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The Parikh–Wilczek tunnelling framework, which treats Hawking radiation as a tunnelling process, is
investigated once more in this work. The first order correction, the log-corrected entropy-area relation,
emerges naturally in the tunnelling picture if we consider the emission of a spherical shell. The second
order correction to the emission rate for the Schwarzschild black hole is also calculated. At this level, the
entropy of the black hole will contain three parts: the usual Bekenstein–Hawking entropy, a logarithmic
term and an inverse area term. We find that the coefficient of the logarithmic term is −1. Thus, apart
from a coefficient, our correction to the black hole entropy is consistent with that calculated in loop
quantum gravity.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In 2000, Parikh and Wilczek proposed an approach for calcu-
lating the emission rate at which particles tunnel across the event
horizon [1]. They treated Hawking radiation as a tunnelling pro-
cess, and used the WKB method [2,3]. In this way they calculated
a corrected spectrum, which is accurate as a first order approxi-
mation. Following this method, many static or stationary rotating
black holes have been studied [4–31]. In all of this work, the en-
tropy of the black hole contains only the Bekenstein–Hawking en-
tropy. One may ask: will the Parikh–Wilczek framework still be
true if the quantum corrections to the entropy are taken into ac-
count? At present, consideration of such quantum corrections has
produced model and method dependent results [32–43]. The gen-
eral expression for the black hole entropy is [44,45]

Sq = AH

4l2p
+ α ln

AH

4l2p
+ O

(
l2p
AH

)
+ const, (1)

where α is a model-dependent (dimensionless) parameter. In the
case of Loop Quantum Gravity α is a negative coefficient whose
exact value was once an object of debate (see e.g. [37]) but has
since been rigorously fixed at α = −1/2. In String Theory the sign
of α depends on the number of field species appearing in the low
energy approximation [36]. It would, therefore, be very interesting
work to introduce the log-corrected entropy–area relation in the
tunnelling framework. Moreover, one may ask: if the emission rate
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is calculated to second order, will the entropy contain the inverse
area term as given in Eq. (1)? In this Letter we first show that, in
the tunnelling picture and taking the emission of a particle in the
form of a surface wave (spherical shell), a logarithmic correction
term does occur in the expression of the black hole entropy. We
then verify that, if we calculate the emission rate to second order
using the Parikh–Wilczek tunnelling framework, the entropy of the
black hole will contain three parts: the usual Bekenstein–Hawking
entropy, the logarithmic term and the inverse area term. We fi-
nally make two comments as to the validity of the Parikh–Wilczek
framework in our calculation.

2. Black hole tunnelling and the first order correction
to the black hole entropy

As mentioned above, Parikh and Wilczek applied the WKB ap-
proximation to calculate the emission rate of a tunnelling particle
(an S-shell wave). We start with a brief review of the WKB method
and barrier penetration. For a massless particle (massless shell),
the infinite blueshift near the black hole horizon causes the char-
acteristic wavelength of any wavepacket of the S-wave (see [1–3])
to be arbitrarily small near the horizon. Given this, the geometri-
cal optics limit becomes an especially reliable approximation. The
geometrical optics limit allows us to obtain rigorous results in the
language of particles directly. That is, the WKB method and the
expression of the emission rate are the same as that of a classical
massive particle. With this in mind, we only study the tunneling
process for a massive particle (massive shell) in what follows.
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Schrödinger’s equation for the motion of a particle in a centrally
symmetric field is

�ψ + (
2m/h̄2)(E − U (r)

)
ψ = 0. (2)

Let us consider the following radial equation:

1

r2

d

dr

(
r2 dR

dr

)
− l(l + 1)

r2
R + 2m

h̄2

(
E − U (r)

)
R = 0. (3)

By the substitution

R(r) = X(r)/r (4)

Eq. (3) is brought to the form

d2 X

dr2
+

[
2m

h̄2

(
E − U (r)

) − l(l + 1)

r2

]
X = 0. (5)

For the S-wave, l = 0, the equation for X(r) is:

d2 X

dr2
+ 2m

h̄2

(
E − U (r)

)
X = 0. (6)

Note that, in the Parikh–Wilczek framework, the tunnelling parti-
cle is considered as a spherical shell (S-wave) in order to calculate
the particle’s self-gravitation reliably. In this way, upon emission
from the black hole, the matter–gravity system transitions from
one spherical state to another. So, the de Broglie wave function
of the emission spherical shell should be:

