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a b s t r a c t

This paper develops an efficient return mapping algorithm for implicit integration of general isotropic
elastoplastic constitutive equations. A set of three mutually orthogonal unit base tensors in conjunction
with a new set of three invariants are employed for the representation of arbitrary isotropic tensor valued
and scalar valued functions of the stress tensor involved. The base tensors are constructed from the stress
tensor by using the representation theorem and the three invariants are defined by the projection of the
stress onto the base tensors. Geometrically, the base tensors are characterized by three mutually orthog-
onal unit vector and the three invariants are regarded as the components of a vector in principal space.
With them, both the elastic constitutive equations and the flow rule of plasticity are represented as sim-
ple relationship among vectors in principal space. The return mapping algorithm associated with the rep-
resentation is formulated in principal space and dimensions of the problem are reduced from six down to
three. The explicit computation of the principal directions and the coordinate transformation from the
principal reference frame to the global reference frame are omitted. The expressions for the consistent
tangent operator for the proposed algorithm are derived in an efficient and closed-form manner. It con-
sists of two parts: one is consistent with the return mapping in the fixed principal stress directions and
another reflects the changes in the principal stress directions. Finally, a numerical example demonstrates
the performances of the proposed implementation.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

It is of crucial importance to integrate the constitutive
equations for stress update in numerical analysis of elastoplastic
boundary value problem. Many engineering materials, such as con-
crete, soils and rocks, exhibit the complex mechanical behaviors
which prompt the use of the elastoplastic model whose yield func-
tion and the plastic potential function depend on all the three
stress invariants. In this case, the constitutive equations can not
be integrated analytically to obtain a closed form. The solution to
the problem is to use the numerical integration technique, see
e.g. Refs. [1–4]. The integration algorithm predominantly affects
the overall numerical accuracy, stability and efficiency of an elasto-
plastic analysis since the numerical integration needs to be carried
out at all yielded integration points for each equilibrium iteration.
For this reason, the integration algorithm has been the subject of
numerous papers in computational elastoplasticity for the last
decades.

The return mapping method, originally proposed by Wilkins [5],
seems to have been the most popular in recent years. This integra-
ll rights reserved.
tion scheme has been investigated by Krieg and Krieg [6]. An
overview of this integration algorithm can be found in the book by
Crisfield [7]. Among the return mapping methods the fully implicit
backward Euler difference scheme is the predominant, due to its
properties of stability and accuracy for large strain increment, see
e.g. Refs. [8,9]. The solution of the constitutive problems by this pro-
cedure will require an iterative process. For each iteration, at all
yielded integration points, one needs to evaluate the inversion of a
positive definite fourth-order tensor given by the sum of the elastic-
ity tensor and the second derivatives of the plastic potential func-
tion. Clearly, the inversion of the fourth order tensor constitutes a
main task to improve the efficiency of the solution procedure.

For isotropic elastoplastic material, the fourth-order tensor is
the isotropic tensor valued function of the stress and has the same
index symmetry as the elasticity tensor. Palazzo and his colleagues
[1] exploit an approach based on those important features. By
employing the representation theorem, they establish the general
expression of the fourth-order tensor and its inversion with respect
to such base tensors as the second-order identity tensor, the stress
deviator and its square. The unknown coefficients in the expression
are computed based on the tensor operation. It is shown that only a
linear system of order three needs to be solved. This enables the
dimensions of the problem to be reduced from six down to three.
However, the tensor operations involving the inversion are

http://dx.doi.org/10.1016/j.compstruc.2011.11.006
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complicated and lengthy because of the non-orthogonality of the
base tensors. Rosati and Valoroso [10] improved previous work
by introducing the spectral decomposition of the stress tensor
and carrying out the return mapping in principal stress space. In
contrast with other approaches in principal stress space, see, e.g.
Refs. [11–13], they presented a fully tensorial description starting
from the derivatives of the eigenvalues and eigenprojectors of a
symmetric order-two tensor with respect to the tensor itself. The
principal space representation and inversion of the fourth order
tensor obtained as the derivative of scalar isotropic functions of a
symmetric tensor argument are established by using the dyadic
and square tensor products between the eigenprojectors of this
symmetric tensor. Since the eigenprojectors are mutually orthogo-
nal, the derivation and results involved in it are compact. All the
tensors involved in the return mapping and the material tangent
operators are directly expressed in the global co-ordinate system.
The usual procedure of expressing the updated stress and the con-
stitutive matrix in the principal reference frame and transforming
back to the global reference frame can be omitted. But the numer-
ical determination of the principal directions to obtain the eigen-
projectors is required as usual. Tamagnini et al. [14] and Borja
et al. [3,4] proposed an algorithm based on the spectral decompo-
sition of stress and strain for isotropic three invariants plasticity
model. The return mapping is performed in principal elastic strain
space. The consistent tangent operators are derived for the pro-
posed algorithm in an efficient, closed form manner. Only the
inversion of a 3 � 3 matrix is required.

In this paper, similar to the mentioned above approaches, we de-
velop a return mapping algorithm in three dimensional space. This
work is based on the general representation of the constitutive
equations for isotropic elastoplastic material given by our earlier
work [15,16]. The remarking feature is that we employ a set of three
mutually orthogonal unit base tensors and a new set of the invari-
ants of the stress. The base tensors are constructed from the stress
by making use of the representation theorem in conjunction with
the simple tensor operations. They are expressed in the global coor-
dinate system and can be characterized geometrically by three
mutually orthogonal unit vectors in three dimensional principal
space. The three invariants are defined by the projection compo-
nents of the stress onto the base tensors. Then the return mapping
algorithm associated with the proposed representation of the con-
stitutive equations is formulated in principal space. But in contrast
with usual approaches in principal space, all tensorial quantities
entering the return mapping and the expression of the consistent
tangent tensor can be directly expressed in terms of the proposed
base tensors and the invariants. The explicit computation of the
principal axes and the coordinate transformation from the principal
reference frame to the global reference frame can be avoided. In
addition, the matrix which needs to be inversed often takes the sim-
ple form. Therefore, the algorithm is made more efficient.

This paper is organized as follows. Section 2 addresses the
establishment of three mutually orthogonal unit base tensors and
the definition of a new set of the invariants of the stress. Their geo-
metrical interpretations are given in principal space. In Section 3,
the general invariant representation of the constitutive equations
is discussed for isotropic elastoplastic material, based on the pro-
posed base tensors and three invariants. Section 4 describes the
fully implicit backward Euler algorithm associated with the repre-
sentation. In Section 5, the relevant expressions for the consistent
tangent operators for the proposed algorithm are provided in
closed form. Finally, in Section 6, a numerical example demon-
strates the performances of the proposed implementation.

