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Noncommutative Chern–Simons (NCCS) theory is a workable description for the fractional quantum Hall fluid.
We apply and generalize the NCCS theory to the physically important case with an edge. From relabeling
symmetry of electrons and incompressibility of the fluid, we obtain a constraint and reduce the two-dimensional
NCCS theory to a one-dimensional chiral Tomonaga–Luttinger liquid theory, which contains additional interaction
terms. Further, we calculate one-loop corrections to the boson and electron propagators and obtain a new
tunneling exponent, which agrees with experiments.
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The chiral Tomonaga–Luttinger liquid at the frac-
tional quantum Hall (FQH) edge has become an active
subject since Wen’s hydrodynamic and effective field
formulation.[1−3] The effective edge theory is derived
from the bulk effective Chern–Simons theory. It pre-
dicts a nonlinear current-voltage relationship 𝐼 ∼ 𝑉 𝛼

with a universal exponent 𝛼 = 2𝑛 + 1 at the filling
fraction 𝜈 = 𝑝

2𝑛𝑝+1 , where 𝑛 and 𝑝 are positive inte-
gers.

A number of experiments[4−6] have established the
existence of Tomonaga–Luttinger-liquid-like behavior.
However, the tunneling exponent measured is differ-
ent from the prediction. At 𝜈 = 1/3, Ref. [4] mea-
sured a value of 2.7 ± 0.06 and Ref. [5] measured
2.85±0.15. Using the highest quality samples, Ref. [6]
saw a plateau region that occurs at 𝛼 ≈ 2.7 and ex-
tends from 1/𝜈 = 2.76 to 3.33.

The discrepancy between experiment and theory
has been addressed in Refs. [7,9-14]. Many works have
attempted to explain the discrepancy. For 𝜈 = 1/3
and other Jain fractions, some papers suggested that
the discrepancy is due to edge reconstruction.[8−10] In
contrast, some propose that the exponent is not uni-
versal, since the discrepancy persists even in the ab-
sence of edge reconstruction.[11−14] It is still an open
question.

An elementary derivation of the Chern–Simons de-
scription of the FQH effect was given by Susskind,[15]

wherein he claimed that the noncommutative version
of the description is exactly equivalent to the Laughlin
theory. Noncommutative Chern–Simons (NCCS) the-
ory was shown to reproduce basic features of the FQH
effect. A regularized version of it, the Chern–Simons
matrix model, was proposed to describe a finite num-
ber of electrons.[16] The states of the matrix model are
in one-to-one correspondence with the Laughlin[17,18]

and Jain hierarchical[19] states. Recently, the FQH
hierarchy[20] and edge[21] were incompletely discussed

with NCCS theory. As many successes on the con-
nection between two theories have been achieved, we
would stress that NCCS theory is a workable descrip-
tion for the FQH fluid.

In this Letter, we try to pursue two questions:
whether the edge states in fractional quantum Hall
effects could be described by NCCS theory; whether
a more reliable and sounder exponent 𝛼 could be de-
rived.

Based on Susskind’s derivation,[15] we will refor-
mulate Wen’s edge theory.[2,3] First we give a con-
straint by considering microscopic dynamics: relabel-
ing symmetry of electrons and incompressibility of the
fluid. It should be more exact and convincing than
that given by choosing a gauge-fixing condition.[2] Sec-
ond, we solve the constraint exactly. It is amazing that
the solution as well as the action has a total differen-
tial form. Finally, we reduce the (2+1)-dimensional
NCCS theory to a (1+1)-dimensional noncommuta-
tive chiral Tomonaga–Luttinger liquid theory, which
contains interaction terms expanding to all orders in
the noncommutative parameter 𝜃. The commutative
limit of it is Wen’s theory.

