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Embryo zebrafish segmentation using an improved hybrid method
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Summary

Zebrafish is an invaluable vertebrate model in life science
research and has been widely used in biological pathway
analysis, molecular screening and disease modelling, among
others. As a result, microscopic imaging has become an
essential step in zebrafish phenotype analysis, and image
segmentation thus plays an important role in the zebrafish
microscopy analysis. Due to the nonuniform distribution
of intensity and weak boundary in zebrafish microscope
images, the traditionally used segmentation methods may
lead to unsatisfactory result. Here, a novel hybrid method
that integrates region and boundary information into active
contour model is proposed to segment zebrafish embryos
from the background, which performs better than traditional
segmentation models. Meanwhile, how to utilize the gradient
information effectively in image segmentation is still an
open problem. In this paper, we propose to improve the
aforementioned hybrid method in two aspects. Firstly, the
mean grey value of background is estimated by the expectation
maximization (EM) algorithm to constrain the active curve
evolution. Secondly, an edge stopping function sensitive to
gradient information is designed to stop curve evolution when
the active curve reaches the embryo boundary. Experimental
results show that the proposed methods can provide superior
segmentation results compared to existing algorithms.

Introduction

The zebrafish (Danio rerio) is an invaluable vertebrate
model system in life science research, and computerized
characterization of zebrafish morphology is significantly
important for biological pathway analysis, disease modelling
and drug discovery (Zhang et al., 2004; Stern & Zon, 2003),
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among others. In recent years, many researchers have been
using zebrafish for answering basic biological questions,
for toxicology research and for environmental monitoring
(Schier & Talbot, 2005). Particularly, recently available high-
throughput zebrafish bioimaging systems, such as the GE In
Cell 1000/3000 systems, can produce dozens of thousands
images (data up to gigabytes) at a time, which is practically
impossible to handle them manually by average biologists. If
the image data can be processed and analysed by computerized
algorithmic pipeline, the results not only will be more
objective, but also can be fed to structured database for further
statistical analysis and data mining (e.g., Lu et al., 2006, 2011,
2012; Liu et al., 2006, 2008, 2008b).

Essentially, automatic image segmentation, which is very
important for the subsequent steps of image registration, shape
analysis and morphological analysis and understanding, is a
fundamental problem in computerized zebrafish microscopy
image analysis. Accurate zebrafish embryo segmentation
contributes to not only biological research of zebrafish
development, but also to the subsequent zebrafish phenotype
analysis, e.g. curvature quantization of zebrafish tail and
corresponding classification, zebrafish shape registration and
zebrafish image retrieval, and so on.

Image segmentation can be done using various methods
such as threshold-based segmentation and area growth.
However, the intensity distribution of embryo is typically
nonuniform in many zebrafish bioimages. For instance, in
some zebrafish images, the grey value of the head area is
less than that of the background, whereas the grey value of
embryo tail is greater than that of the background. The Otsu
algorithm (Otsu, 1979), among the most popular thresholding
methods, can obtain satisfactory segmentation results
under the assumption that the distributions of target and
background appear as a two-peaked shape. However, in
the case of the overlapping intensity distributions between
the object and the background, this method may have
difficulties. For instance, in our case, part of the zebrafish
embryo information will be lost after the segmentation by
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the Otsu algorithm. Meanwhile, edge detection plays an
important role in image segmentation. In recent years, several
new edge detection approaches have been presented with
the development of artificial intelligence and mathematics,
such as wavelet transform method, neural network method,
morphological method and so on. In general, all these
methods need to obtain gradient information first. However,
accurate target boundary cannot be obtained easily based on
the gradient information only. Hence, for these edge-based
methods, not only the earlier errors might be passed on to
the subsequent steps, but also the final edge may not be a
closed contour. As the boundary between the zebrafish embryo
and the background is weak, edge detection algorithms may
produce a contour that is incomplete or has some background
pixels misclassified as the zebrafish target.

