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AN APPLICATION OF VARIATIONAL METHODS TO
SECOND-ORDER IMPULSIVE DIFFERENTIAL EQUATION

WITH DERIVATIVE DEPENDENCE

JIAN LIU, ZENGQIN ZHAO

Abstract. In this article, we study the existence of solutions for nonlinear

impulsive problems. We show the existence of classical solutions by using

variational methods.

1. Introduction

Variational methods are used in the modeling of certain nonlinear problems from
biological neural networks, elastic mechanics, anisotropic problems, and so forth.
During the previous decade, variational methods have been applied to boundary
value problems for differential equations. Recently, impulsive differential equation
has been studied in many classical works, for example, [1, 2, 6, 8, 15, 17]. The
study of impulsive differential equation via variational methods was initiated by
Nieto and O’Regan [5], Tian and Ge [11]. The study of second order impulsive
differential equation with derivative dependence ordinary differential equations via
variational methods was initiated by Nieto [4]. Since then there is a trend to
study differential equation via variational methods which leads to many meaningful
results, see [9, 10, 13, 12, 14, 18, 19, 20, 21] and the references therein.

Recently, Nieto [4] studied the following damped linear Dirichlet boundary value
problem with impulses:

−u′′(t) + g(t)u′(t) + λu(t) = σ(t), a.e. t ∈ [0, T ],

∆u′(tj) = dj , j = 1, 2, . . . , p,

u(0) = u(T ) = 0,

(1.1)

where λ, dj ∈ R, σ ∈ C[0, 1], the author introduced a variational formulation for the
damped linear Dirichlet problem with impulses and the concept of a weak solution
for such a problem.

We would also like to mention that Xiao and Nieto [13], considered the fol-
lowing nonlinear boundary value problems for second order impulsive differential
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equations:

−u′′(t) + g(t)u′(t) + λu(t) = f(t, u(t)), a.e. t ∈ [0, T ],

−∆u′(tj) = Ij(u(tj)), j = 1, 2, . . . , p,

u(0) = u(T ) = 0,

(1.2)

where T > 0, 0 = t0 < t1 < · · · < tp < tp+1 = T , f : [0, T ] × R → R is
continuous, g ∈ C[0, T ], and Ij : R → R, j = 1, 2, . . . , p are continuous, and
∆u′(tj) = u′(t+j ) − u′(t−j ), for u′(t±j ) = limt→t±j

u′(t). Authors used critical point
theory and variational methods to obtain the above second order impulsive differ-
ential equations has at least one positive solution.

Motivated by the above mentioned work, in this paper we consider the impulsive
boundary value problem

−u′′(t) + λu(t) + g(t)u′(t) = f(t, u), a.e. t ∈ [0, T ],

−∆u′(ti) = Ii(u(ti)), i = 1, 2, . . . , p,

u(0) = 0, αu(T ) + βu′(T ) = 0,

(1.3)

where λ is a parameter, T > 0, g ∈ C[0, T ], f ∈ C([0, T ] × R,R) and Iij : R → R,
i = 1, 2, . . . , p are continuous, 0 = t0 < t1 < · · · < tp < tp+1 = T , ∆u′(ti) =
u′(t+i )− u′(t−i ) = limt→t+i

u′(t)− limt→t−i
u′(t), α ≥ 0, β > 0 (or β = 0).

We consider the existence of classical solutions for the nonlinear impulsive prob-
lems and obtain some new existence theorems of solutions by using variational
methods. We obtain the equation (1.3) has at least one classical solution, at least
two classical solutions and infinitely many classical solutions under different condi-
tions, and the conditions in our paper is easy to verify compared with the papers
in the literature.

The rest of the article is organized as follows: In Section 2, we give some pre-
liminaries, lemmas and variational structure. The main theorems are formulated
and proved in Section 3. In Section 4, some examples are presented to illustrate
our results.

2. Preliminaries, and variational structure

We first recall some basic results in eigenvalue problems. For linear problem

−u′′(t) = λu(t), a.e. t ∈ [0, T ],

u(0) = 0, αu(T ) + βu′(T ) = 0, α ≥ 0, β > 0,
(2.1)

the eigenvalue λ satisfies

α sin
√
λT + β

√
λ cos

√
λT = 0. (2.2)

Solving (2.2), we obtain λ = (kπ−αT )2, k = 0, 1, . . . , where α satisfies cosα =
α√

α2+λβ2
.