We shall use boldface letters to indicate vectors and the second
order tensors and symbols such as A, C, I to denote fourth-order
tensors, where I is the fourth-order identity tensor. Other notations
are list below: I denotes the second-order identity. tr implies the
trace operator. For two tensors S and T, ST represents the dot prod-
uct of tensors defined as (ST)ij = SikTkj The symbol ‘‘�’’ denotes ten-
sor product of tensors, for example, (S � T)ijkl = SijTkl. Similarly, the
symbol ‘‘:’’ denotes the contraction of the innermost two indices of
two tensors, for example, ðS : TÞij ¼ SijTij, or ðC : SÞij ¼ CijklSkl. A
square product D � E between tensors is defined by

ðD � EÞ : A ¼ DAE; or ðD � EÞijkl ¼ DikEjl ð1Þ

Three invariants of a second order tensor such as the stress r are de-
noted by

p ¼ 1ffiffiffi
3
p trr; q ¼

ffiffiffiffiffiffiffiffiffi
trS2

p
; h ¼ 1

3
sin�1 �

ffiffiffi
6
p

trS3

ðtrS2Þ3=2

" #
ð2Þ

where S is the deviatoric stress and h is called the Lode angle.

2. A set of mutually orthogonal unit base tensors

In the description of the constitutive equations for isotropic
elastoplastic material, we have to deal with the isotropic second
order tensor valued functions of the stress (or strain) tensor.
According to the representation theorem [17], it can be expressed
as linear combination of the second identity tensor I, the stress r
and its square r2. The three tensors are not mutually orthogonal.
Chen [15] obtained a set of mutually orthogonal base tensors by
constructing a tensor t which is an isotropic tensor-valued function
of the stress and orthogonal to the stress r and the identity tensor
I, namely, tr(rt) = 0, tr(t) = 0. For convenience, let t to be a unit ten-
sor, tr(t2) = 1. To satisfy all the requirements, tensor t is shown to
take the form

t ¼ 1
cos 3h

ffiffiffi
2
p

i� sin 3hs�
ffiffiffi
6
p

s2
� �

ð3Þ

where i and s are the normalization of I and the deviatoric stress S
which are given respectively by

i ¼ Iffiffiffiffiffiffiffiffi
trI2

p ¼ Iffiffiffi
3
p ; s ¼ Sffiffiffiffiffiffiffiffiffi

trS2
p ¼ S

q
ð4Þ

By definition, we have that tr(i2) = tr(s2) = tr(t2) = 1,
tr(is) = tr(st) = tr(ti) = 0. Therefore, i, s, t form a set of mutually
orthogonal unit base tensors.

The partial derivative of the three invariants of the stress with
respect to the stress itself can be obtained by some tensor opera-
tions in the form

@p
@r
¼ Iffiffiffi

3
p ¼ i;

@q
@r
¼ 1

q
S ¼ s; q

@h
@r
¼ t ð5Þ

It is easily shown that three base tensors i, s, t are coaxial. Clearly,
arbitrary isotropic tensor valued functions expressed as their linear
combinations are also coaxial with them. Tensor algebra operations
among coaxial tensors of order two, such as the addition, subtrac-
tion and scalar product, can be performed as they are vectors whose
three components are the representation coefficients of the tensors
with respective to the base tensors. If two tensors are orthogonal,
the corresponding vectors are also orthogonal.

Denote the three principal axes of the stress by n1, n2, n3. Three
eigenvalue bases are defined by

ai ¼ ni � ni ði ¼ 1;2;3;no sum over iÞ: ð6Þ

Three coordinate axes are associated with ai (i = 1,2,3) respectively
to establish the so called principal space. Then, coaxial tensors can
conveniently be characterized by vectors in this principal space.
Geometrically, i is along the axis which subtends equal angles with
the three coordinate axes, s and t are in the deviatoric plane or p
plane and mutually orthogonal, as shown in Fig. 1(a).



Fig. 1. (a) Principal space and a set of the base tensors i, s, t. (b) Geometrical relations between two sets of the bases s, t and x2, x3 in p plane.
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Solving the characteristic equation of the normalized stress der-
ivator s, ones obtain its three principal values in terms of the Lode
angle. Then we can express s in the spectral form

s ¼
ffiffiffi
2
3

r
sin hþ 2p

3

� �
a1 þ

ffiffiffi
2
3

r
sin ha2 þ

ffiffiffi
2
3

r
sin h� 2p

3

� �
a3 ð7aÞ

Inserting (7a) into (3), t is also expressed in the spectral form

t ¼
ffiffiffi
2
3

r
cos hþ 2p

3

� �
a1 þ

ffiffiffi
2
3

r
cos ha2 þ

ffiffiffi
2
3

r
cos h� 2p

3

� �
a3 ð7bÞ

Comparing (7b) with (7a), one easily obtains (7b) by the substitu-
tion of h + p/2 for h in (7a). This shows that the Lode angle of t is
h + p/2. In view of (7), the base tensors s and t depend on both
the principal values (the Lode angle) and principal axes of the stress.
When the base tensors are employed in the return mapping algo-
rithm, it is disadvantageous to some degree since the Lode angle
changes with stress update.

Consider two deviatoric tensors x2 and x3 which are coaxial
with s and t, and have the fixed Lode angle of 0 and p/2 respec-
tively. Upon the substitution of 0 and p/2 for h in (7a) respectively,
the two tensors can be written as

x2 ¼
ffiffiffi
2
p

2
ða1 � a3Þ; x3 ¼

1ffiffiffi
6
p ð�a1 þ 2a2 � a3Þ ð8Þ

Obviously, the two defined tensors depend only on the principal
axes. Denote x1 = i, as shown in Fig. 1(a). After a simple operation,
one has

trx2
1 ¼ trx2

2 ¼ trx2
3 ¼ 1; trx1x2 ¼ trx2x3 ¼ trx3x1 ¼ 0 ð9Þ

It follows that x1, x2 and x3 are mutually orthogonal unit tensors.
They serve as a new set of the base tensors, with which we work
in the sequel.

Since x2 and x3 are deviatoric tensors, they can be expressed as
linear combination of s and t. Using (7) and (8), one obtains
tr(sx2) = tr(tx3) = cosh, tr(sx3) = �tr(tx2) = sinh. Therefore, the rela-
tions between two sets of the base tensors are

x2 ¼ s cos h� t sin h; x3 ¼ s sin hþ t cos h ð10Þ

Denote the projection axes of the coordinate axes a2 and a3 onto
p plane by (a2)p and (a3)p respectively. Using (8), (10) and the def-
inition of p plane, it can be shown that the vector axis associated
with x3 coincides with (a3)p and the vector axis associated with
x2 is perpendicular to it in p plane. Moreover, the angle between
s and x2 is the Lode angle, which is measured anti-clockwise from
the positive x2-axis, as depicted in Fig. 1(b).