Furthermore, as our theory contains interaction
terms, it will predict a new exponent and may pro-
vide a solution to the discrepancy mentioned above.
We calculate the one-loop Feynman diagrams caused
by interaction among chiral bosons. Because of the
existence of the shortest incompressible distance, an
ultraviolet cutoff is imposed to evaluate the integrals.
Then, we obtain one-loop corrections to the boson and
electron propagators. The electron propagator still ex-
hibits a power-law correlation, but with a newly cor-
rected prediction of the exponent, which is in good
agreement with the experimental results. This is a
support to our derivation and the NCCS theory.

We begin with a review of Susskind’s derivation.[15]

Consider a two-dimensional electron system, the dis-
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crete electrons should be labeled with a discrete index
𝛼. Under the relabeling (or permutation) of electrons,
the real space coordinates 𝑥𝛼

𝑖 (𝑡) (𝑖 = 1, 2) and the La-
grangian remain invariant. We can replace 𝛼 by a
continuous 𝑦 space, and naturally choose the coordi-
nates so that the electrons are evenly distributed in 𝑦
with a constant density 𝜌0. The relabeling symmetry
of 𝛼 is replaced by the area preserving diffeomorphism
(APD) of 𝑦.

Assuming that the system is adiabatic so that
short range forces lead to an equilibrium and the po-
tential is 𝜌 dependent (𝜌 = 𝜌0|𝜕𝑦/𝜕𝑥| is the real space
density), in a background magnetic field 𝐵, the La-
grangian is

𝐿 =

∫︁
𝑑2𝑦𝜌0

[︁𝑚
2
�̇�2 − 𝑉 (𝜌) +

𝑒𝐵

2
𝜖𝑎𝑏�̇�𝑎𝑥𝑏

]︁
. (1)

Consider an infinitesimal APD transformation
from 𝑦 to 𝑦′ with unit Jacobian, the Lagrangian trans-
forms as

𝛿𝐿 =
𝑑

𝑑𝑡

(︁ 𝜕𝐿

𝜕�̇�𝑎
𝛿𝑥𝑎

)︁
+
(︁
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑎
+

𝜕𝐿

𝜕𝑥𝑎

)︁
𝛿𝑥𝑎 = 0. (2)

Besides the equation of motion, we arrive at a con-
served quantity and the constraints

𝑔(𝑦) =

{︃ 𝜕
𝜕𝑦𝑗

(𝜖𝑖𝑗 �̇�𝑎
𝜕𝑥𝑎

𝜕𝑦𝑖
) if 𝐵 is absent,

1
2𝜖𝑖𝑗𝜖𝑎𝑏

𝜕𝑥𝑏

𝜕𝑦𝑗

𝜕𝑥𝑎

𝜕𝑦𝑖
= |𝜕𝑥𝜕𝑦 | if 𝐵 is strong,

(3)

where 𝑔(𝑦) is an arbitrary time independent function.
When the magnetic field is strong, the kinetic term is
dropped; 𝜌(𝑥, 𝑡) = 𝜌0/𝑔(𝑦) = 𝜌(𝑥, 0).

In the strong magnetic field, the system behaves
as a quantum Hall fluid. Consider a fractional quan-
tum Hall fluid with a filling factor 𝜈 = 1/(2𝑛 + 1),
where 𝑛 is a positive integer. Due to electron-electron
interaction,[22] the electrons are incompressible with
a minimal area 2𝜋𝑙2𝐵/𝜈 (𝑙𝐵 = 1/

√
𝑒𝐵 is the magnetic

length).[3] In the absence of vortices (no quasiparticle
excitation), we can assume that at 𝑡 = 0 the electrons
are in equilibrium and uniformly occupy the minimal
area. Thus 𝜌(𝑥, 0) is constant, 𝑔(𝑦) can be set to unity.
The constraint becomes

1 =
⃒⃒
𝜕𝑥/𝜕𝑦

⃒⃒
. (4)

As 𝜌0 = 𝜌(𝑥, 0) = (2𝜋𝑙2𝐵/𝜈)−1, the factor 𝜈 =
2𝜋𝜌0/𝑒𝐵 is truly the ratio of electrons to magnetic
flux quanta.