Let λ1 be the first eigenvalue of the above linear problem (2.1). For linear
problem

−u′′(t) = λu(t), a.e. t ∈ [0, T ],

u(0) = 0, αu(T ) + βu′(T ) = 0, α ≥ 0, β = 0,
(2.3)

the eigenvalue λ satisfies
α sin(

√
λT ) = 0.
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Solving this equation, we have λ = (kπT )2, k = 1, 2, . . . , thus the first eigenvalue of
the linear problem is π2

T 2 ; i.e. λ1 = π2

T 2 . In the remaining part of this paper, we
assume that λ > −mλ1/M , where m = mint∈[0,T ] e

G(t),M = maxt∈[0,T ] e
G(t), and

G(t) = −
∫ t

0
g(s)ds.

We denote the Sobolev space H := H1
0 (0, T ) =

{
u : [0, T ] → R|u is absolutely

continuous, u′ ∈ L2(0, T ) and u(0) = 0
}

with the inner product and the corre-
sponding norm

(u, v) =
∫ T

0

eG(t)u′(t)v′(t)dt,

‖u‖ =
(∫ T

0

eG(t)(u′(t))2dt
)1/2

.

Let H2(0, T ) = {u : [0, T ]→ R|u, u′ are absolutely continuous, u′′ ∈ L2(0, T )}. For
u ∈ H2(0, T ), we have that u, u′ are both absolutely continuous, and u′′ ∈ L2(0, T ).
Hence ∆u′(t) = u′(t+) − u′(t−) = 0 for any t ∈ (0, T ). If u ∈ H1(0, T ), we have
that u is absolutely continuous, and u′ ∈ L2(0, T ), thus the one side derivatives
u′(t+), u′(t−) may not exist, which leads to the impulsive effects.

So by a classical solution to (1.3) we mean a function u ∈ C[0, T ] satisfy-
ing the differential equation in (1.3) such that ui = u|(ti,ti+1) ∈ H2(ti, ti+1) and
u′(t−i ), u′(t+i ) exist for every i = 1, 2, . . . , p and verify the impulsive and the bound-
ary conditions. The weak solution to (1.3) is given below and it is inspired by the
weak solution defined in [4].

Multiply the first equation of (1.3) by eG(t), we obtain

−(eG(t)u′(t))
′
+ λeG(t)u(t) = eG(t)f(t, u(t)).

Now multiply by v ∈ H at both sides,

− (eG(t)u′(t))
′
v(t) + λeG(t)u(t)v(t) = eG(t)f(t, u(t))v(t). (2.4)

Integrate (2.4) on the interval [0, T ] and use the boundary condition u(0) = 0,
αu(T ) + βu′(T ) = 0 to obtain∫ T

0

eG(t)u′(t)v′(t)dt+ λ

∫ T

0

eG(t)u(t)v(t)dt

−
p∑
i=1

eG(ti)Ii(u(ti))v(ti) +
α

β
eG(T )u(T )v(T )

=
∫ T

0

eG(t)f(t, u(t))v(t)dt.

(2.5)

Thus, a weak solution of the impulsive boundary value problem (1.3) is a function
u ∈ H such that (2.5) holds for any v ∈ H.

Define

A(u, v) =
∫ T

0

eG(t)u′(t)v′(t)dt+ λ

∫ T

0

eG(t)u(t)v(t)dt+
α

β
eG(T )u(T )v(T ),

F (t, u) =
∫ u

0

f(t, s)ds.
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Consider ϕ : H → R defined by

ϕ(u) =
1
2
A(u, u)−

p∑
i=1

eG(ti)

∫ u(ti)

0

Ii(t)dt−
∫ T

0

eG(t)F (t, u(t))dt. (2.6)

Using the continuity of f and Ii, i = 1, 2, . . . p, we obtain the continuity and differ-
entiability of ϕ and ϕ ∈ C1(H,R). For any v ∈ H, one has

ϕ′(u)v =
∫ T

0

eG(t)u′(t)v′(t)dt+ λ

∫ T

0

eG(t)u(t)v(t)dt+
α

β
eG(T )u(T )v(T )

−
p∑
i=1

eG(ti)Ii(u(ti))v(ti)−
∫ T

0

eG(t)f(t, u(t))v(t)dt.
(2.7)

Hence, a critical point of ϕ defined by (2.6), gives us a weak solution of (1.3).