Eq. (10) clearly shows that the transformation between x2, x3

and s, t follows the transformation rule of vectors, in other words,
x2 and x3 are obtained from s and t by clockwise rotation by an an-
gle h about the axis i, as depicted in Fig. 1(b). With this expression,
we can evaluate x2 and x3 directly from the normalized stress devi-
ator s, instead of the principal axes. This is advantageous in the re-
turn mapping algorithm since the explicit computation of the
principal axes will be avoided.

Using (10) to express s in terms of x2 and x3, and recalling that
the decomposition of the stress r = pi + qs, one can express the
stress referred to this new set of the base tensors

r ¼
X3

I¼1

r̂IxI ð11aÞ

where

r̂1 ¼ p; r̂2 ¼ q cos h; r̂3 ¼ q sin h ð11bÞ

Those three coefficients constitute a new set of the invariants of the
stress, which geometrically indicate the projection of the stress
onto the axes xI (I = 1,2,3) respectively.

Using the chain rule and (5), the derivatives of the last two
invariants in (11b) with respect to stress are obtained as

@r̂2

@r
¼ cos h

@q
@r
� sin h q

@h
@r

� �
¼ x2 ð12aÞ

@r̂3

@r
¼ sin h

@q
@r
þ cos h q

@h
@r

� �
¼ x3 ð12bÞ

Combing the above equation and the first equation in (5), one has
the simple expression

@r̂I

@r
¼ xI ðI ¼ 1;2;3Þ ð13Þ

In the sequel, we need to deal with the derivatives of the three
base tensors xI (I = 1,2,3) with respect to the stress tensor for deriv-
ing the fourth order tangent operator. Using (10) and (5), one read-
ily obtains

@x2

@r
¼ cos h

@s
@r
� sin h

q
s� t � sin h

@t
@r
� cos h

q
t � t ð14aÞ

@x3

@r
¼ sin h

@s
@r
þ cos h

q
s� t þ cos h

@t
@r
� sin h

q
t � t ð14bÞ

After the lengthy tensor operation, we obtain the following deriva-
tive [16]

q
@s
@r
¼ �s� sþ ðI� i� iÞ ð15aÞ

q
@t
@r
¼ tan 3hi� iþ 2

ffiffiffi
2
p

cos h3h
ði� sþ s� i� tan 3hs� s

� ð3s� t þ 2t � sÞ þ 3 tan 3ht � t � tan 3hI

� 3
ffiffiffi
2
p

cos 3h
ði�sþ s�iÞ ð15bÞ
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Inserting the above results into (14), after rearrangement, we have

q cos 3h
@x2

@r
¼ � cos 2hi� i� 2

ffiffiffi
2
p

sin hði� sþ s� iÞ

� cos 4hs� sþ 2 sin h cos 3hðs� t þ t � sÞ
� ð2 sin h sin 3hþ cos 2hÞt � t þ cos 2hI

þ 3
ffiffiffi
2
p

sin hði�sþ s�iÞ ð16aÞ

q cos 3h
@x2

@r
¼ sin 2hi� iþ 2

ffiffiffi
2
p

cos hði� sþ s� iÞ

� sin 4hs� s� 2 cos h cos 3hðs� t þ t � sÞ
þ ð2 cos h sin 3hþ sin 2hÞt � t � sin 2hI

� 3
ffiffiffi
2
p

cos hði�sþ s�iÞ ð16bÞ

By using (10), the above derivatives are expressed in terms of the
base tensors xI (I = 1,2,3)

@x2

@r
¼
X3

I¼1

X3

J¼1

B1
ijðrÞxI � xJ þ F1ðrÞ ð17aÞ

@x3

@r
¼
X3

I¼1

X3

J¼1

B2
ijðrÞxI � xJ þ F2ðrÞ ð17bÞ

where

B1
IJðrÞ ¼

1
q cos 3h

� cos 2h �
ffiffiffi
2
p

sin 2h �2
ffiffiffi
2
p

sin2 h

1� 2 cos 2h sin 2h

sym �1

2
64

3
75 ð18aÞ

B2
IJðrÞ ¼

1
q cos 3h

sin 2h 2
ffiffiffi
2
p

cos2 h
ffiffiffi
2
p

sin 2h

0 �2 cos2 h

sym 2 sin 2h

2
64

3
75 ð18bÞ

are symmetrical matrix. Two fourth order tensors in (17) are
respectively

F1ðrÞ ¼ 1
q cos 3h

3
ffiffiffi
2
p

sin h cos hðx1�x2 þ x2�x1Þ
h

þ 3
ffiffiffi
2
p

sin2 hðx1�x3 þ x3�x1Þ þ cos 2hI
i

ð18cÞ

F2ðrÞ ¼ 1
q cos 3h

�3
ffiffiffi
2
p

cos2 hðx1�x2 þ x2�x1Þ
h

� 3
ffiffiffi
2
p

sin h cos hðx1�x3 þ x3�x1Þ � sin 2hI
i

ð18dÞ

The description given above is referred to the stress tensor.
When referred to other tensors such as the elastic strain tensor,
it is straightforward to write the corresponding expressions with
the substitution of the elastic strain tensor for the stress tensor.

In using the above analytical expression (3) and (18), it is as-
sumed that the eigenvalues of the stress are all distinct and non-
zero. If the stress admits a double eigenvalue (including two zero
eigenvalues), then h is equal to �p/6 or p/6. It appears that (3)
and (18) might become singular because the denominator cos3h
goes to zero as h ? ±p/6. This case does not represent a real prob-
lem from the computational standpoint. The singularity can be
eliminated by resorting to a simple perturbation technique similar
to that proposed in Refs. [18–20]. That is, a small perturbation is
given to arbitrary one of the stress components so that h deviates
slightly from �p/6 or p/6. If the stress admits a triple eigenvalues
(including three zero eigenvalues), (18) might become also singu-
lar because the invariant q vanishes. As shown at the end of Sec-
tion 5, the derivative of the base tensors will be unnecessary for
deriving the fourth order tangent operator.
3. General representation of the isotropic constitutive
equations

The constitutive equations are formulated within the frame-
work of small deformation elastoplasticity. The material behavior
is assumed to be isotropic. The strain tensor is additively decom-
posed into the elastic and plastic parts

e ¼ ee þ ep ð19Þ

Due to isotropy, the stress response of the material is character-
ized by an isotropic tensor valued function of the elastic strain ten-
sor. By the representation theorem, the principal directions of the
stress response tensor and the elastic strain tensor coincide. Here is
introduced the order preserving hypothesis as described by Laine
et al. [21]: ‘‘the eigenvalues of stress and strain tensors are classi-
fied in the same order: the eigenvector associated with the highest
eigenvalue of the stress tensor is also associated with the highest
eigenvalue of the strain tensor, etc’’. Then the base tensors associ-
ated with the stress are identical to that associated with the elastic
strain in principal space, that is

xIðrÞ ¼ xIðeeÞ ðI ¼ 1;2;3Þ ð20Þ

Inserting (20) into (11a), we obtain the general expressions of the
elastic constitutive equations

r ¼
X3

I¼1

r̂IxIðeeÞ ð21Þ

where r̂I ðI ¼ 1;2;3Þ is the scalar valued function of the elastic
strain tensor.