Consider small deviations from the equilibrium so-
lution 𝑥𝑖 = 𝑦𝑖,

𝑥𝑖(𝑦, 𝑡) = 𝑦𝑖 + 𝜖𝑖𝑗
𝐴𝑗(𝑦, 𝑡)

2𝜋𝜌0
≡ 𝑦𝑖 + 𝜃𝜖𝑖𝑗𝐴𝑗 . (5)

Substituting it and dropping total time derivatives
gives the Chern–Simons action

𝑆 =
𝑒𝐵

2

∫︁
𝑑𝑡𝑑2𝑦𝜌0𝜖𝑖𝑗 �̇�𝑖𝑥𝑗 =

1

4𝜋𝜈

∫︁
𝑑𝑡𝑑2𝑦𝜖𝑖𝑗�̇�𝑖𝐴𝑗 .

(6)

Notice that 𝑦 space has a basic area quantum
𝜃 = 1/(𝜈𝑒𝐵) = 𝑙2𝐵/𝜈. It means that 𝑦 space is non-
commutative. Equations (4) and (6) are the first-order
truncations of the NCCS theory.[15] By expanding to
higher order in 𝜃, we can involve the noncommutativ-
ity of 𝑦 space and capture the discrete character of the
electron system.

From the constraint, the condition for 𝐴 is

𝐴𝑗 +
1

2
𝜃𝜖𝑚𝑛𝐴𝑚𝜕𝑗𝐴𝑛 = 𝜕𝑗𝜑(𝑦, 𝑡), (7)

where 𝜑(𝑦, 𝑡) is an arbitrary scalar field. We must
stress that the constraint is more exact and convincing
than its linear approximation that is given by choosing
the gauge-fixing condition.[2,3] Expanding to all orders

in 𝜃, the exact solution is 𝐴𝑖 =
∑︀∞

𝑛=0 𝜃
𝑛𝑓

(𝑛)
𝑖 with

𝑓
(0)
𝑖 = 𝜕𝑖𝜑, 𝑓

(𝑛)
𝑖 =

1

2
𝜖𝑎𝑏

𝑛−1∑︁
𝑚=0

𝜕𝑖𝑓
(𝑚)
𝑎 𝑓

(𝑛−1−𝑚)
𝑏 . (8)

Substituting them into Eq. (6) gives a noncommuta-
tive action

𝑆 =
1

4𝜋𝜈

∫︁
𝑑𝑡𝑑2𝑦

∞∑︁
𝑛=0

𝜃𝑛𝑠(𝑛), (9)

where 𝑠(𝑛) =
∑︀𝑛

𝑚=0 𝜖𝑎𝑏𝜕𝑡𝑓
(𝑚)
𝑎 𝑓

(𝑛−𝑚)
𝑏 .

The edge states are the only gapless excitations of
incompressible fluid, and govern transport properties.
We should study whether 𝑆 could describe this impor-
tant one-dimensional case. The first and difficult step
is to find a total differential form of the action.

Construct 𝐹
(𝑛)
𝜇 with total differentials (𝜇 = 0, 1, 2

and 𝜕0 ≡ 𝜕𝑡): 𝐹
(0)
𝜇 = 𝜕𝜇𝜑 and for 𝑛 ≥ 1

𝐹 (𝑛)
𝜇 = 𝜕𝑎

(︁1

2
𝜖𝑎𝑏𝐹

(𝑛−1)
𝜇 𝐹

(0)
𝑏

)︁
+

1

3
𝜕𝜇

(︁1

2
𝜖𝑎𝑏𝐹

(𝑛−1)
𝑎 𝐹

(0)
𝑏

)︁
− 1

3

𝑛−1∑︁
𝑚=1

𝜕𝑎

(︁1

2
𝜖𝑎𝑏𝐹

(𝑚)
𝜇 𝐹

(𝑛−1−𝑚)
𝑏

)︁
. (10)

We find that 𝑓
(0)
𝑖 = 𝐹

(0)
𝑖 , 𝑓

(1)
𝑖 = 𝐹

(1)
𝑖 , etc. Using

Mathematica, the equivalence has been checked up to
𝑛 = 7. Logically, we make a conjecture: for all natural

numbers 𝑛, 𝑓
(𝑛)
𝑖 = 𝐹

(𝑛)
𝑖 .