In recent years, partial differential equations (PDE) based
on active contour models are widely used in image
segmentation methods. Active contour model such as the
snake method, initially proposed by Kass, Witkin and
Terzopoulos (Kass, 1988; Terzopoulos, 1988), is a popular
model for image segmentation. Essentially, the active contour
model overcomes such drawbacks as nonclosed boundary
and susceptibility to noise in previous image segmentation
methods, and can achieve more natural segmentation result.
However, the initial snake method needs to set many
parameters and has high computational costs. Therefore
its utilization is limited by problems associated with the
initialization and poor convergence to boundary concavities.
Since the traditional geometric active contour model (Caselles,
1997) depends only on image edge, which, in the case of
zebrafish embryo, is blurry and discrete, it is difficult to
obtain the ideal result. Afterwards, the simplified Mumford–
Shah model proposed by Chan & Vese (2001) can segment
target without edge information, and is a typical method
used for segmenting target with blurry boundary. The
model divides image into two parts with different mean
grey levels, associated with the foreground and background
respectively. However, due to the large variation in intensity
distribution, the method’s reliance on global information of
the homogeneous regions may lead to many missing parts in
the final segmentation of the zebrafish embryo.

Generally speaking, hybrid methods can effectively
integrate the region and boundary information into active
contour model to achieve more accurate segmentation result
(Zhang, 2008). The boundary information can help to detect
the precise location of the target object, and the region
information can help to prevent the boundary leakage
problem. However, this hybrid method assumes that the
prior knowledge of the grey-level of background is available,
and this condition cannot be satisfied for most cases in
our application. By contrast, for images with weak target
boundary, the boundary leakage problem still persists when
executing segmentation using this method. Therefore, how
to utilize the gradient information effectively to overcome the

boundary leakage is still an open problem. In response to the
above problems, in this paper, we propose a novel algorithmic
pipeline to improve the aforementioned hybrid method in
two aspects. Firstly, the mean grey value of background is
estimated by the expectation maximization (EM) algorithm
in order to constrain active curve evolution. Secondly, an
edge stopping function sensitive to the gradient information
is designed to stop curve evolution when active curve reaches
embryo boundary. In addition, the numerical scheme can
adopt additional operator splitting algorithm (Weickert, 1998)
to reduce computational costs. In short, combined with the
level set approach, the active contour model can deal with
topology change of active curve automatically, and then
reduce the interference of image noise.

Method

Dataset

Embryos were obtained from natural spawning of wild-type
(Tubingen long fin [TLF] strain) adults. They were raised
and staged according to Kimmel et al. (1995), and images of
zebrafish embryos at 48 h postfertilization were acquired using
IN CELL Analyzer 1000 (GE Amersham, Buckinghamshire,
UK) with 96-well plates (Lu et al., 2006). More details of the
imaging settings and data acquisition can be found in previous
publications (Lu et al., 2006, Liu et al., 2008).

Level set method

One of the problems with active contour model is that it cannot
deal with topological changes naturally during the curve
evolution. To address this issue, we apply the level set method
to the original active contour model, in order to allow natural
topological evolution of the model into the target boundaries.
In this section, the level set method is briefly described first, and
then the traditional classic models (e.g. active contour model
without edges) and their disadvantage will be presented. The
hybrid model that can segment target more accurately will be
designed at last.

The original active contour model has relatively high time
complexity, and moreover, it cannot deal with topological
changes of the active curve and nor it can merge or split
the curves in the case of multiple targets. The level set
method later proposed by Osher & Sethian (1988) can
solve the numerical curve evolution problem effectively and
detect edges of multiple objects, which paves the way for
image processing based on partial differential equation. The
variational level set method is usually used in the active curve
evolution, and the Heaviside function (Zhao, 1996) is used to
achieve the goal, which is defined as follows:

H (u) =
{

1, u ≥ 0
0 u < 0

(1)
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In practice, the regularized Heaviside function

H (u) = 1
2

[
1 + 2

π
arctan

(
u
ξ

)]
(2)

is adopted, whose derivative function is

δξ (u) = 1
π

ξ

ξ2 + u2
, (3)

where the parameter ξ controls the change rate of H varying
from 0 to 1.