Definition 2.1. Let E be a Banach space and ϕ : E → R, is said to be sequentially
weakly lower semi-continuous if limk→+∞ inf ϕ(xk) ≥ ϕ(x) as xk ⇀ x in E.

Definition 2.2 ([16, p. 81]). Let E be a real reflexive Banach space. For any
sequence {uk} ⊂ E, if ϕ(uk) is bounded and ϕ′(uk) → 0, as k → +∞ possesses a
convergent subsequence, then we say ϕ satisfies the Palais-Smale condition.

Lemma 2.3. If u ∈ H is a weak solution of (1.3), then u is a classical solution of
(1.3).

Proof. By the definition of weak solution, one has∫ T

0

eG(t)u′(t)v′(t)dt+ λ

∫ T

0

eG(t)u(t)v(t)dt+
α

β
eG(T )u(T )v(T )

−
p∑
i=1

eG(ti)Ii(u(ti))v(ti)−
∫ T

0

eG(t)f(t, u(t))v(t)dt = 0.
(2.8)

For i ∈ {0, 1, 2, . . . p}, we choose v ∈ H with v(t) = 0 for every t ∈ [0, ti]∪ [ti+1, T ].
Then we have∫ ti+1

ti

eG(t)u′(t)v′(t)dt+ λ

∫ ti+1

ti

eG(t)u(t)v(t)dt =
∫ ti+1

ti

eG(t)f(t, u(t))v(t)dt.

By the definition of weak derivative, the above equality implies

− (eG(t)u′(t))
′
+ λeG(t)u(t) = eG(t)f(t, u(t)), a.e. t ∈ (ti, ti+1). (2.9)

i.e.
−u′′(t) + λu(t) + g(t)u′(t) = f(t, u), a.e. t ∈ (ti, ti+1).

Hence, ui = u|(ti,ti+1) ∈ H2(ti, ti+1) and u satisfies the first equation in (1.3) a.e.
on [0, T ]. Now, multiplying by v ∈ H, v(T ) = 0 and integrating between 0 and T ,
we obtain

−
p∑
i=1

∆(eG(ti)u′(ti))v′(ti) =
p∑
i=1

(eG(ti)I(ti))v′(ti).

Hence
−∆u′(ti) = Ii(u(ti)), i = 1, 2, . . . , p,

thus, u satisfies the impulsive conditions. It is easy to verify u satisfies the boundary
conditions u(0) = 0, αu(T ) + βu′(T ) = 0. Therefore, u is a classical solution to
(1.3). �
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Lemma 2.4 ([16, 7, Theorem 38]). For the functional F : M ⊆ X → [−∞,+∞]
with M 6= ∅, minu∈M F (u) = α has a solution when the following conditions hold:

(i) X is a real reflexive Banach space;
(ii) M is bounded and weak sequentially closed; i.e., by definition, for each

sequence un in M such that un ⇀ u as n→∞, we always have u ∈M ;
(iii) F is weak sequentially lower semi-continuous on M .

Next we sate the mountain pass theorem [3, Theorem 4.10].

Lemma 2.5. Let E be a Banach space and ϕ ∈ C1(E,R) satisfy Palais-Smale
condition. Assume there exist x0, x1 ∈ E, and a bounded open neighborhood Ω of
x0 such that x1 6∈ Ω and

max{ϕ(x0), ϕ(x1)} < inf
x∈∂Ω

ϕ(x).

Then there exists a critical value of ϕ; that is, there exists u ∈ E such that ϕ′(u) = 0
and ϕ(u) > max{ϕ(x0), ϕ(x1)}.

Now we have the symmetric mountain pass theorem [7, Theorem 9.12].

Lemma 2.6. Let E be an infinite dimensional real Banach space. Let ϕ ∈ C1(E,R)
be an even functional which satisfies the Palais-Smale condition, and ϕ(0) = 0.
Suppose that E = V ⊕X, where V is infinite dimensional, and ϕ satisfies that

(i) there exist γ > 0 and ρ > 0 such that ϕ(u) ≥ γ for all u ∈ X with ‖u‖ = ρ,
(ii) for any finite dimensional subspace W ⊂ E there is R = R(W ) such that

ϕ(u) ≤ 0 on W \BR(W ).
Then ϕ possesses an unbounded sequence of critical values.