For the isotropic hyperelasticity, we assume the existence of a
stored strain energy function such that

r ¼ @W
@ee ð22Þ

where the function W depends on the three invariants of the elastic
strain tensor. By analogy with (11b), those three invariants are gi-
ven as

êe
1 ¼ pee

; êe
2 ¼ qee

cos hee
; êe

3 ¼ qee
sin hee ð23aÞ

where pee , qee and hee
are defined by (2) with the substitution of ee

for r. Then the function W can be expressed as

W ¼Wðêe
1; ê

e
2; ê

e
3Þ ð23bÞ

Using (23b) and the chain rule, Eq. (22) is rewritten as

r ¼
X3

I¼1

@W
@êe

I

@êe
I

@ee ð24Þ

By analogy with (13), one obtain the following expression

@êe
I

@ee ¼ xIðeeÞ ðI ¼ 1;2;3Þ ð25Þ

Inserting (25) into (24) and comparing (24) with (21), we have
the elastic constitutive equation in the vector form

r̂I ¼
@W
@êe

I

ðI ¼ 1;2;3Þ or r̂ ¼ @W
@êe

ð26Þ

where the following vector notations are introduced

êe ¼
êe

1

êe
2

êe
3

8><
>:

9>=
>;; r̂ ¼

r̂1

r̂2

r̂3

8><
>:

9>=
>; ð27Þ

The above equation indicates that the vector corresponding to
the stress tensor is expressed as the gradient of the strain energy
function W with respect to the vector corresponding to the strain
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tensor in principal space. Laine et al. [21] gave a general expression
of the elastic constitutive equations similar to (26) and (21), where
the base tensors are expressed only in terms of the principal axes.

The strain energy function is required to be convex for the sta-
bility. Then, the order preserving hypothesis is automatically satis-
fied [22].

To derive the elastic constitutive equations in the increment
form, we differentiate both sides of (24), with the help of (25)
and (26)

dr ¼ Ce : dee ð28Þ

where

C ¼
X3

I¼1

xðeeÞ � @

@ee

@W
@êe

I

� �
þ
X3

I¼1

r̂I
@xIðeeÞ
@ee ð29Þ

is the fourth order tangent elasticity tensor. With the help of (25),
the partial derivative in the first term is written as

@

@ee

@W
@êe

I

� �
¼ @2W
@êe

I @êe
J

@êe
J

@ee ¼
X3

J¼1

Ce
IJxJ eeð Þ ðI ¼ 1;2;3Þ ð30Þ

where

Ce
IJ ¼

@2W
@êe

I @êe
J

¼ @r̂I

@êe
J

ðI ¼ 1;2;3 J ¼ 1;2;3Þ ð31Þ

is the elastic tangent moduli in principal space. It reflects the
change of the stress with respect to the elastic strain when the prin-
cipal axes are held fixed. The derivative of the base tensors with re-
spect to the elastic strain in the second term of the right side of (29)
can be obtained by substituting the elastic strain tensor for the
stress tensor in (17) and (18).

In view of (29) and (30) as well as (17), we obtain the elastic
tangent operator in the form

Ce ¼
X3

I¼1

X3

J¼1

Ce
IJ þ r̂2B1

IJðeeÞ þ r̂3B2
IJðeeÞ

h i
xIðeeÞ � xJðeeÞ

þ r̂2F
1ðeeÞ þ r̂3F

2ðeeÞ ð32Þ

For the plastic response, it is assumed that there exists a poten-
tial function

G ¼ Gðr; nÞ ð33Þ

where n = na (a = 1,2, . . .,n) is an array of internal variables to char-
acterize the past history of the plastic deformation. The plastic
strain increment dep is assumed to be orthogonal to the potential,
that is, parallel to the gradient direction of the potential,

dep ¼ dk
@G
@r

ð34Þ

where dk is plastic multiplier.
For the isotropic hardening material, assuming the internal

variables are a set of scalars, the potential is the function of the
invariant of the stress and the internal variables,

G ¼ Gðr̂; nÞ ð35Þ

Inserting (35) into (34), using the chain rule of the partial deriva-
tives and considering (13) and (20), we obtain the result

dep ¼ dk
X3

I¼1

@G
@r̂I

xIðeeÞ ð36Þ

The above equation shows that the plastic strain increment and the
stress are also coaxial. In accordance with the properties of coaxial
tensors as described above, the plastic strain increment takes the
general form
dep ¼
X3

I¼1

dêp
I xIðeeÞ ð37Þ

A direct comparison of (37) and (36) yields

dêp
I ¼ dk

@G
@r̂I
ðI ¼ 1;2;3Þ or dêp ¼ dk

@G
@r̂

ð38Þ

Obviously, the constitutive equations are revealed to be a simple
relationship between two vectors dêp and r̂ in principal space.

In the phenomenological isotropic hardening model, the evolu-
tion of the scalar internal variables is related to three invariants of
the plastic strain increment and/or plastic work increment. Due to
coaxiality of the plastic strain increment and stress, plastic work
increment can be expressed in terms of the invariants of both.
Therefore as an approximation, we can assume that the evolution
of the internal variables is linear combination of the invariants of
the plastic strain increment with coefficients given by the invari-
ants of the stress. In view of (38) and (35), the internal variable
increment can be expressed as

dn ¼ dkhðr̂; nÞ ð39Þ

For isotropic case, the yield function takes the general form

Fðr; nÞ ¼ Fðr̂; nÞ ¼ 0 ð40Þ

The plastic multiplier dk is determined with the aid of the loading/
unloading criterion. This can be expressed in Kuhn–Tucker form as
follows

Fðr̂; nÞ � 0; dk � 0; dFðr̂; nÞdk ¼ 0 ð41Þ

4. Return mapping algorithm for implicit integration

Given a strain increment De from the global current finite ele-
ment solution and the value of the stress and the internal variables
at time tn, the goal of the constitutive integration is to solve for the
values of these variables at time tn+1. For the elastoplastic material
the constitutive equations are non-linear and the solution to the
problem is to use an approximate numerical technique. The fully
implicit backward Euler scheme is found to be numerically stable
for larger strain increment and also is considerably simple to
implement. Therefore, this scheme is used to integrate the consti-
tutive equations.