ψ(r) = X(r)/r. (7)

That is, the WKB wave function of the particle can be written as

ψ(r) = X(r)

r
= 1

r
exp

[
i S(r)

h̄

]
, (8)

where

S(r) = S0(r) +
(

h̄

i

)
S1(r) +

(
h̄

i

)2

S2(r) + · · · . (9)

Substituting (8) into Schrödinger equation (6) yields

S0 = ±
r∫

pr dr, (10)

2S ′
0 S ′

1 + S ′′
0 = 0, (11)

2S ′
0 S ′

2 + (
S ′

1

)2 + S ′′
1 = 0, (12)

where we use a prime to denote differentiation with respect to r.
To evaluate the probability of a particle passing through the

barrier, we divide the whole region of motion of the particle by
two tunnelling points, a and b, into three parts: the ingoing and
reflecting region I, the barrier region II and the outgoing region III.
The particle moves as a free particle in region I and III, but region II
is classically inaccessible.

In region I, we take the WKB wave function as follows [46]:

XI(r) = 2√
v

sin

[
1

h̄

a∫
r

pr dr + π

4

]

= 1

i
√

v

{
exp

[
i

h̄

a∫
r

pr dr + iπ

4

]
− exp

[
− i

h̄

a∫
r

pr dr − iπ

4

]}
,

(13)

where v is the velocity of the tunnelling particle. In region II, the
WKB wave function is a linear combination of real exponentials.
Considering the connection between the oscillating and exponen-
tial solutions at r = a, the WKB wave function in region II can be
written as

XII(r) = 1√
v

exp

[
−1

h̄

∣∣∣∣∣
b∫

a

pr dr

∣∣∣∣∣
]

exp

[
−1

h̄

∣∣∣∣∣
r∫

b

pr dr

∣∣∣∣∣
]
. (14)

The WKB wave function in region III is:

XIII(r) = − 1√
v

exp

[
−1

h̄

∣∣∣∣∣
b∫

a

pr dr

∣∣∣∣∣
]

exp

[
i

h̄

r∫
b

pr dr + iπ

4

]
. (15)

The probability of barrier penetration is

Γp = jout

jin
= v|ψout|2

v|ψin|2 = v(Xout(b)/b)2

v(Xin(a)/a)2
= a2

b2
exp

[
−2 Im S0

h̄

]
. (16)

Let us now calculate the phase space factor corresponding to
the black hole tunnelling. For a Schwarzschild black hole, the line
element in Painlevé coordinates is

ds2 = −c2
(

1 − 2MG

c2r

)
dt2 + 2c

√
2MG

c2r
dt dr + dr2

+ r2(dθ2 + sin2 θ dφ2), (17)

and the radial null geodesics are

ṙ = dr

dt
= ±c

(
1 −

√
2MG

c2r

)
, (18)

with the upper (lower) sign in Eq. (18) corresponding to outgoing
(ingoing) geodesics, under the implicit assumption that t increases
towards the future [47].

In this Letter, however, we consider the tunneling of a massive
particle. That is, the outgoing particle is a massive shell (de Bro-
glie S-wave). Such massive quanta do not follow radial-lightlike
geodesics (18). In analogy to Ref. [19], we treat the massive par-
ticle as a de Broglie wave and obtain the expression for ṙ. Namely:

ṙ = v p = 1

2
v g = −1

2

g00

g01
= 1

2r

c2r2 − 2MGr√
2MGr

. (19)

Note that, to calculate the emission rate correctly, we should take
into account the self-gravitation of the tunnelling particle, here as-
sumed to have energy ω. That is, we should replace M with M −ω
in (17) and (19) to describe the motion of the particle correctly
[1–3].

The canonical momentum pr and the imaginary part of the ac-
tion Im S0 can be easily obtained. Namely:

pr =
pr∫

0

dp′
r =

∫
dH

ṙ
= −iπ

h̄

l2p
r, (20)

Im S0 = Im

r f∫
ri

pr dr = −1

2
h̄

[
A f

4l2p
− Ai

4l2p

]
. (21)

The probability of barrier penetration is

Γp = r2
i

r2
f

exp

[
−2 Im S0

h̄

]