Similarly, every order of the Lagrangian density is

a total differential, 𝑠(𝑛) = 2𝐹
(𝑛+1)
0 . When the total

time derivative is dropped,

𝑠(𝑛) = 𝜕𝑎(𝜖𝑎𝑏𝐹
(𝑛)
0 𝐹

(0)
𝑏 ) − 1

3

𝑛∑︁
𝑚=1

𝜕𝑎
(︀
𝜖𝑎𝑏𝐹

(𝑚)
0 𝐹

(𝑛−𝑚)
𝑏

)︀
.

(11)
Being integration of a total differential, 𝑆 is

nonzero and nontrivial if and only if a boundary ex-
ists. Hence, we continue with an edge. Consider a
finite system Σ confined by a simple potential well:
an electric field 𝐸. The electrons drift in the direc-
tion perpendicular to 𝐸 and 𝐵 and form an edge. In
the context of special relativity, in the frame 𝑥 moving
with 𝑣𝑖 ≡ 𝜖𝑖𝑗𝐸𝑗/𝐵, the electric field vanishes so that
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the electrons can be treated the same as that in bulk.
The real space 𝑥𝑅 is

𝑥𝑅
𝑖 = 𝑥𝑖 + 𝑣𝑖𝑡 = 𝑦𝑖 + 𝜃𝜖𝑖𝑗𝐴𝑗 + 𝑣𝑖𝑡. (12)

Substituting it into the edge action and dropping total
time derivatives gives

𝑆Σ =

∫︁
Σ

𝑑𝑡𝑑2𝑦𝜌0

(︁𝑒𝐵
2

𝜖𝑖𝑗𝜕𝑡𝑥
𝑅
𝑖 𝑥

𝑅
𝑗 − 𝑒𝐸𝑖𝑥

𝑅
𝑖

)︁
=

∫︁
Σ

𝑑𝑡𝑑2𝑦𝜌0

[︁𝑒𝐵
2

𝜖𝑖𝑗𝜕𝑡

(︁
𝑥𝑖 + 2𝜖𝑖𝑎

𝐸𝑎

𝐵
𝑡
)︁
𝑥𝑗 − 𝑒𝐸𝑖𝑥𝑖

]︁
=

∫︁
Σ

𝑑𝑡𝑑2𝑦𝜌0
𝑒𝐵

2
𝜖𝑖𝑗 �̇�𝑖𝑥𝑗 = 𝑆. (13)

It confirms that the electric field vanishes in the frame
𝑥 and the co-moving coordinates 𝑦. Thus we can use
the same Chern–Simons theory as in bulk.

Notice the relationship of the co-moving coordi-
nates 𝑦 and the laboratory frame 𝑦𝑅

𝑦𝑅𝑖 = 𝑦𝑖 + 𝑣𝑖𝑡, 𝑡𝑅 = 𝑡,

𝜕𝑡 = 𝜕𝑅
𝑡 + 𝑣𝑖𝜕

𝑅
𝑖 , 𝜕𝑖 = 𝜕𝑅

𝑖 . (14)

In terms of 𝑦𝑅, the edge action acquires the form

𝑆Σ =
1

4𝜋𝜈

∫︁
Σ

𝑑𝑡𝑅𝑑2𝑦𝑅𝜖𝑖𝑗(𝜕
𝑅
𝑡 + 𝑣𝑎𝜕

𝑅
𝑎 )𝐴𝑖𝐴𝑗 . (15)

In the laboratory frame, ignoring 𝑅 for ease of no-
tation, choosing 𝐸 = 𝐸𝑦2 and restricting the fluid to
𝑦2 ≤ 0 for convenience, we can reduce the edge action
to a 1 + 1 dimensional chiral boson theory