We start with the definition of the trial elastic strain by assum-
ing that the increment step is elastic

etr
nþ1 ¼ ee

n þ De ¼ enþ1 � en þ ee
n ð42Þ

The subscript n + 1 denotes the evaluation of quantities at time tn+1.
The trial elastic stress associated with the trial elastic strain is ob-
tained by the constitutive equation

rtr
nþ1 ¼

@W
@ee ðe

tr
nþ1Þ ð43Þ

If Fðrtr
nþ1; nnÞ 6 0, the stress lies inside the yield locus, the trial

state represents the actual final state of the material.
If Fðrtr

nþ1; nnÞ > 0, the trial state lies outside the yield locus and
the consistency condition is violated. The process is then declared
plastic. The objective of returning mapping is to map the trial state
back to the yield surface so that the consistency condition is re-
stored. Such a task is performed by the plastic corrector. Using
the fully implicit integration scheme, we have

ee
nþ1 ¼ etr

nþ1 � Dep ¼ etr
nþ1 � Dknþ1ðG;rÞnþ1 ð44aÞ

nnþ1 ¼ nn þ Dn ¼ nn þ Dknþ1hnþ1 ð44bÞ



Table 1
Return mapping algorithm based on the base tensors xIðetr

nþ1Þ ðI ¼ 1;2;3Þ.

1. Calculate the base tensors and the components of the vector corresponding
to the elastic trial strain and stress

xIðetr
nþ1Þ; êtr

nþ1; r̂tr
nþ1

2. Initialize

i ¼ 0; êe 0 ¼ êtr
nþ1; n0 ¼ nn; Dk0 ¼ 0; r̂0 ¼ r̂tr

nþ1

3. Check convergence

if Fi < TOL1; kRi
êk < TOL2 and kRi

nk < TOL3; then

ee
nþ1 ¼

P3
I¼1ê

e;iþ1
I xIðetr

nþ1Þ; rnþ1 ¼
P3

I¼1r̂
iþ1
I xIðetr

nþ1Þ and exit

4. Obtain the consistency parameter

dki ¼ Fi�ðrFiÞT ðAiÞ�1Ri

ðrFiÞT ðAiÞ�1rGi

5. Update dr̂ and dn

dr̂i

dni

( )
¼ �ðAiÞ�1Ri � dkiðAiÞ�1rGi

6. Update solution

êe;iþ1 ¼ êe;i þ dêe;i ¼ êe;i þ ðCeÞ�1dr̂i

niþ1 ¼ ni þ dni; Dkiþ1 ¼ Dki þ dki

r̂iþ1 ¼ r̂i þ dr̂i
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The computed value of the stress and the internal variables at the
end of time tn+1 must satisfy the consistency condition

Fðrnþ1; nnþ1Þ ¼ 0 ð45Þ

Eq. (44) together with (45) constitutes a system of nonlinear
equations, which is iteratively solved by a Newton–Raphson meth-
od. To improve the efficiency of the solution procedures and save
computation time, we make use of the representation of the consti-
tutive relationship with respect to three mutually orthogonal unit
base tensors xI (I = 1,2,3) as described in Section 2. For isotropic
hardening models, the trial elastic strain etr

nþ1, the plastic correction
Dep

nþ1, the converged elastic strain ee
nþ1 and the stress rn+1 at time

tn+1 have the same principal directions. Recall that those base ten-
sors depend only on the principal directions. Therefore, they re-
main unchanged during iteration. If we compute the base tensors
xIðetr

nþ1ÞðI ¼ 1;2;3Þ associated with the trial elastic strain by using
(3) and (10) with the substitution of the elastic trial strain for
the stress, then all the second order tensors involved in the algo-
rithm, such as the elastic strain, the plastic strain increment and
the stress, can be considered as vectors of three components which
are the projection of the corresponding tensors on the three base
tensors respectively. Therefore, there are only three unknowns,
the projected components or the representation coefficients,
needed to be iterated upon. This number is half of the six un-
knowns needed to determine the stress tensor using traditional
algorithms. By reducing the number of equations by three, this
algorithm is made more efficient.

Introduce the following partial derivative notation, for
convenience

G;r̂ ¼
@G
@r̂

ð46Þ

Once the base tensors xIðetr
nþ1Þ ðI ¼ 1;2;3Þ are known, we readily ob-

tain the three projected components êtr
nþ1 of the trial elastic strain

onto them. Then, Eq. (44a) can conveniently be expressed in vector
form as

êe
nþ1 ¼ êtr

nþ1 � Dknþ1ðG;r̂Þnþ1 ð47Þ

The elastic constitutive equations between the vectors correspond-
ing to the stress and elastic strain is given by (26), or in the incre-
ment form

dr̂nþ1 ¼ Ce
nþ1dêe

nþ1 ð48Þ

where Ce
nþ1 is a 3 � 3 elastic tangent matrix given by (31).

The above nonlinear system is rewritten in the residual form as

Rê ¼ êe
nþ1 � êtr

nþ1 þ Dknþ1ðG;r̂Þnþ1 ð49aÞ

Rn ¼ �nnþ1 þ nn þ Dknþ1hnþ1 ð49bÞ

F ¼ Fðr̂nþ1; nnþ1Þ ð49cÞ

Linearization of (49) around the ith estimate of the solution yields

Ri
ê þ ðC

eÞ�1dr̂i þ DkidGi
;r̂ þ dkiGi

;r̂ ¼ 0 ð50aÞ

Ri
n � dni þ Dkidhi þ dkihi ¼ 0 ð50bÞ

Fi þ Fi
;r̂dr̂i þ Fi

;ndni ¼ 0 ð50cÞ

where the superscript i is the iteration number and (48) is used. For
simplicity, the subscript n + 1 is omitted. It is noted that the trial
elastic strain is constant during iteration and does not contribute.
With the help of (35) and (39), we have

dGi
;r̂ ¼ Gi

;r̂r̂dr̂i þ Gi
;r̂ndn

i ð51aÞ
dhi ¼ hi
;r̂dr̂i þ hi

;ndn
i ð51bÞ

Inserting (51) into (50), we have an equation in matrix form as

dr̂i

dni

( )
¼ �ðAiÞ�1Ri � dkiðAiÞ�1rGi ð52Þ

where

Ai ¼
ðCeÞ�1 þ DkiGi

;r̂r̂ DkiGi
;r̂n

Dkihi
;r̂ �I þ Dkihi

;n

" #
ð53Þ

rGi ¼
Gi
;r̂

hi

( )
; Ri ¼

Ri
ê

Ri
n

( )
ð54Þ

Combining (52) and (50c), we obtain

dki ¼ Fi � ðrFiÞTðAiÞ�1Ri

ðrFiÞTðAiÞ�1rGi
ð55Þ

where rFi ¼ fFi
;r̂ Fi

;ng
T and ‘‘T’’ denotes the transpose of the

matrix.
The equation system (52) is solved iteratively for the subincre-

ments dr̂i; dni and the corresponding variables are updated until
the residuals vanish to be within the prescribed tolerances.