= exp

[(
A f

4l2p
− ln

A f

4l2p

)
−

(
Ai

4l2p
− ln

Ai

4l2p

)]
, (22)

where l2p = h̄G/c3. In this Letter, we investigate the transition of
the matter-gravity system from one spherically symmetric state
to another at the same energy. This transition corresponds to the
production and barrier penetration of a massive spherical shell
(or a massless shell). To be specific, this process proceeds in two
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stages. The first stage is the production of the spherical shell from
the vacuum fluctuation near the event horizon. The second stage
is the barrier penetration. The rate of transition from the initial
spherical state to the final spherical state is therefore

Γ (i → f ) = ΓvΓp

= Γv exp

[(
A f

4l2p
− ln

A f

4l2p

)
−

(
Ai

4l2p
− ln

Ai

4l2p

)]
. (23)

Let us compare (23) with the unitary result of quantum mechanics,
Γ (i → f ) = |M f i |2 · (phase space factor), which is given in Ref. [1].
|M f i |2 is the probability amplitude of the process, in this case it is
related to the production rate for particles as vacuum fluctuations
near the event horizon. Thus, we obtain:

phase space factor = exp

[(
A f

4l2p
− ln

A f

4l2p

)
−

(
Ai

4l2p
− ln

Ai

4l2p

)]
. (24)

If we bear in mind that

phase space factor = N f

Ni
= eS f

eSi
= eS f −Si , (25)

we naturally get the expression for the first order correction to the
black hole entropy:

Sq = AH

4l2p
− ln

AH

4l2p
. (26)

3. Second order correction to the black hole entropy

Let us now calculate the tunnelling rate to second order accu-
racy. In order to get the second order correction to the black hole
entropy we write the second order expression for the wave func-
tion in the WKB approximation. Namely:

X(r) = exp

[
i S0(r)

h̄
+ S1(r) + h̄

i
S2(r)

]
, (27)

where

S2 =
r∫ (

− S ′ 2
1 + S ′′

1

2S ′
0

)
dr. (28)

Like the treatment in Section 2, the wave function in region I
can be taken as

XI (r) = 2√
v

sin

[
1

h̄

( a∫
r

pr dr − h̄2 S2(r)

)
+ π

4

]

= 1

i
√

v

{
exp

[
i

h̄

( a∫
r

pr dr − h̄2 S2(r)

)
+ iπ

4

]

− exp

[
− i

h̄

( a∫
r

pr dr − h̄2 S2(r)

)
− iπ

4

]}
. (29)

In this region the expression of S2(r) is

S2 =
a∫

r

(
− S ′ 2

1 + S ′′
1

2S ′
0

)
dr. (30)

In order to reduce to the first order result, the connection between
the oscillating and exponential solutions at r = a should be

2√
v

sin

[
1

h̄

( a∫
r

pr dr − h̄2 S2(r)

)
+ π

4

]
(r < a)

� 1√
v

exp

[
−1

h̄

( r∫
|pr |dr − h̄2 S2(r)

)]
(r > a). (31)
a

On the right-hand side of the connection (31), the expression of
S2(r) is:

S2 =
r∫

a

(
− S ′ 2

1 + S ′′
1

2S ′
0

)
dr. (32)

The connection at r = b is:

1√
v

exp

[
1

h̄

(∣∣∣∣∣
r∫

b

pr dr

∣∣∣∣∣ − h̄2 S2

)]
(r < b)

� − 1√
v

exp

[
i

h̄

( r∫
b

pr dr − h̄2 S2

)
+ iπ

4

]
(r > b), (33)

and the wave function in region III is

XIII(r) = − 1√
v

exp

[
−1

h̄

(
Im S0 − h̄2 Im S2

)]

× exp

[
i

h̄

( r∫
b

pr dr − h̄2 S2

)
+ iπ

4

]
, (34)

where

Im S2 = Im

b∫
a

(
− S ′ 2

1 + S ′′
1

2S ′
0

)
dr. (35)

Since

ψ(r) = X(r)/r, (36)

in region I, the ingoing flux density is

jin = −ih̄

2m

(
ψin

∂

∂r
ψ∗

in − ψ∗
in

∂

∂r
ψin

)
= v

∣∣ψ2
in

∣∣ = 1

a2
, (37)

and in region III the outgoing flux density is

jout = −ih̄

2m

(
ψout

∂

∂r
ψ∗

out − ψ∗
out

∂

∂r
ψout

)

= v
∣∣ψ2

out

∣∣ = 1

b2
exp

[
−2

h̄

(
Im S0 − h̄2 Im S2

)]
. (38)