𝑆𝜒 =
1

4𝜋𝜈

∫︁
𝑑𝑡𝑑𝑦1𝜑(𝜕𝑡 + 𝑣𝜕1)𝜕1𝜑 + 𝑂(𝜃)

=
1

4𝜋𝜈

∫︁
𝑑𝑡𝑑𝑦1

∞∑︁
𝑛=0

𝜃𝑛𝜒(𝑛), (16)

where the edge velocity 𝑣 = 𝐸/𝐵 appears naturally
and

𝜒(𝑛) = −𝐹
(𝑛)
0 𝐹

(0)
1 +

1

3

𝑛∑︁
𝑚=1

𝐹
(𝑚)
0 𝐹

(𝑛−𝑚)
1 , (17)

with redefined 𝐹
(0)
0 = (𝜕𝑡 + 𝑣𝜕1)𝜑 and for 𝑛 ≥ 1

𝐹
(𝑛)
0 = 𝜕𝑎

(︁𝜖𝑎𝑏
2
𝐹

(𝑛−1)
0 𝐹

(0)
𝑏

)︁
+ (𝜕𝑡 + 𝑣𝜕1)

(︁𝜖𝑎𝑏
6
𝐹 (𝑛−1)
𝑎 𝐹

(0)
𝑏

)︁
−

𝑛−1∑︁
𝑚=1

𝜕𝑎

(︁𝜖𝑎𝑏
6
𝐹

(𝑚)
0 𝐹

(𝑛−1−𝑚)
𝑏

)︁
. (18)

If we ignore the discrete character of the fluid,
𝜃 ∝ 𝑙2𝐵 → 0, we obtain the commutative limit of our
description, which coincides with the phenomenologi-
cal effective theory on the edge effect.[2,3]

In fact, we obtain a noncommutative chiral
Tomonaga–Luttinger liquid theory which contains in-
teraction terms. Interaction among chiral bosons

makes things different: vertices and loop Feynman di-
agrams emerge and correct the boson propagator.

Further, we calculate the loop corrections to the
boson and electron propagators with 𝑆𝜒.

Following Wen’s hydrodynamic formulation,[1−3]

with the equation of motion and commutation rela-
tion [︁ 1

2𝜋
𝜕1𝜑(𝑦1), 𝜑(𝑦′1)

]︁
= −𝑖𝜈𝛿(𝑦1 − 𝑦′1), (19)

we can calculate the retarded Green’s function

𝑉2(𝑝) ≡ �̃�𝑅(𝑝) =
−𝑖2𝜋𝜈

(𝜔𝑝 − 𝑣𝑝)𝑝
. (20)

To deal with 𝜕2 in 𝜒(𝑛) (𝑛 ≥ 1), we assume an
undetermined distribution 𝜑 ∝ exp[ℎ(𝑦2)]. It should
decrease along the negative 𝑦2 axis with a characteris-
tic length, the radius

√︀
2𝑙2𝐵/𝜈 occupied by every elec-

tron at the filling fraction 𝜈. Using Diagrammar[23]

with notations 𝑦𝜇 = (𝑦1, 𝑖𝑡), 𝑝𝜇 = (𝑝, 𝑖𝜔𝑝) and∫︀
𝑑2𝑝 = 𝑖

∫︀
𝑑𝑝𝑑𝜔𝑝, we can spell out the Feynman

rules from the action times 𝑖 with the replacement

𝜑(𝑦) =
∫︀

𝑑2𝑝
(2𝜋)2𝜑(𝑝)𝑒𝑖(𝑝𝑦1−𝜔𝑝𝑡)𝑒ℎ(𝑦2). For three-boson

and four-boson vertices, the Feynman rules are (𝑤𝑝 =
𝜔𝑝 − 𝑣𝑝, the 𝛿 functions omitted)

𝑉3(𝑝, 𝑞) =
−𝜃

4𝜋𝜈
ℎ′

∑︁
𝑙=𝑝,𝑞,𝑟

𝑙2𝑤𝑙, (21)

