,x)”2 — 0 ast— oo.

Lemmal [38] Let Q2 bea cube |x;| <d;(I=1,...,m), and let h(x) be a real-valued function
belonging to C'(2), which vanish on the boundary 3 of Q, i.e., h(x)|aq = 0. Then

oh |
/hz(x)dxfd,z/"— dx.
Q ol 0x;

Page 6 of 13
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Remark 5 Lemmal is a well-known result and is widely utilized in the study of partial dif-
ferential equation. It plays an important role in the synchronization of stochastic delayed
RDNNs with unknown time-varying coupling strengths. According to Lemma 1, the result
in our future research is dependent on reaction-diffusion terms.

Lemma 2 [39] Let a,b € R" and X be an n X n positive definite matrix, then
2a’b <a’Xa +b7X'b.

Lemma 3 [40] Consider system dx = f(x)dt + g(x) dw and suppose that there exist a C*
function V : R" — R* and class K functions oy, ay and o3, such that ai(||x]]) < V(x,t) <
ay(|lxll), and LV < —as(||x||), then the equilibrium x = 0 is stochastically asymptotically
stable. Especially, if a1, oy and as, are class Ko, then, the equilibrium x = 0 is globally

stochastically asymptotically stable.

3 Main results
By combining the feedback control and adaptive control, and the properties of the Weiner
process, we obtain the following Theorem 1.

Theorem 1 Under assumptions (A1)-(A3), if there are constants Ly, Ly, Ly and © such that

2 - 1 1
}‘-max(_D) + gm)‘-max(_A) + ﬁ)‘-max(_p) + EsM)‘-max(|W|L) + EEM)‘maX(L|WT|)
b (L) + e (T [) = (S 4 6+ E) =
I—M max M7 max m m m P

<Li+Ly+Ls (8)

where D = diag(31"y G- 321 T W1 = (wil)wsns W71 = (Wi 1H = (D
HT| = (|h;D I, p = diag(Zj:1 Pis - ,Z;’Zl Ojn), then the adaptive control mechanism (4)-
(6) warrants two coupled system (1) and (3) are adaptive asymptotic synchronization in

the mean square sense.

Proof Define the Lyapunov-Krasovskii-like composite energy functional as

V(t,e(t)) =/Q{Xn:{el (t)? + f ()e,(s)2ds

i=1
t
+ / (§i*(s,x)2 + gi*(s,x)2 + Zi*(s,x)z) ds

+ [0 (& (%) + L1)2 + 05 (67 (6 %) + L2)2 +037 (57 (&%) + L3)2]

g(e s) } dx, %)

t—

where t > w, ¢/ (t,%) = ¢/ (t — w,%), §(t, %) = §F(t — w,%), §(t,%) = {/(t — w,%), §‘l*(t x) =
SHtx) = &), EX (%) = £X(Lx) - EX(Lx), 5 (Ex) = ¢ (L) = 5 (6x), S (6x) = 6 —
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S (tx), §l.**(t,x) =& - E**(t x), g“**(t x) = — 2,'**@, x). Computing LV (¢, e(¢)) along
the trajectory of error system (4), one can obtam that

LV (te(t)) < / {Z{ |:2e, t)Z ( 9ei(t) ) —2a;ci(t, x)e;(t)*
Q

+2) " |wylét %) ei(t)| |3 (,(8) |

j=1
+2]e(t)] Y 1hyl (e, ) |3 (et - 5i(8))) |
j=1

— (& (t,x) + EF(t,x) + T (6, %) + EF (- w,%) + EF(t — 0, %)

+ 5t - %)) = 2(E7 (6,x) + §7 (%) + £ (¢, x))el(t)z}
+ Z Pij e, 24 e, t - '(](If))z)

o0 - (- 50)ey (e 540)’]

+ (5760 + 8 (62 + 57 (607
— [S:i*(t - a)’x)2 + éz’*(t _ w,x)2 + E‘*(t _ w’x)z]

+[2071 (&7 (6,%) + L) £ (8, %) + 2605} (€7 (2, %) + L2)§ *(t,%)

+ 26‘3_1-1 (Ei**(t, x) + LB)Z;**] }
+Z 18(60)" - (1= 503 (et - 560))] p . (10)

According to Green’s formula, Lemma 1 and the Dirichlet boundary condition, we get

oe;(t)
/QZ eilt) 5~ ( ) /Q 7 (i)’ (11)

=1 =1

By (2), (6), (7), (10), (11) and (A1), one can derive

LV (t,e(t)) 5/9[2: < Z—+2algl(t xh_Z(zT;il%) (1)2

i=1 =1 j=1
+2) " |wylé(t x)|ent)||g(e(0) | + 2|e®)] D 1hlen|@i(e (¢ - 70)))]
j=1 J=1

—2[(57 (&%) + 6 (&%) + £ (t,)

+EF G v L+ Ly + L) ] }ei(t)2
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V5 e - K S et

j=1

5‘/9{—e(t) <2D+2gmA+ (21 M) > (1)

+ ‘e(t)T‘éM(|W|L + L|WT|) ’e(t)|

+2[e(®)" | cuIH[g(e(t - T(®))| +

2 . ~
= 8(e®) " [|(e)