Therefore,

Γp = jout/ jin = a2

b2
exp

[
−2

h̄

(
Im S0 − h̄2 Im S2

)]
. (39)

For Schwarzschild black hole tunnelling through the classically in-
accessible region, we have

S ′
0 = pr = −iπ

h̄

l2p
r, S ′′

0 = −iπ
h̄

l2p
, (40)

and

S ′
1 = −1

2

S ′′
0

S ′
0

= − 1

2r
, S ′′

1 = 1

2r2
. (41)

From (41) we can easily obtain

S ′
2 = − 1

2S ′
0

(
S ′ 2

1 + S ′′
1

) = −
(

3i

8π

l2p
h̄

)
· 1

r3
. (42)

So,

S2 =
r f∫

ri

S ′
2 dr = 3i

4h̄

(
l2p
A f

− l2p
Ai

)
. (43)

Substituting (21), (43) into (39) and considering Γ (i → f ) =
|M f i |2 · (phase space factor), yields
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phase space factor

= exp

[(
A f

4l2p
− ln

A f

4l2p
+ 3

2

l2p
A f

)
−

(
Ai

4l2p
− ln

Ai

4l2p
+ 3

2

l2p
Ai

)]
. (44)

Comparing (44) with (25), we get the expression of the second
order correction to the black hole entropy

Sq = AH

4l2p
− ln

AH

4l2p
+ 3

2

l2p
AH

+ const, (45)

which is consistent with the general formulation of the black hole
entropy. The emission rate is:

Γ (i → f ) ∼ e�Sq . (46)

4. Conclusion and comments

We showed how a log-corrected entropy–area relation can
emerge in the tunnelling picture by considering the emission of a
particle in the form of a spherical shell. We also showed that, if the
emission rate is calculated to second order accuracy, the black hole
entropy will contain three parts: the usual Bekenstein–Hawking
entropy, a logarithmic term and an inverse area term. Apart from
a coefficient, our correction to the black hole entropy is consistent
with that calculated using loop quantum gravity. In the following,
we give two comments regarding the Parikh–Wilczek method as
applied to our calculation.

(1) In this Letter, we only take into account the emission of a
massive particle. The motion of a massless particle (S-wave) is very
different from that of a massive particle. However, as mentioned in
the first paragraph of the Section 2, a massless shell can be treated
in particle language. That is, for the massless shell we can also
apply the WKB method and obtain the same functional form for
the emission rate as that for the massive particle. So, Eqs. (45) and
(46) are also suitable for massless particle emission.

(2) In the first order approximation, the previous expression for
the emission rate can be written in the following explicit form:

Γ ∼ exp(�Sq) =
(

1 − ω

M

)α

exp

(
−8πGMω

(
1 − ω

2M

))
. (47)

In Refs. [6,13] the authors pointed out that the coefficient of the
log-corrected term in the black hole entropy should be positive,
otherwise, the probability of emission will diverge when the emis-
sion particle’s mass, ω, approaches M . In fact, if we consider
the condition appropriate for application of the WKB method, the
emission particle’s mass, ω, will never approach M , it must be far
smaller than the black hole mass M . Here is our derivation.

The WKB method is established for the conditions:

h̄
∣∣S ′′

0

∣∣ � ∣∣S ′ 2
0

∣∣, (48)

and

2h̄
∣∣S ′

0 S ′
1

∣∣ � ∣∣S ′ 2
0

∣∣. (49)

From (40) and (41), the above conditions (48) and (49) can be in-
corporated into an inequality, that is

h̄

∣∣∣∣dpr

dr

∣∣∣∣ � ∣∣p2
r

∣∣. (50)

Considering pr = −iπr and 2(M − ω) � r � 2M , (50) becomes

2(M − ω) �
√

h̄

π
. (51)

That is,

M � ω. (52)
This means that the Parikh–Wilczek framework is only suitable for
the emission of the particle whose energy is far less than the mass
of the black hole. During most of the black hole’s evaporation this
condition is satisfied, that is, the mass of the particles emitted
will not approach the black hole mass M . The coefficient of the
log-corrected term in the black hole entropy is, therefore, not con-
strained to be positive. However, in the last stage of evaporation
the emission will be very strong, and the mass of the emitted par-
ticles will be very great, the WKB conditions will not be satisfied,
and one would have to resort to other mechanisms to describe the
last stage of the evaporation.
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