𝑉4(𝑝, 𝑞, 𝑟) =
𝑖𝜃2

4𝜋𝜈

[︃
1

4
(ℎ′2 + 2ℎ′′)

∑︁
𝑙=𝑝,𝑞,𝑟,𝑘

𝑙2
∑︁

𝑙=𝑝,𝑞,𝑟,𝑘

𝑙𝑤𝑙

− (ℎ′2 + ℎ′′)
∑︁

𝑙=𝑝,𝑞,𝑟,𝑘

𝑙3𝑤𝑙

]︃
. (22)

Let 𝐺(𝑝) denote the sum of all 1PI diagrams with
two external lines. The full boson propagator is

𝑉2 + 𝑉2𝐺𝑉2 + · · · =
−𝑖2𝜋𝜈

(𝜔𝑝 − 𝑣𝑝)𝑝 + 𝑖2𝜋𝜈𝐺
. (23)

The one-loop (second order in 𝜃) contributions are

𝐺1 =
1

2

∫︁
𝑑2𝑞

(2𝜋)2
𝑉3(𝑝, 𝑞)𝑉2(𝑞)𝑉3(−𝑝,−𝑞)𝑉2(𝑝 + 𝑞),

(24)

𝐺2 =
1

2

∫︁
𝑑2𝑞

(2𝜋)2
𝑉4(𝑝, 𝑞,−𝑝)𝑉2(𝑞), (25)

where 𝐺𝑛 corresponds to the 𝑛th diagram in Fig. 1.

1 2

Fig. 1. One-loop Feynman diagrams.

Because 𝑦 space has the area quantum 𝜃 and
shortest incompressible distance 𝑙𝐵 , we can impose
an ultraviolet cutoff |𝑞| ≤ Λ and |𝜔𝑞| ≤ 𝑣Λ (due
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to the dispersion relation 𝜔𝑞 = 𝑣𝑞). Via the un-

certainty principle, Λ = 𝑙−1
𝐵 . To evaluate loop

integrals, notice that: integrals over polynomials
give zero,

∫︀
𝑑𝑞(𝑞2)𝑎 = 0, where 𝑎 is a nonnega-

tive integer;[23] to the leading order,
∫︀
𝑑𝑞𝑑𝜔𝑞

𝑞
𝜔𝑞−𝑣𝑞 =

−2Λ2,
∫︀
𝑑𝑞𝑑𝜔𝑞

𝑞2

(𝜔𝑞−𝑣𝑞+𝜔𝑝−𝑣𝑝)(𝜔𝑞−𝑣𝑞) = 2Λ2 1−ln Λ
𝑣 .

Then,

𝐺1 = − 𝑖

(2𝜋)2
𝜃2Λ2ℎ′2

(︁
𝑝𝑤𝑝 + 𝑤2

𝑝

ln Λ − 1

4𝑣

)︁
, (26)

𝐺2 = − 𝑖

(2𝜋)2
1

2
𝜃2Λ2(ℎ′2 + 2ℎ′′)𝑝𝑤𝑝. (27)

To one-loop order, the full boson propagator has the
form

−𝑖2𝜋𝜈

𝑝𝑤𝑝(1 + 𝑐1) + 𝑤2
𝑝𝑐2

lnΛ−1
𝑣

=
−𝑖2𝜋𝜈

𝑝(𝜔𝑝 − 𝑣𝑝)
− −𝑖2𝜋𝜈

𝑝(𝜔𝑝 − 𝑣𝑛𝑝)
,

where 𝑐1 = 𝜈
2𝜋 𝜃

2Λ2( 3
2ℎ

′2 + ℎ′′), 𝑐2 = 𝜈
8𝜋 𝜃

2Λ2ℎ′2,

𝜈 = 𝜈
1+𝑐1

and 𝑣𝑛 = 𝑣(1 − 1+𝑐1
𝑐2

1
lnΛ−1 ).