êe;iþ1 ¼ êe;i þ dêe;i ¼ êe;i þ ðCeÞ�1dr̂i ð56aÞ

niþ1 ¼ ni þ dni Dkiþ1 ¼ Dki þ dki ð56bÞ

r̂iþ1 ¼ r̂i þ dr̂i ð56cÞ
7. Increase iteration counter: i = i + 1 and go to 3
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Then, the elastic strain and stress tensor can be easily obtained from

ee
nþ1 ¼

X3

I¼1

êe;iþ1
I xIðetr

nþ1Þ ð57aÞ

rnþ1 ¼
X3

I¼1

r̂iþ1
I xIðetr

nþ1Þ ð57bÞ

At the beginning of the iteration, we should make

êe;0 ¼ êtr
nþ1; n0 ¼ nn; Dk0 ¼ 0; r̂0 ¼ r̂tr

nþ1 ð58Þ

It is often assumed that the potential function G and the func-
tions h are independent of the internal variables n. Therefore, from
(50) and (51), we have

dr̂i ¼ �ðAiÞ�1Ri
ê � dkiðAiÞ�1Gi

;r̂ ð59aÞ

dni ¼ Ri
n þ Dkihi

;r̂dr̂i þ dkihi ð59bÞ

where

Ai ¼ ðCeÞ�1 þ DkiGi
;r̂r̂ ð60Þ

is a 3 � 3 matrix. Combining (59) and (50c), we obtain

dki ¼
Fi � ðFi

;r̂ þ DkiFi
;nhi

;r̂ÞðA
iÞ�1Ri

ê þ F i
;nRi

n

ðF i
;r̂ þ DkiF i

;nhi
;r̂ÞðA

iÞ�1Gi
;r̂ � F i

;nhi
ð61Þ

The above describes a complete iterative solution process of the
constitutive integration referred to the proposed base tensors. For
the sake of clarity, a step-by-step description of the algorithm has
been summarized in Table 1.
5. Consistent tangent operator

The continuum tangent operator which relates infinitesimal
strain and stress increments can be easily derived from the consti-
tutive equations described in Section 3. Its use is compatible with
an exact integration of the constitutive equations, which are con-
tinuum in nature. However, the proposed constitutive integration
algorithm does not represent an exact integration; it is finite differ-
ence based and in essence a secant approach. If the continuum tan-
gent operator is used in the global Newton iterations the
convergence will be slow, as the stress and strain increments are
finite rather than infinitesimal. In order to preserve the quadratic
rate of asymptotic convergence of the global Newton iterations,
it is necessary to adopt the consistent tangent operator relevant
to the proposed constitutive integration algorithms [23]. The con-
sistent tangent operator is defined by

Cep ¼ @rnþ1

@enþ1
¼ @rnþ1

@etr
nþ1

ð62Þ

where the last equality follows directly from the definition of trial
elastic strain (42).

Consider that the stress and the elastic strain tensor are coaxial,
see (20). The stress at time tn+1 is expressed as

rnþ1 ¼
X3

I¼1

ðr̂IÞnþ1xIðrnþ1Þ ¼
X3

I¼1

ðr̂IÞnþ1xIðrtr
nþ1Þ ¼

X3

I¼1

ðr̂IÞnþ1xIðetr
nþ1Þ

ð63Þ

Differentiating the above equation with respect to the trial elastic
strain, one obtains

Cep ¼ @rnþ1

@etr
nþ1
¼
X3

I¼1

xIðetr
nþ1Þ �

@ðr̂IÞnþ1

@etr
nþ1

þ
X3

Iþ1

ðr̂IÞnþ1
@xIðetr

nþ1Þ
@etr

nþ1
ð64Þ
The above expression is similar to (29) in form. Using the chain rule,
one has

@ðr̂IÞnþ1

@etr
nþ1

¼
X3

J¼1

@ðr̂IÞnþ1

@ðêtr
J Þnþ1

@ðêtr
J Þnþ1

@etr
nþ1

¼
X3

J¼1

Cep
IJ xJðetr

nþ1Þ ð65Þ

where the matrix

Cep
IJ ¼

@ðr̂IÞnþ1

@ðêtr
J Þnþ1

ð66Þ

denotes the variation of the stress with respect to the trial elastic
strain with their principal directions held fixed. In the derivation
of (65), Eq. (25) is used with the substitution of the elastic trial
strain for the elastic strain.

In view of (66), the consistent tangent operator (64) can be ex-
pressed as

Cep ¼
X3

I¼1

X3

J¼1

Cep
IJ xIðetr

nþ1Þ � xJðetr
nþ1Þ þ

X3

I¼1

ðr̂IÞ4nþ1
@xIðetr

nþ1Þ
@etr

nþ1
ð67Þ

The second term of the above equations results only from the
rotation of the principal directions alone. Notice that the principal
directions remain unchanged during the return mapping. There-
fore, it depends not on the return mapping algorithm. In other
words, it depends not on the specific plasticity model used. On
the contrary, the first term of the above equation is a function of
the constitutive response and the algorithm used to track this re-
sponse. A little detailed derivation of the constitutive matrix Cep

in this term is given in the sequel.
At convergence in return mapping algorithm we have computed

a stress state r̂iþ1 which satisfied the yield conditions exactly. Then
we insert a new increment dêtr into (52). It will result in a non-zero
value for Rê, that is, Rê ¼ dêtr, but that Rn and F remain zero until
subsequent iterations. As proposed by Zienkiewicz and Taylor
[24], the required matrix Cep is derived directly now by using
(52) and (55) from

dr̂
dn

� �
¼ Cep �

� �

	 

dêtr

0

� �
ð68aÞ

where

Cep �
� �

	 

¼ A�1 � A�1rGðrFÞT A�1

ðrFÞT A�1rG
ð68bÞ

If the potential function G and the function h are independent of
the internal variable n, we have, from (59)–(61)

Cep ¼ ðAiÞ�1 �
ðAiÞ�1Gi

;r̂ðF
i
;r̂ þ DkiFi

;nhi
;r̂ÞðA

iÞ�1

ðF i
;r̂ þ DkiF i

;nhi
;r̂ÞðA

iÞ�1Gi
;r̂ � F i

;nhi
ð69Þ

where the superscript i is the convergent iteration number.
A direct comparison between (29) and (64) shows that the sub-

stitution of the matrix Cep and the trail elastic strain for the matrix
Ce and the elastic strain respectively in (32) will lead to the de-
tailed expression of (67). Therefore, Eq. (67) is rewritten as

Cep ¼
X3

I¼1

X3

J¼1

Cep
IJ þ ðr̂2Þnþ1B1

IJðetr
nþ1Þ þ ðr̂3Þnþ1B2

IJðetr
nþ1Þ

h i
xIðetr

nþ1Þ

� xJðetr
nþ1Þ þ ðr̂2Þnþ1F

1ðetr
nþ1Þ þ ðr̂3Þnþ1F

2ðetr
nþ1Þ ð70Þ

The singularity in (70) to which a double eigenvalue of the argu-
ment tensor might lead has been discussed at the end of Section 2.
If the argument tensor, namely, the elastic trial strain, admits a tri-
ple eigenvalue, the symmetry requires that the stress must be a
pressure, that is, a spherical tensor. The second term of the tangent
operator must vanish and no singularity needs to be treated.
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6. Numerical example

To demonstrate the validity and numerical efficiency of the pro-
posed method, a numerical example is presented. We implement
the proposed method in a FORTRAN subroutine UMAT provided
by ABAQUS. For comparison purposes, we also implement the
method formulated in the general stress space (six dimensional
space) and method formulated in principal stresses (principal
directions are needed) in the same manner. Each method is both
implemented with a consistent tangent operator and a continuum
tangent operator. The results and computation time of the numer-
ical example using these methods are compared. Although the pro-
posed method is discussed in tensor form, it is implemented in
matrix form in the program as other methods.