Lemma 2.7. There exists δ > 0 such that if u ∈ H, then ‖u‖∞ ≤ δ‖u‖, where
‖u‖∞ = maxt∈[0,T ] |u(t)|.

Proof. It follows from Hölder’s inequality that

|u(t)| = |
∫ t

0

u′(s)ds|

≤
∫ t

0

|u′(s)|ds ≤
∫ T

0

|u′(t)|dt

≤
(∫ T

0

1
eG(t)

ds
)1/2(∫ T

0

eG(t)|u′(t)|2ds
)1/2

≤
√
T

m
‖u‖,

thus, we can choose δ =
√

T
m such that Lemma 2.7 holds. �

Lemma 2.8. There exist two constants θ2 > θ1 > 0 such that if u ∈ H, then

θ1‖u‖2 ≤ A(u, u) ≤ θ2‖u‖2.

Proof. Firstly, when λ ≥ 0, we obtain the following results by Poincaré’s inequality,

A(u, u) =
∫ T

0

eG(t)(u′(t))2dt+ λ

∫ T

0

eG(t)(u(t))2dt+
α

β
eG(T )u2(T )

≤
∫ T

0

eG(t)(u′(t))2dt+ λM

∫ T

0

(u(t))2dt+
α

β
eG(T )u2(T )
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≤
∫ T

0

eG(t)(u′(t))2dt+
λM

λ1

∫ T

0

eG(t)

m
(u′(t))2dt+

α

β
eG(T )u2(T )

≤ (1 +
λM

λ1m
)
∫ T

0

eG(t)(u′(t))2dt+
Mα

β
‖u(t)‖2∞

≤ (1 +
λM

λ1m
+
Mαδ2

β
)‖u‖2.

and

A(u, u) =
∫ T

0

eG(t)(u′(t))2dt+ λ

∫ T

0

eG(t)(u(t))2dt+
α

β
eG(T )u2(T )

≥
∫ T

0

eG(t)(u′(t))2dt

= ‖u‖2.

thus, θ1 = 1, θ2 = 1 + λM
λ1m

+ Mαδ2

β .
Secondly, when 0 > λ > −mλ1/M , by using Poincaré’s inequality, one has

A(u, u) =
∫ T

0

eG(t)(u′(t))2dt+ λ

∫ T

0

eG(t)(u(t))2dt+
α

β
eG(T )u2(T )

≥
∫ T

0

eG(t)(u′(t))2dt+ λ

∫ T

0

eG(t)(u(t))2dt

≥
∫ T

0

eG(t)(u′(t))2dt+ λM

∫ T

0

(u(t))2dt

≥
∫ T

0

eG(t)(u′(t))2dt+
λM

λ1

∫ T

0

(u′(t))2dt

≥
∫ T

0

eG(t)(u′(t))2dt+
λM

λ1m

∫ T

0

eG(t)(u′(t))2dt

= (1 +
λM

λ1m
)‖u‖2,

and

A(u, u) =
∫ T

0

eG(t)(u′(t))2dt+ λ

∫ T

0

eG(t)(u(t))2dt+
α

β
eG(T )u2(T )

≤
∫ T

0

eG(t)(u′(t))2dt+
α

β
eG(T )u2(T )

≤ (1 +
Mαδ2

β
)‖u‖2,

thus, θ1 = 1 + λM
λ1m

, θ2 = 1 + Mαδ2

β . �

Lemma 2.9. The functional ϕ is continuous, continuously differentiable and weakly
lower semi-continuous.