Typically, u(x, y) is defined to be the signed Euclidean
distance function from the point (x, y) to the curve C, and it is
negative when pointing outside the curve and is positive when
inside the curve. Based on this definition, the active curve can
be located by zero level set and u is changing constantly by the
evolution equation. As a result, the topology changes can be
easily dealt with by pushing the zero level set to the boundary of
target image, and the evolution will automatically stop at the
boundary. The convergence criterion of the curve evolution

is as follows:
∑

|un
i , j |<c |un+1

i , j −un
i , j |

M ≤ h2�t, where h denotes space
step with its unit grid point and �t denotes time step, M is the
number of grid points satisfying the condition |un

i , j | < c and
the parameter c is a constant number (h ≤ c ≤ 2h).

Brief introduction of the Chan–Vese model

If the mean intensity of the zebrafish target is quite different
from that of the background, the image can be divided into
two parts by the closed curve, and the region enclosed by the
curve corresponds to the target. Then, the curve is regarded
as the target contour. Based on this idea, the energy function

E (c1, c2, C ) = μ

∮
C

d s + λ1

∫∫
©
�1

(I − c1)2d xd y

+ λ2

∫∫
©
�2

(I − c2)2d xd y
(4)

was proposed by Chan & Vese (2001), called Chan–Vese model
here, where�1 and�2 denote regions inside and outside active
curve respectively and C in Eq. (4) denotes the curve.

The equation can be derived by the variational level set:

E (c1, c2, C ) = μ

∫∫
©
�

δ (u) |∇u| dxdy

+ λ1

∫∫
©
�

(I − c1)2 H (u) dxdy

+ λ2

∫∫
©
�

(I − c1)2 [1 − H (u)]dxdy.

(5)

When u is fixed, minimizing E relative to c1 and c2 will derive
the parameters:

ci =

∫∫
�i

Idxdy
∫∫

�

Idxdy
, i = 1, 2 (6)

and the parameters ci corresponds to the mean grey level
of different areas. The details of the numerical solution can
be found in the reference by Chan & Vese (2001). In the
experiment, |∇u| is used instead of δξ (Zhao, 1996) in order
to expand the variation range of embedding function u. The
property of the signed distance function gives |∇u| = 1, so the
iteration equation can be simplified as

∂u
∂t

= μ div
( ∇u

|∇u|
)

− (I − c1)2 + (I − c2)2 . (7)

When the curve is initialized around the target, better
segmentation result can be achieved. When there is no
complex background, the initial curve can be located at any
position. For the cases with complex background or targets
with nonuniform grey intensity distributions, c1 and c2 as the
global properties will not produce desired results, and only part
of the target with low intensity can be segmented correctly.
But the remaining part, which has a similar grey value as
background like the tail part of zebrafish, will be segmented as
background, so the zebrafish embryo could not be completely
extracted based on this model.

Hybrid model with integrated region and boundary information

For the Chan–Vese model, when the difference between the
intensity mean of the background and that of zebrafish embryo
is weak, the segmentation result may be incomplete. A hybrid
model (Zhang, 2008) was thus proposed to achieve robust
and accurate segmentation results, which not only uses the
boundary information to detect the accurate location of the
target, but also uses the area information to solve the boundary
leakage problem during the evolution. Because the mean
grey level of background is larger than most grey levels of
zebrafish embryo area, the mean grey level of background can
be used as a threshold to divide the image into two parts. If
the threshold is not accurate or the edge stopping function
cannot stop the evolution of active curve accurately in the
hybrid model, the zebrafish embryo segmentation result will
not be ideal. In view of uniform grey level of background in
zebrafish embryo images, we estimate the threshold by the EM
algorithm to improve the segmentation result, and we design
a gradient-sensitive edge stopping function to solve boundary
leakage problem and obtain accurate contour of zebrafish
embryo.

There are three steps in our hybrid model as follows. Firstly,
the mean grey level of background area will be estimated by the
EM algorithm, which is used to guide the active curve evolution
to the boundary of the area with larger intensity. Next,
the energy function with region and boundary information
is constructed and the corresponding iterative equation is
formulated. Finally, the active curve will be evolved by the
iterative equation and stops when the curve reaches the
boundary of zebrafish embryo by the proposed edge stopping
function.
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The EM algorithm (Dempster, 1977) searches the
parameters by maximum likelihood estimation from the
probability model that depends on the hidden variables.
This approach attempts to optimize the fitting between the
given data and the mathematical model assumed, and some
parameters can be estimated based on the potential joint
probabilistic distribution that fits the data best. The EM
algorithm is relatively easy to implement and converges
quickly. The grey levels of pixels of background are assumed to
follow Gaussian distributions. We choose to estimate the grey
level mean of background by the EM algorithm. Because the
grey level of the background tends to be uniform that accords
with Gaussian distribution, the grey level mean of background
will be estimated well.