The simulation refers to an isotropic model which is extensions
of the original Drucker–Prager model [25]. The extensions devel-
oped by ABAQUS include the use of noncircular yield surfaces in
the deviatoric stress plane. The model is defined through the fol-
lowing yield function

F ¼
ffiffiffi
3
2

r
q
2

1þ 1
j
� 1� 1

j

� �
sin 3h

	 

þ 1ffiffiffi

3
p p tan /� d ð71Þ

and potential function

G ¼
ffiffiffi
3
2

r
q
2

1þ 1
j
� 1� 1

j

� �
sin 3h

	 

þ 1ffiffiffi

3
p p tan w ð72Þ

The parameters included in (71) and (72) are defined as follows: j is
the ratio of the yield stress in triaxial tension to the yield stress in
triaxial compression and, thus, controls the dependence of the yield
surface on the value of the intermediate principal stress, see Fig. 2;
/ and w are the friction angle and the dilation angle respectively; d
is the cohesion defined by d ¼ 1� 1

3 tan /
� �

rc , if hardening is de-
fined by the uniaxial compression yield stress rc,
d ¼ 1

jþ 1
3 tan /

� �
rt , if hardening is defined by the uniaxial tension

yield stress rt. The international variable that describes the harden-
ing is chosen to be the equivalent plastic strain

With the help of (11b), one can rewrite the yield function and
potential function in terms of the defined invariants as

F ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2

2 þ r̂2
3

q
þ 3br̂3 �

4br̂3
3

r̂2
2 þ r̂2

3

þ cF r̂1 � d ð73Þ

G ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2

2 þ r̂2
3

q
þ 3br̂3 �

4br̂3
3

r̂2
2 þ r̂2

3

þ cGr̂1 ð74Þ

where
Fig. 2. Typical yield/flow surfaces in the deviatoric plane.
a ¼
ffiffiffi
6
p

4
1þ 1

j

� �
; b ¼

ffiffiffi
6
p

4
1� 1

j

� �
; cF ¼

1ffiffiffi
3
p tan /; cG

¼ 1ffiffiffi
3
p tan w ð75Þ

Using (74), we obtain the matrix needed in the constitutive iter-
ations, see (60)

G;r̂r̂ ¼
a� 8b sin 3h

q

0 0 0
0 sin2 � sin hcosh
0 � sin hcosh cos2 h

2
64

3
75 ð76Þ

where all non-zero elements are included in a 2 � 2 submatrix. This
case always occurs when there exists no coupled terms of the first
invariant and other two invariants in the potential function.

Elastic response is assumed to be linear. With the help of (11b),
the elastic strain energy function is

W ¼ 3
2

K ê2
1 þ lðê2

2 þ ê2
3Þ ð77Þ

where K is the bulk modulus and l is the shear modulus. Using (31),
the elastic tangent matrix takes the diagonal form

Ce ¼
3K 0 0
0 2l 0
0 0 2l

2
64

3
75 ð78Þ

Inserting (78) and (76) into (60), the matrix A takes the simple
form. Obviously, only the inversion of a 2 � 2 submatrix is required
during the constitutive iteration.

The example refers to a full three dimensional problem of a
square strip with a circular hole, subjected to increasing extension
in a direction perpendicular to the axis of the strip and a uniformly
distributed load over one surface of the strip in the thickness direc-
tion, see Fig. 3. The analysis is performed using the three-dimen-
sional finite element procedure as described above. Along the
thickness direction, the strip is divided into six equal layers of ele-
ments. A boundary condition is applied by restraining the degree of
freedom of the other surface of the strip in the thickness direction.
Due to symmetry of geometry and load only one-quarter of the
strip is modeled and the finite element mesh employed is shown
in Fig. 4.

The elastic properties of the material are taken as E = 30 GPa
and v = 0.2. The hardening is defined by the tangent modulus in
uniaxial compression drc

dep ¼ 2:5 GPa, where the uniaxial compres-
sion initial yield stress is taken as rc = 20 MPa. We assume the
associated flow laws, / = w = 30�. Other parameters are assumed
to be j = 0.78. The uniform displacement is applied in increments
on two lateral sides. The first two time step size is 0.28%. The ratio
of next time step size to last one is chosen to be 1.3. The applied
total displacement d is 0.4 m and the uniformly distributed load
q is 30 MPa.

In order to demonstrate the validity, the main computational
results corresponding to the ultimate load are compared between
the proposed method and other existing methods at both global
and local level. At global level, the contours of maximum principal
stress and equivalent plastic strain are compared, as shown in
Figs. 5 and 6. ‘‘GS’’ denotes the method formulated in the general
stress space, ‘‘PS’’ denotes the method formulated in principal
stresses and ‘‘BT’’ denotes the proposed method. At local level,
we choose eight elements (see Fig. 4) and compare the results of
their first integration point, as shown in Table 2.

The contours of maximum principal stress and equivalent plas-
tic strain are almost the same between the proposed method and
other existing methods. The illustrations on the integration point
level show identical results using the three different methods.
These show evidently the validity of the proposed method.



Fig. 3. Perforated strip subjected to increasing extension.

Fig. 4. Finite element mesh.

Q. Peng, M.X. Chen / Computers and Structures 92–93 (2012) 173–184 181
In order to demonstrate the validity of the consistent tangent
operator using the proposed method, we compare the iteration
numbers required to attain convergence between the proposed
method and other existing methods. The iteration numbers with
consistent tangent operators and that with continuum tangent
operators are also compared. These are summarized in Table 3.

Table 3 shows that the iteration numbers required to attain
convergence using the three different methods are exactly the
same, either with consistent tangent operators or continuum tan-
gent operators. It also shows that the iteration numbers with con-
sistent tangent operators are considerably less than the ones with
continuum tangent operators. Since the rate of asymptotic conver-
gence of the GS or PS method is quadratic, the quadratic rate of
asymptotic convergence of the proposed method is thus preserved.