Proof. By the continuity of f and Ii (i = 1, 2, . . . , p), it is easy to check that
functional ϕ is continuous, continuously differentiable. To show that ϕ is weakly
lower semi-continuous, let {un} be a weakly convergent sequence to u in H, then
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‖u‖ ≤ lim infn→∞ ‖un‖, and {un} converges uniformly to u in [0, T ], so when
n→∞, we have

lim inf
n→∞

ϕ(un) = lim inf
n→∞

(
1
2
‖un‖2 +

λ

2

∫ T

0

eG(t)(un(t))2dt+
α

2β
eG(T )u2

n(T )

−
∫ T

0

eG(t)F (t, un)dt−
p∑
i=1

eG(ti)

∫ un(ti)

0

Ii(t)dt)

≥ 1
2
‖u‖2 +

λ

2

∫ T

0

eG(t)(u(t))2dt+
α

2β
eG(T )u2(T )

−
∫ T

0

eG(t)F (t, u)dt−
p∑
i=1

eG(ti)

∫ u(ti)

0

Ii(t)dt

= ϕ(u).

Thus, by Definition 2.1, ϕ is weakly lower semi-continuous. �

Now, we introduce the well-known Ambrosetti-Rabinowitz condition: There exist
µ > 2 and r > 0 such that

0 < µF (t, u) ≤ f(t, u)u, ∀u ∈ R \ {0}, t ∈ [0, T ].

It is well known that the Ambrosetti-Rabinowitz condition is quite natural and
convenient not only to ensure the Palais-Smale sequence of the functional ϕ is
bounded but also to guarantee the functional ϕ has a mountain pass geometry.

Lemma 2.10. Suppose that Ambrosetti-Rabinowitz condition holds. Furthermore,
we assume

Ii(u)u ≥ µ
∫ u

0

Ii(t)dt, u ∈ R \ {0}.

then the functional ϕ satisfies Palais-Smale condition.

Proof. Let {uk} be a sequence in H such that {ϕ(uk)} is bounded and ϕ′(uk)→ 0,
as k → +∞, then we will prove {uk} possesses a convergent subsequence.

First we prove that {uk} is bounded. By the Ambrosetti-Rabinowitz condition
and Ii(u)u ≥ µ

∫ u
0
Ii(t)dt, we have

µϕ(uk)− ϕ′(uk)uk

= (
µ

2
− 1)A(uk, uk)− µ

p∑
i=1

eG(ti)

∫ uk(ti)

0

Ii(t)dt+
p∑
i=1

eG(ti)Ii(uk(ti))uk(ti)

− µ
∫ T

0

eG(t)F (t, uk)dt+
∫ T

0

eG(t)f(t, uk)ukdt

≥ (
µ

2
− 1)θ1‖uk‖2,

which implies that {uk} is bounded. Hence there exists a subsequence of {uk} (for
simplicity denoted again by {uk}) such that {uk} weakly converges to some u in
H, then the sequence {uk} converges uniformly to u in [0, T ]. Hence

(ϕ′(uk)− ϕ′(u))(uk − u)→ 0,∫ T

0

eG(t)(F (t, u)− f(t, u))(uk − u)dt→ 0,
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[Ii(uk(ti))− Ii(u(ti))](uk(ti)− u(ti))→ 0,

as k → +∞. Thus, we have

(ϕ′(uk)− ϕ′(u))(uk − u)

= ϕ′(uk)(uk − u)− ϕ′(u)(uk − u)

=
∫ T

0

eG(t)(u′k(t)− u′(t))2dt+ λ

∫ T

0

eG(t)(uk(t)− u(t))2dt+
α

β
(uk(T )− u(T ))2

−
p∑
i=1

eG(ti)[Ii(uk(ti))− Ii(u(ti))](uk(ti)− u(ti))

−
∫ T

0

eG(t)(f(t, uk)− f(t, u))(uk(t)− u(t))dt

= A(uk(t)− u(t), uk(t)− u(t))−
p∑
i=1

eG(ti)[Ii(uk(ti))

− Ii(u(ti))](uk(ti)− u(ti))−
∫ T

0

eG(t)(f(t, uk)− f(t, u))(uk(t)− u(t))dt

≥ θ1‖uk − u‖2 −
p∑
i=1

eG(ti)[Ii(uk)(ti)

− Ii(u(ti))](uk(ti)− u(ti))−
∫ T

0

eG(t)(f(t, uk)− f(t, u))(uk(t)− u(t))dt,

which means ‖uk − u‖ → 0, as k → +∞. That is, {uk} converges strongly to u in
H. �

The following Lemma was proved in [20].