Due to the blurry boundaries in zebrafish image, an edge
stopping function is then used to terminate the curve evolution
towards inner target when the gradient is up to some extent,
which can avoid boundary leakage. In this paper, the edge
stopping function (Weickert, 2001) is defined as follows:

g (r ) = 1 − exp
[
− c

(r/K )p

]
, (8)

where r is the gradient of zebrafish image smoothed by a
Gaussian filter and K is a contrast parameter to control the
variation range of g from 0 to 1. The constant parameter c
and p in formula (8) are 3.315 and 8 respectively as suggested
in reference by Weickert (2001). If r is slightly smaller than
K, (r/K )p will be very small so that the exponential term is
almost zero and g is about 1; conversely, g is about 0 and the
evolution will stop.

Compared with the Chan–Vese model, the hybrid model has
better robustness in the case of complex background or target.
The energy function of hybrid model is as follows:

E (u) = −α

∫∫
�

(I − μ)Hdxdy + β

∫∫
�

g |∇ H |dxdy, (9)

where α, β are weighting parameters of the area and length
terms respectively, μ is the threshold that corresponds to the
evaluated mean grey level of the background, g is the edge
stopping function defined in Eq. (8), and the gradient descent
flow by minimizing the energy function is

∂u
∂t

= δξ

[
α (I − μ) + β div

(
g

∇u
|∇u|

)]
. (10)

Then, its simplified form is

∂u
∂t

= α (I − μ) + β div
(

g
∇u
|∇u|

)
, (11)

which corresponds to the evolution equation

∂C
∂t

= α (I − μ) �N − β div
(

g
∇u
|∇u|

)
�N = α (I − μ) �N

− β g div
(

g
∇u
|∇u|

)
�N +

(
∇g .

∇u
|∇u|

)
�N, (12)

where ·denotes inner product operation and is the unit normal
whose direction points to the inside of the curve.

Then, the evolution equation of Chan–Vese model can be
adjusted as

∂C
∂t

= λ[(I − c1)2 − (I − c2)2]N − β div
( ∇u

|∇u|
)

N

= 2λ (c1 − c2)
(

I − c1 + c2

2

)
N − β div

( ∇u
|∇u|

)
N,

(13)

when the difference of grey-level means between the embryo
and the background is small, the weight 2λ(c1 − c2) in the
first term is small and so is (I − c1+c2

2 ), and then the first term
has little impact on the segmentation result. The hybrid model
extracts the area with the intensity larger thanμ, but the mean
intensity of the zebrafish embryo body is lower, and the area of
embryo body is expected to be encircled by a closed curve, so
the grey-level inverse technique is applied to make the mean
intensity of embryo body larger than that of background.
Then, the mean grey values of the embryo and the background
are estimated by the EM algorithm, the mean grey value of the
background is for the parameter μ in formula (9) and (10),
and the gradient information is used to constrain the curve to
avoid its moving towards the inner embryo.

Results and discussion

Experimental results and analysis

In our experiments, about 100 zebrafish embryo images
acquired by the GE IN Cell 1000 machine are used, and each
one contains a whole embryo. The size of each image is about
320∗240. The algorithm is implemented by Matlab 2009, and
the hardware environment is P4 2.1G with 4G RAM. Based
on the two parameters c1 and c2 with global property in the
Chan–Vese model, the image is segmented into two parts by
performing a k-means clustering that considers parts outside
the curve as the background.