Notice that 𝜃 = 𝑙2𝐵/𝜈; Λ = 𝑙−1
𝐵 ; ℎ′2 and ℎ′′ are pro-

portional to 𝜈/(2𝑙2𝐵), according to the characteristic

length
√︀

2𝑙2𝐵/𝜈. So 𝑐1 and 𝑐2 are constants indepen-
dent of 𝜈 and 𝑙𝐵 . As a perturbation-theory correction
should not be too large, we have |𝑐1| ≪ 1. Evidently,
𝑐2 ≥ 0 so that 𝑣𝑛 is slightly smaller than 𝑣. Because
of the damping of the electric field caused by the pres-
ence of the electrons, 𝑣 decreases by a small amount
along the negative 𝑦2 axis. Without loss of generality,
we can choose 𝑣𝑛 to be the next-door neighbor of 𝑣,
and reconsider the full boson propagator: the second
term of the propagator with 𝑣 cancels the first term
with 𝑣𝑛, and so on; the second term with 𝑣1 can be
ignored while it is nonchiral and cancels the propaga-
tor in bulk with 𝑣0 = 0; a sum over all slices gives the
overall full boson propagator

−𝑖2𝜋𝜈

𝑝(𝜔𝑝 − 𝑣𝑝)
. (28)

In the position representation, it takes the form

⟨𝜑(𝑦1, 𝑡)𝜑(0)⟩ = −𝜈 ln(𝑦1 − 𝑣𝑡) + const. (29)

We can determine the distribution by solving 𝑐1 =
𝑙2𝐵
2𝜋𝜈 ( 3

2ℎ
′2 + ℎ′′). As exp[ℎ(𝑦2)] should decrease along

the negative 𝑦2 axis, the only solution is ℎ(𝑦2) =√︁
4𝜋𝜈
3𝑙2

𝐵

𝑐1𝑦2 at 𝑐1 > 0. Naturally, we choose it and

confirm the characteristic length of this exponential
distribution to be

√︀
2𝑙2𝐵/𝜈. Hence, 𝑐1 = 3/8𝜋 and

𝜈 = 𝜈
1+𝑐1

≈ 0.893𝜈.

With the electron operator (fermionic when 1/𝜈 is
odd)

Ψ ∝ 𝑒𝑖(1/𝜈)𝜑, Ψ(𝑦1)Ψ(𝑦′1) = (−1)1/𝜈Ψ(𝑦′1)Ψ(𝑦1),
(30)

the electron propagator can be calculated via⟨︀
𝑇{Ψ†(𝑦1, 𝑡)Ψ(0)}

⟩︀
= exp

[︂
⟨𝜑(𝑦1, 𝑡)𝜑(0)⟩

𝜈2

]︂
∝ 1

(𝑦1 − 𝑣𝑡)𝛼
, (31)

where the tunneling exponent is

𝛼 =
𝜈

𝜈2
≈ 0.893

1

𝜈
. (32)

It exhibits a new nontrivial power-law correla-
tion, which indicates Tomonaga–Luttinger-liquid-like
behavior.[7]

At 𝜈 = 1/3, the prediction of Eq. (32) is 𝛼 ≈ 2.68.
It is in good agreement with the value measured in
Refs. [4,6], 𝛼 ≈ 2.7. It also agrees with Ref. [5] quali-
tatively.

Strictly, the formalism in this letter only applies to
Laughlin fractions. If we abandon Fermi statistics,[13]

we can extend the calculation to Jain fractions 𝜈 = 2/5
and 3/7 giving 𝛼 ≈ 2.23 and 2.08, close to the mea-
sured exponents 2.3 and 2.1.[14] It is interesting but
further precise study is needed.

In summary, we have derived the NCCS descrip-
tion of the FQH edge, a new chiral Tomonaga–
Luttinger liquid theory containing additional terms
that represent interaction among chiral bosons. An
important consequence of such terms is a correction
to the predicted universal exponent of the electron
propagator, which has been measured experimentally
and found to be nonuniversal. Without any adjustable
parameter, the discrepancy between experiment and
theory is resolved.

Furthermore, the edge of hierarchial liquids, higher
order corrections and other related topics[24] remain as
future subjects.
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