Lemma 2.11. Denote M̄ = maxt∈[0,T ],|u|=1 F (t, u), m̄ = mint∈[0,T ],|u|=1 F (t, u).
Suppose that Ambrosetti-Rabinowitz condition holds. Then, for every t ∈ [0, T ], the
following inequalities hold.

(i) F (t, u) ≤ M̄ |u|µ, if |u| < 1,
(ii) For any finite dimensional subspace W ∈ H and any u ∈ W , there exist

constants A,B > 0, such that
∫ T

0
F (t, u)dt ≥ m̄Bµ‖u‖µ −AT .

3. Main results

Our main results are the following theorems.

Theorem 3.1. Suppose that λ > −mλ1/M , f and Ii (i = 1, 2, . . . , p) are bounded,
and furthermore f(t, 0) 6≡ 0, then (1.3) has at least one classical solution.

Proof. Take C > 0, Ci > 0, i = 1, 2, . . . , p, such that

|f(t, u)| ≤ C, ∀(t, u) ∈ [0, T ]× R,
|Ii(u)| ≤ Ci, ∀(t, u) ∈ [0, T ]× R, i = 1, 2, . . . , p.

For any u ∈ H, one has

ϕ(u) =
1
2
A(u, u)−

p∑
i=1

eG(ti)

∫ u(ti)

0

Ii(t)dt−
∫ T

0

eG(t)F (t, u(t))dt
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≥ 1
2
θ1‖u‖2 −

p∑
i=1

eG(ti)

∫ u(ti)

0

Ii(t)dt−
∫ T

0

eG(t)F (t, u(t))dt

≥ 1
2
θ1‖u‖2 −

p∑
i=1

eG(ti)Ci|u(ti)| −
∫ T

0

eG(t)F (t, u(t))dt

≥ 1
2
θ1‖u‖2 −

p∑
i=1

eG(ti)Ci|u(ti)| − CM
∫ T

0

|u(t)|dt

≥ 1
2
θ1‖u‖2 −

p∑
i=1

eG(ti)Ci‖u‖∞ − CMT‖u‖∞

≥ 1
2
θ1‖u‖2 −M

p∑
i=1

Ci‖u‖∞ − CMT‖u‖∞

≥ 1
2
θ1‖u‖2 −M

p∑
i=1

Ciδ‖u‖ − CMTδ‖u‖,

which implies that lim inf‖u‖→∞ ϕ(u) = +∞, thus, ϕ is coercive. Hence, by [3,
Lemma 2.7 and Theorem 1.1], ϕ has a minimum, which is a critical point of ϕ,
then (1.3) has at least one solution. �

Analogously we have the following result.

Theorem 3.2. Suppose that λ > −mλ1/M , f and Ii (i = 1, 2, . . . , p) have sublinear
growth, and furthermore f(t, 0) 6≡ 0, then (1.3) has at least one classical solution.

Proof. Let a, b, ai, bi > 0, and γ, γi ∈ [0, 1), i = 1, 2, . . . , p, such that

|f(t, u)| ≤ a+ b|u|γ , ∀(t, u) ∈ [0, T ]× R,
|Ii(u)| ≤ ai + bi|u|γi , ∀u ∈ R, i = 1, 2, . . . , p.

By using the same methods as in the above proof, there exists η > 0, such that

ϕ(u) ≥ 1
2
θ1‖u‖2 − η‖u‖γ+1,

which implies that lim inf‖u‖→∞ ϕ(u) = +∞, thus, ϕ is coercive. Hence, by [3,
Lemma 2.7 and Theorem 1.1], ϕ has a minimum, which is a critical point of ϕ,
then (1.3) has at least one solution. �

Theorem 3.3. Suppose the Ambrosetti-Rabinowitz condition holds, λ > −mλ1/M ,
and there exist δi > 0, µ > 2, i = 1, 2, . . . p such that

∫ u
0
Ii(t)dt ≤ δi|u|µ, Ii(u)u ≥

µ
∫ u

0
Ii(t)dt > 0, u ∈ R \ {0}. Then the impulsive problem (1.3) has at least two

classical solutions.