Experiments on the Chan–Vese model and the hybrid model
were conducted to compare their performances. The initial
curve must be closed and can be in arbitrary shape, and
the shape of all initial curves is set to be circular in our
experiments. Fig. 1 shows segmentation results of these two
models by the single initial circle curve, and Fig. 2 shows results
by multiple initial active curves. The positions of the single
circular curve or multiple circular curves in Fig. 1 and Fig. 2
indicate the locations of zero level set. With the embedding
function changing, the zero level sets produced by the new
closed curve emerge, whereas some curves disappear. For the
Chan–Vese model, different locations of initial curves will lead
to different segmentations for the image with nonuniform
intensity distribution. When mean intensities of the areas
inside and outside the curve both change very little during
several sequential iterations, the curve evolution will stop.
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Fig. 1. The first row: original images with a circular initial curve; the
second row: the evolution results by the Chan–Vese model; the third row:
the evolution results by our hybrid model.

From the evolution results by the Chan–Vese model in
Fig. 2(c), (d), it can be found that some zero level sets emerge
far away from the initial curve evolution result, so it is |∇u|
but not δξ that affects the variation range of the embedding
function u from the local area around active curve to full
scope and segment the image better. The inner areas of all
closed curves are considered as zebrafish embryo, and other
areas are regarded as the background. In the Chan–Vese
model, the curve evolution will stop when the sum of two
within-class variance reaches the minimum value. As shown
in Fig. 1(c), 1(d) and Fig. 2 (d), due to the grey level range
overlapping between the zebrafish embryo and background,
the segmentation results are not satisfied. Even if multiple
closed curves are used as the initial active curves (Fig. 2(d)),
the segmentation results are still unsatisfactory.

By the hybrid model we proposed, the zebrafish embryo,
whose grey level is larger than that of background, can
be enclosed inside the result curve (see Fig. 1 (e), (f) and
Fig. 2(e), (f)). Compared with the results of the Chan–Vese
model and the hybrid model in Fig. 1 and Fig. 2, it is apparent
that the hybrid method achieved much better results in
terms of the segmentation accuracy. However, to make the
segmentation results more independent of and less sensitive
to the initialization, multiple initial curves can be used, see
Fig. 2 for example. Part of background is with lower intensity
than that of zebrafish embryo, and some small closed curves
corresponding to zero level sets are not what we desire to have

Fig. 2. (a) and (b): original images with many circular initial curves; (c)
and (d): segmentation by the Chan–Vese model with many initial curves,
(e) and (f): evolution results by our hybrid model; (g) and (h): results of (e)
and (f) after morphological processing.

and thus can be removed by area threshold so as to obtain
the real embryo contour only. Due to the weak and blurry
boundary, the obtained contour is not smooth enough, so
morphological operations are applied to smooth the contour.
The disk with radius 5 is chosen as the structure element, and
pairwise morphological open operation and close operation
are carried out. Examples of the final results are shown in Fig.
2(g), (h).

Fig. 3 presents ten zebrafish images with automatic and
manual segmentation results. To quantify the automatic
segmentation performance, the commonly used area
agreement is defined as R(Ti , T j ) = V (Ti ∩T j )

(V (Ti )+V (T j ))/2 , where V (.)
indicates the area of the map, and Ti , T j are automated and
manual segmentation maps respectively, and the ∩ operator
takes the intersection of two maps. The area overlap definition
is akin to that in reference by Cardenas et al. (2001), and the
definition implies that more overlap area means a higher area
agreement. Table 1 provides the results of 10 zebrafish images
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Fig. 3. The comparison between manual and automated segmentation: the red curves indicate automated segmentation results and the blue curves
indicate manual segmentation results.

that are selected randomly. The corresponding images and
segmentation results are shown in Fig. 3, and the standard
deviation of area agreement results is 0.016, the mean of
area agreement for all images is about 93.1%. These results
indicate that the automated segmentation is comparable to
that by manual segmentation.

The contrast parameter K for edge stopping function in
Eq. (8) can affect the segmentation result. The larger the K
the smaller the value of edge stopping function g for the same
gradient value. As a result, it leads to shorter and smoother
active curve. By contrast, active curve evolution may stop
when the gradient value is small due to very small weighting
parameter g, so that segmentation may miss some parts of
target when curve is inside of target, but can obtain accurate

result at concave boundary. These two points have been
observed by experiments setting with different K values.

Image segmentation result typically depends on the tradeoff
of some parameters, and these parameters include the scale of
Gaussian filter in Eq. (8), the weighting parameter β and the
time step. If the scale of Gaussian filter is larger, K will tend to
be smaller so that more accurate segmentation result can be
obtained. If the time step is larger, convergence speed will be
faster at the cost of boundary accuracy. At the same time, the
influence of edge stopping function is controlled by weighting
parameter β.