In order to demonstrate the numerical efficiency, we compare
the computation time for the proposed method and other existing
methods. The results are shown in Table 4. TT denotes the total
computation time which includes time spent on equilibrium itera-
tions and other system operations, in addition to the time spent on
constitutive integration. TC denotes the computation time spent
only on constitutive integration. It is noted that the calculations
are carried out with sufficient physical memory and only one
processor.

As shown in Table 4, in this numerical example, the proposed
method saves up to 68.7% of the time for the constitutive integra-
tion compared to GS method and 39.8% of the time compared to PS
method. This shows that the proposed method is more efficient
than the existing methods. The main reasons for this is mentioned
above, namely that the explicit computation of the principal axes
and the coordinate transformation from the principal reference
frame to the global reference frame is avoided. In addition, the
expressions for the matrix which needs to be inversed become
simple using the proposed method, as shown in (76) and (78),
and the evaluation of inversion becomes easier.

By the way, the simulation is also carried out by using the ABA-
QUS built-in extended Drucker–Prager model. The total time for
this computation is 121.6s which is longer than the total time for
all the three (GS, PS and BT) methods. The reason for this is perhaps
that as commercial software, ABAQUS adopts a more general meth-
od which is applicable to the general case of more than one inter-
nal variables and the potential function including the internal
variables. That is, the equation system (52)–(55) rather than



Fig. 5. Contours of maximum principal stress (MPa).

Fig. 6. Contours of equivalent plastic strain.
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Table 2
Comparison of the results on the integration point level.

Element (integration point) Maximum principal stress Equivalent plastic strain

Method Value (MPa) Error Method Value Error

1(1) GS 123.654709 0.000E+00 GS 6.68126717E�02 0.000E+00
PS 123.654709 0.000E+00 PS 6.68126717E�02 0.000E+00
BT 123.654709 BT 6.68126717E�02

2(1) GS 98.5085831 0.000E+00 GS 4.96679768E�02 0.000E+00
PS 98.5085831 0.000E+00 PS 4.96679768E�02 0.000E+00
BT 98.5085831 BT 4.96679768E�02

3(1) GS 79.9415207 9.507E�08 GS 3.78767103E�02 0.000E+00
PS 79.9415131 0.000E+00 PS 3.78767103E�02 0.000E+00
BT 79.9415131 BT 3.78767103E�02

4(1) GS 52.4177361 1.469E�07 GS 2.18483862E�02 0.000E+00
PS 52.4177361 1.469E�07 PS 2.18483862E�02 0.000E+00
BT 52.4177284 BT 2.18483862E�02

5(1) GS 56.0904198 6.775E�08 GS 2.91363318E�02 �6.178E�08
PS 56.0904198 6.775E�08 PS 2.91363336E�02 0.000E+00
BT 56.090416 BT 2.91363336E�02

6(1) GS 36.6049347 0.000E+00 GS 1.97020415E�02 �9.644E�08
PS 36.6049347 0.000E+00 PS 1.97020415E�02 �9.644E�08
BT 36.6049347 BT 1.97020434E�02

7(1) GS 31.3021069 0.000E+00 GS 8.69037304E�03 0.000E+00
PS 31.3021049 �6.389E�08 PS 8.69037304E�03 0.000E+00
BT 31.3021069 BT 8.69037304E�03

8(1) GS 28.5417137 0.000E+00 GS 1.61733646E�02 0.000E+00
PS 28.5417156 6.657E�08 PS 1.61733646E�02 0.000E+00
BT 28.5417137 BT 1.61733646E�02

Error = (GS � BT)/GS or (PS � BT)/PS.

Table 3
Comparison of iteration numbers.

Time increment (%) Consistent tangent operator Continuum tangent operator

GS PS BT GS PS BT

0.280 1 1 1 1 1 1
0.280 5 5 5 5 5 5
0.364 5 5 5 10 10 10
0.473 4 4 4 10 10 10
0.615 4 4 4 9 9 9
0.800 4 4 4 10 10 10
1.040 3 3 3 10 10 10
1.352 3 3 3 10 10 10
1.757 3 3 3 10 10 10
2.284 3 3 3 10 10 10
2.969 3 3 3 10 10 10
3.860 3 3 3 10 10 10
5.018 3 3 3 11 11 11
6.523 3 3 3 15 15 15
8.481 4 4 4 20 20 20

11.02 4 4 4 26 26 26
14.33 4 4 4 37 37 37
18.63 3 3 3 44 44 44
19.92 2 2 2 36 36 36

Table 4
Comparison of computation time.

Method TT (s) 1.0 � BT/(GS,PS,BT) TC (s) 1.0 � BT/(GS,PS,BT)

GS consistent 103.2 13.3 22.7 68.7
PS consistent 93.7 4.5 11.8 39.8
BT consistent 89.5 0.00 7.1 0.00
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(59)–(61) is used in the solution and therefore more computation
time is spent.

7. Conclusions

An efficient return mapping algorithm is developed for implicit
integration of general isotropic elastoplastic constitutive equa-
tions. A remarking feature is that we employ a set of three mutu-
ally orthogonal unit base tensors in conjunction with a new set
of three invariants for the representation of arbitrary isotropic ten-
sor valued and scalar valued functions of the stress tensor involved.
The base tensors are constructed from the stress tensor by using
the representation theorem in conjunction with the simple tensor
operations. They are expressed in the global coordinate system and
characterized geometrically by mutually orthogonal vectors in
principal space. The three invariants are defined by the projection
of the stress onto the base tensors. By making use of the represen-
tation theorem, all the second-order, the fourth-order tensor-val-
ued functions of the stress involved in the integration algorithms
can be represented in terms of those three base tensors with the
coefficients given by the invariants of the stress and scalar internal
variables. Due to the fact that the principal axes of the stress re-
main unchanged during the stress return and the defined base ten-
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sors depend only on the principal directions, therefore, those base
tensors serve as the fixed base. Only the three coefficients need to
be iterated upon. This number is half of the six unknowns needed
to determine the stress tensor using traditional algorithms. The
consistent tangent operator is derived for the proposed algorithm
in an efficient, closed form manner. It consists of two parts: one
is the tangent operator consistent with the return mapping in
the principal stress direction and another reflects the changes in
principal stress directions with total applied strain. Compared with
the usual approaches in principal space, the main advantage of the
proposed approach is that only two base tensors need to be derived
from the stress tensor with simple tensor operations. All tensorial
quantities entering the return mapping and the expression of the
consistent tangent tensor are directly expressed in terms of the
proposed base tensors in the global co-ordinate system. The usual
procedure of expressing the updated stress and the constitutive
matrix in the principal reference frame and transforming back to
the global reference frame can be omitted. The explicit computa-
tion of the principal axes can be avoided. In addition, the matrix
which needs to be inversed often takes the simple form. The algo-
rithm is made more efficient.
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