_20-1(9)
P alee- 1) [g(ele - o(0)
—2|e®)"|(sm+&Em+ Em+ L+ Ly +L3)|e(t)|}dx, (12)
where |e(t)] = (lei(®)],..., lex(O))T, L = diag(L],..., L;), T(£) = maxij(F(t)), |8(e(t))] =

(g1 (er(®)],. .., |8n(en(®)])T. From (A1) and Lemma 2, we can derive

1-%(t)

= [Ble(t-(0) [ [g(e(e— @)

le(t)" | HI|g(e(t - (1)))] -

1 1 _1 r
<[00 0= 70) (el v ) - 0= 1 £0) a7 o)

x E(l—m-i(l—r‘(t)ﬁ|g(e(t—r(t>))| —(1—#)%(1—f(t))‘%;M|HT||e(t)|}

1-p
+1—r'(t)‘e(

<le®”| ¢y HI|HT||e(®). (13)

0" [y HI[HT [[e()|

By (13), we have

LV (t,e(t)) < / {—e(t)T<2D +2¢,A + %)e(t)
o _

+ e |em(IWIL + L[ W) |e(2)]

+
1

2 a(el0) | e(et0) | +2/e(0” | HIH et
- Z‘e(t)T‘(gm +E&n+Cm+ L1+ 1Ly +L3){e(t)| } dx

< / le(t)" | [nmax(—n) + 26 hman (—A)
Q

(2-w)
.
1-pn

Amax(=p) + sM)\max(|W|L)

+ EM)\max(L|WT|) +

2
1 _ M)‘mdx(LL)
+ 285 hmax (IHI[HT ) = 2S5 + & + $)

oLy 21, - 2@,} le(t)|di. (14)
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Let )Lmax(_D) + S'm)hmax(_A) + %Amax(_p) + %gM)Lmaqu“-’) + %%_M)Lmax(L|WT|) + ﬁ X
)\max(LL) + ;;%/I)Lmaqu”HTl) - (gm + Em + g-m) - % < Ll + L2 + L3, in which © is pOSitiVG
constant. Then it follows from (14) that

LV (t,e(t)) < -0 le(®) . (15)

From inequality (15) and Ito’s formula, we can conclude that

EY e, <EV(te()
i=1

t

= EV (to, e(to)) + E/ LV (s,e(s)) ds

to

< EV(to,e(to)) —E/ G)He(s) ”;ds.

According to Lemma 3 and Definition 1, it is easy to see that system (4) is globally stochas-
tically asymptotically stable. This implies that the two coupled delayed RDNNS (1) and (3)
are adaptive asymptotic synchronization in the mean square sense. This completes the
proof. O

4 Anillustrative example

We present a simple example here in order to illustrate the usefulness of our main re-
sults. Our aim is to examine the adaptive synchronization of a given delayed RDNNs with
unknown time-varying coupling strengths.

Example 1 Consider the drive-response systems (1) and (3) with Q = {x||x;| < 1,/ = 1},

_ O.Sej(t) 0.38j(t—lj(t)) _ h d _ et A=LW = 2 -2 H =
(@4)nxn = (O.Zej(t—r/-(t)) 0.4¢;(2) ) g(y) = tanh(y) and ;(¢) = Teet? 2= L W = (-1 1 ), H =
(L1), Du=Dyn=055=0L)=02 6" =2 6* =10, & =8, £ =3, {* = 2,
& =5, nut,x) = 02t %) = 038, %) = %t —1,i=1,2. Then, a simple computation yields
Sm = 1.8’ SM = 2'2: Em = 21 SM = 91 é-m = O: ;M = 7) n= 0'5: )\max(_D) = _0'5’ )‘maX(_A) = _1’
)‘-max(_p) =-1, )‘-max(|W|L) = 3: )‘-max(L|WT|) = 3; )‘-max(LL) =1, )\max(|H| |HT|) = 4. Choos-
ing I, =17.6, L, =16.5, L3 =15.8 and ® = 2.8, we have

2-pw)

Amax(=D) + GmAmax (—A) + 20— 1)

Amax(_p)
1 1 T
+ o Bt (IWIL) + - &athma (L[ W)

1 G
+ ﬁ)\-max(LL) + §A2/1A-max(|H||HT|) - (gm + sm + é-m) - E

<ILi+Ly+L3=49.9.

Therefore, it can be concluded from Theorem 1 that the considered drive-response sys-
tems are adaptive asymptotic synchronization in the mean square sense.

The change processes of the state variables u;(¢,x) and error variables e;(t,x), i = 1,2
are shown in Figure 1 to Figure 4. By numerical simulations, we can see that the consid-
ered drive-response systems are adaptive asymptotic synchronization in the mean square
sense.
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Figure 1 The change process of the state of u(t,x) in system (1).

Figure 2 The change process of the state u;(t, x) in system (1).

Figure 3 Asymptotic behavior of the error e;(t, x).
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Figure 4 Asymptotic behavior of the error e;(t, x).

5 Conclusions

In this paper, a novel adaptive learning control method is used in stochastic delayed
RDNNs with unknown time-varying periodic connected strengths. By constructing
Lyapunov-Krasovskii-like composite energy functional, the adaptive learning laws of pa-
rameters and the adaptive control strategy are designed to guarantee the adaptive asymp-
totic synchronization of considered system in the mean square sense. Finally, a simple
example and simulations have been utilized to verify our theoretical result is feasible and

effective.
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