Finally, the time cost of our zebrafish embryo segmentation
method is detailed. For the segmentation with single initial
curve, the time costs of the EM step for Fig. 1(a) and Fig. 1(b)

Table 1. Area agreement for 10 zebrafish images.

Index of Figure ABMS Area by ours OA by ours AA by ours Time by ours (s) Area by CV OA by CV AA by CV Time by CV (s)

a 15 043 15 666 14 731 0.959 5.227 12 316 12 139 0.8874 5.698
b 13 891 14 198 13 464 0.959 3.783 9 605 9 546 0.8126 2.394
c 16 410 17 538 15 764 0.929 5.678 13 562 13 238 0.883 5.816
d 16 441 17 270 15 812 0.939 6.271 11 437 11 079 0.7948 6.790
e 30 105 26 037 25 625 0.913 15.967 17 324 17 074 0.7200 10.544
f 14 512 15 415 14 223 0.951 8.289 10 377 9 671 0.7771 7.421
g 18 672 19 602 17 985 0.940 11.950 15 338 14 298 0.8408 12.590
h 38 975 36 305 34 925 0.928 10.640 33 486 32 372 0.8935 18.225
i 13 701 14 265 13 105 0.937 4.825 10 355 9 807 0.8153 6.343
j 12 997 12 579 11 760 0.920 3.957 12 960 12 149 0.9361 3.099
Mean 0.938 0.836

ABMS: area by manual segmentation, OA: overlap area, AA: area agreement.
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are 4.553s and 3.017s respectively, and the total costs are
15.922s and 11.234s. For the segmentation with multiple
initial curves, the time costs of the EM step for Fig. 1(a) and
Fig. 1(b) are 4.476s and 3.102s respectively, and the total
costs are 9.609s and 6.672s. It can be seen that if there are
multiple initial closed curves at the beginning, the curve will
reach the boundary faster and the result is not influenced by
the initial position of the curve.

Discussions and conclusions

In microscopic zebrafish images, the grey level of background
tends to be uniform and is larger than that of zebrafish
embryo on the whole, so the mean grey level of background
can be evaluated by the EM algorithm preferably. But if the
background or target has wide grey level range that has
overlapping distributions, the threshold evaluation will be
inaccurate and the segmentation result will be unsuccessful
due to undesirable constraint condition.

The choice of an appropriate value for the parameter K is
based on the information of low gradient around the boundary,
whereas how to set the parameter K automatically should be
studied further. Furthermore, an appropriate edge stopping
function plays an important role for accurate segmentation,
and other edge stopping functions need to be investigated and
applied properly, e.g. g(r ) = 1

1+(r/K )p in reference by Weickert
(1998) . Our experiments show that an appropriate contrast
parameter K not only contributes to constrain active curve
close to boundary but also form smooth contour.

In our method, the EM algorithm, which accounts for a
considerable amount of computing time, should be improved
in the future. In this paper, the mean grey level of the
background estimated by the EM algorithm is used as the
threshold, and of course other methods should be studied
to estimate this threshold better and/or faster. The hybrid
model firstly uses this threshold to obtain most target area, and
then utilizes edge stopping function to locate zebrafish embryo
contour well. If the first step can reduce the occurrences
of undesirable results, the final segmentation can see more
improvements, so how to obtain an appropriate threshold
is still an important problem and worth being investigated
further.

Based on the boundary information and the region
information, an active contour model is used to evolve the
curve towards the boundary automatically and achieve a
complete contour, which can be applied to the segmentation
of zebrafish image with weak boundary and thus obtain
desirable results. Compared with the Chan–Vese model, the
novel hybrid model in this paper combines the expectation
maximization algorithm to evaluate the mean grey level of
the background that is used to guide image segmentation, and
makes use of the gradient information as a constraint to deal
with blurring and weak boundary. Consequently, our hybrid
model achieves better segmentation results than other existing

methods. In the future, we plan to integrate the algorithmic
pipeline into a software filer that can be plugged into the ZFIQ
software package (Liu et al., 2006) and be distributed for wider
applications.
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