Proof. Firstly, We will show that there exists ρ > 0 such that the functional ϕ has
a local minimum u0 ∈ Bρ = {u ∈ H : ‖u‖ < ρ}. By the same methods used in
[20] show that Bρ is a bounded and weak sequentially closed. Noting that ϕ is
weak sequentially lower semi-continuous on Bρ and H is a reflexive Banach space.
Then by Lemma 2.4 we can know that ϕ has a local minimum u0 ∈ Bρ; that is,
ϕ(u0) = minu∈Bρ ϕ(u).
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In the following, we will show that ϕ(u0) < infu∈∂Bρ ϕ(u). Choose ρ small
enough such that

θ1

2
ρ2 −M

p∑
i=1

δiρ
µ −MM̄ρµδµT > 0.

For all u = ρω, ω ∈ H with ‖ω‖ = 1, we have ‖u‖ = ‖ρω‖ = ρ‖ω‖ = ρ, thus
u ∈ ∂Bρ. By Lemma 2.8 and (i) of Lemma 2.11, one has

ϕ(u) = ϕ(ρω)

=
1
2
A(ρω, ρω)−

p∑
i=1

eG(ti)

∫ ρω(ti)

0

Ii(t)dt−
∫ T

0

eG(t)F (t, ρω(t))dt

≥ θ1

2
ρ2 −

p∑
i=1

eG(ti)

∫ ρω(ti)

0

Ii(t)dt−M
∫ T

0

M̄ |ρω|µdt

≥ θ1

2
ρ2 −M

p∑
i=1

δi|ρω|µ −MM̄ρµ
∫ T

0

|ω|µdt

≥ θ1

2
ρ2 −M

p∑
i=1

δiρ
µ −MM̄ρµδµT,

thus we obtain ϕ(u) > 0 = ϕ(0) ≥ ϕ(u0) for u ∈ ∂Bρ, which implies ϕ(u0) <
infu∈∂Bρ ϕ(u).

Secondly, we will show that there exists u1 with ‖u‖ > ρ, such that ϕ(u1) <
infu∈∂Bρ ϕ(u). By Lemma 2.8, the sublinear growth of Ii, i = 1, 2 . . . , p and (ii) of
Lemma 2.11, one has

ϕ(u) =
1
2
A(u, u)−

p∑
i=1

eG(ti)

∫ u(ti)

0

Ii(t)dt−
∫ T

0

eG(t)F (t, u(t))dt

≤ 1
2
θ2‖u‖2 −m(m̄Bµ‖u‖µ −AT ).

Therefore, we can choose u1 with ‖u1‖ sufficiently large such that ϕ(u1) < 0. Then
we have

max{ϕ(u0), ϕ(u1)} < inf
u∈∂Bρ

ϕ(u).

Lemma 2.10 shows that u satisfies Palais-smale condition. Hence, by Lemma 2.5
there exists a critical point û. Therefore, u0 and û are two critical points of ϕ, and
they are also classical solutions of (1.3). �

Theorem 3.4. Suppose the Ambrosetti-Rabinowitz condition holds, λ > −mλ1/M ,
and there exist δi > 0, µ > 2, i = 1, 2, . . . p such that

∫ u
0
Ii(t)dt ≤ δi|u|µ, Ii(u)u ≥

µ
∫ u

0
Ii(t)dt > 0, u ∈ R \ {0}. Moreover, f(t, u) and Ii are odd about u, then the

impulsive problem (1.3) has infinitely many classical solutions.

Proof. For any u ∈ H, we know that ‖u‖ ≤ 1
δ implies ‖u‖∞ ≤ 1 by Lemma 2.7,

thus when ‖u‖ ≤ 1
δ , one has the following inequality by (i) of Lemma 2.11,

ϕ(u) =
1
2
A(u, u)−

p∑
i=1

eG(ti)

∫ u(ti)

0

Ii(t)dt−
∫ T

0

eG(t)F (t, u(t))dt



EJDE-2014/62 AN APPLICATION OF VARIATIONAL METHODS 11

≥ 1
2
θ1‖u‖2 −M

p∑
i=1

δi|u|µ −
∫ T

0

eG(t)F (t, u(t))dt

≥ 1
2
θ1‖u‖2 −M

p∑
i=1

δi‖u‖µ∞ −
∫ T

0

eG(t)F (t, u(t))dt

≥ 1
2
θ1‖u‖2 −M

p∑
i=1

δiδ‖u‖µ −MM̄Tδµ‖u‖µ.

Thus we can choose u with ‖u‖ sufficiently small such that ϕ(u) ≥ γ > 0. Thus ϕ
satisfies condition (i) of Lemma 2.6.

In the following, it is turn to verify condition (ii) of Lemma 2.6. In fact, we can
get the following inequality by (ii) of Lemma 2.11,

ϕ(u) =
1
2
A(u, u)−

p∑
i=1

eG(ti)

∫ u(ti)

0

Ii(t)dt−
∫ T

0

eG(t)F (t, u(t))dt

≤ 1
2
θ2‖u‖2 −m

∫ T

0

F (t, u(t))dt

≤ 1
2
θ2‖u‖2 −m(m̄Bµ‖u‖µ −AT ).

Noting that µ > 2, the above inequality implies that ϕ(u) → −∞ as ‖u‖ → ∞
with u ∈ W . Therefore, there exists R = R(W ) such that ϕ(u) ≤ 0 on W \ BR.
According to Lemma 2.6, the functional ϕ(u) possesses infinitely many critical
points; i.e., the impulsive problem (1.3) has infinitely many classical solutions. �

Remark 3.5. Equation (1.3) when β = 0, i.e. (1.2), which has been studied in
[13]. By defining a new functional

ϕ̃(u) =
1
2

∫ T

0

eG(t)u′(t)v′(t)dt+
λ

2

∫ T

0

eG(t)u(t)v(t)dt

−
p∑
i=1

eG(ti)

∫ u(ti)

0

Ii(t)dt−
∫ T

0

eG(t)F (t, u(t))dt,

and using the same methods, we can obtain the same results as the above-proved
four theorems when λ > − mπ2

MT 2 .

4. Examples

Example 4.1. Take T > 0, t1 ∈ (0, T ), g(t) = t, a(t), b(t) ∈ C([0, T ],R), c ∈ R,
α ≥ 0, β > 0. Consider the equation

−u′′(t) + λu(t) + g(t)u′(t) = a(t) sinu(t) + b(t), a.e. t ∈ [0, T ],

−∆u′(t1) = c cosu(t1),

u(0) = 0, αu(T ) + βu′(T ) = 0,

(4.1)

when λ > −eT 2/2λ1, equation (4.1) is solvable according to Theorem 3.1.
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Example 4.2. Take T > 0, t1 ∈ (0, T ), g(t) = t, a(t), b(t) ∈ C([0, T ],R), c, d ∈ R,
α ≥ 0, β > 0. Consider the equation

−u′′(t) + λu(t) + g(t)u′(t) = a(t) 3
√
u(t) + b(t) sinu(t), a.e. t ∈ [0, T ],

−∆u′(t1) = c 5
√
u(t1) + d cosu(t1),

u(0) = 0, αu(T ) + βu′(T ) = 0,

(4.2)

when λ > −eT 2/2λ1, equation (4.2) is solvable according to Theorem 3.2.

Example 4.3. Take T > 0, t1 ∈ (0, T ), g(t) = t, a(t) ∈ C([0, T ], (0,+∞)), c > 0,
µ = 3, δ1 = 1/6, α ≥ 0, β > 0. Consider the equation

−u′′(t) + λu(t) + g(t)u′(t) = 2a(t)(eu
2
− e−u

2
)u5 + 4a(t)(eu

2
− e−u

2
)u3,

a.e. t ∈ [0, T ],

−∆u′(t1) = cu5(t1),

u(0) = 0, αu(T ) + βu′(T ) = 0,

(4.3)

when λ > −eT 2/2λ1, equation (4.3) has at least two classical solutions according to
Theorem 3.3.

Example 4.4. Take T > 0, t1 ∈ (0, T ), g(t) = t, a(t), b(t) ∈ C([0, T ], (0,+∞)),
c > 0, µ = 3, δ1 = 1/4, α ≥ 0, β > 0. Consider the equation

−u′′(t) + λu(t) + g(t)u′(t) = a(t)u5(t) + b(t)u7(t), a.e. t ∈ [0, T ],

−∆u′(t1) = cu3(t1),

u(0) = 0, αu(T ) + βu′(T ) = 0,

(4.4)

when λ > −eT 2/2λ1, equation (4.4) has infinitely many classical solutions according
to Theorem 3.4.
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