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Automatic Segmentation of White Matter
Hyperintensities by an Extended FitzHugh &
Nagumo Reaction Diffusion Model

Shuangxi Ji, MS,1 Changqing Ye, PhD,2 Fan Li, MD,2 Wei Sun, MD,2

Jue Zhang, PhD,1,3* Yining Huang, MD,2* and Jing Fang, PhD1,3

Purpose: To evaluate the efficiency and reproducibility of
the extended FitzHugh & Nagumo (FHN) reaction-diffu-
sion model proposed in this study for white matter hyper-
intensities (WMH) segmentation.

Materials and Methods: Five types of magnetic reso-
nance T2-weighted fluid-attenuated inversion-recovery
(T2FLAIR) images of 127 patients with different scanning
parameters from five clinical scanner systems were
selected for this study. After skull and scalp removal and
denoise, the T2FLAIR images were processed by the pro-
posed extended FHN model to obtain WMH. This new
technique replaced the global threshold constant with a
local threshold matrix.

Results: There was no significant difference between the
segmentation results of the training set and the manual
contouring against those between the test set and the
manual contouring based on similarity index (SI) values
(P ¼ 0.5217). The SI values of the five types of T2FLAIR
images were 86.0% 6 15.4%, 85.8% 6 10.5%, 84.1% 6

14.8%, 87.2% 6 14.6%, 86.3% 6 12.7%, respectively,
comparing the segmentation results using the proposed
method to the manual delineations. The overall SI value
of the images was 86.5% 6 14.5%. This approach also
demonstrated a better WMH segmentation performance
over its classic form (P < 0.001).

Conclusion: The proposed approach is efficient and could
provide a more effective and convenient tool for clinical
quantitative WMH analysis.
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WHITE MATTER HYPERINTENSITIES (WMH) are
attracting increasing attention from researchers
worldwide. They are commonly found on magnetic
resonance (MR) images of the elderly with diseases
including cerebral vascular disorders (eg, stroke (1,2),
Alzheimer’s syndrome (3–6)), autoimmune diseases
(eg, multiple sclerosis (7,8)), neurodegenerative dis-
eases (eg, dementia (1,9,10)), etc. Besides correlation
with advanced age, they might be seen in patients
with gait and balance dysfunction (11) and carbon
monoxide poisoning (12). Although WMH is also often
present in healthy elderly individuals, studies have
shown that they are related to deficits in speed of cog-
nitive processing (13). MR T2 weighted fluid-attenu-
ated inversion recovery (T2FLAIR) imaging offers
advantages over other imagings for detecting WMH
because of the high contrast between WMH and other
brain tissues.

It has been realized that the number, size, and loca-
tion of WMH in MR images could provide valuable in-
formation to explore the etiology and the development
of disease, and to evaluate the therapeutic effect of
treatment. In fact, both qualitative and quantitative
analysis techniques have been used to measure WMH
load in clinical practice. For qualitative analyses, vis-
ual rating scales, which are operationally defined in
MRI (14–16), have been frequently used by well-expe-
rienced doctors to grade the severity of WMH.
Although quick and convenient, that method some-
times could not achieve high consistencies among lon-
gitudinal studies due to the subjectivity of observers
(16). Moreover, the visual rating scale approach often-
times does not provide enough accuracy because of
its relatively large measurement units (ie, categories)
and poor sensitivity to lesion size.

The quantitative analysis approaches for WMH seg-
mentations vary from fully manual contouring techni-
ques to fully automatic segmentation. In fully manual
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strategies (17,18) the WMH boundaries of the image
displayed on-screen are first manually traced by the
doctor. Then the pixel number of the region of interest
(ROI) is calculated by computer. Finally, the volume of
lesion is yielded by considering the thickness of each
slice. These procedures are easy to follow and provide
accurate and consistent results. However, they are
time-consuming and require operators with rich expe-
rience in segmentation.

Many semiautomatic strategies have been proposed
by some researchers (19–23). For instance, in the
approach developed by Hirono et al (23), they man-
ually traced the rough contours of ROIs and then to
define WMH whose gray level value was above a cer-
tain threshold in the selected region. The threshold
was chosen to be the standard deviation of the normal
white matter obtained in the MR T1 images. Although
more efficient than manual contouring, these semiau-
tomatic methods were not always feasible when a
large number of images were involved. In that case,
user intervention during segmentation was still neces-
sary. Among the fully automatic techniques, Lao et al
(24) proposed an approach based on Support Vector
Machine for the segmentation of WMH in MR images.
Admiraal-Behloul et al (25) and Gibson et al (26)
introduced the Fuzzy C-Means cluster method to
automatically segment WMH. Van Leemput et al (27)
presented an algorithm based on a Gaussian model,
which described intensity-based brain tissues and
detected lesions by searching for the outliers of the
model.

Generally, for image segmentations the available
approaches mentioned above were all developed on
the basis of the intensity information of original
images. The local spatial information, which repre-
sents the relationship between neighboring pixels,
has not been effectively taken into account in many
cases. As we know, WMH always present irregular
shapes, and the boundaries between WMH and sur-
rounding normal tissues usually have a rather fuzzy
distribution. As a consequence, those conventional
WMH segmentation techniques are prone to the effect
of noise, and inevitably yield inconsistent results in
different measurements.

For years, researchers have attempted to apply the
reaction diffusion (RD) models to image processing via
image evolution and have achieved many favorable
results. RD models were originally developed to simu-
late the natural process in which both the reaction
between the substances and the diffusion of the sub-
stances coexist. The models have been found to be
closely related with the natural pattern formation pro-
cess. This fact enabled their applications in image
processing due to their capability of utilizing both in-
tensity and spatial information (28–33) in the pattern
distribution. Indeed, compared to conventional meth-
ods, the RD model-based approaches are able to
detect the boundaries of images with higher efficiency
in the presence of small intensity gradients (30),
which makes it more adaptive to deal with the images
with fuzzy outlines. One of the most widely adopted
RD models is the FitzHugh & Nagumo model (FHN),
characterized by its reaction term to simulate both

the activation and inhibition dynamics of the system.
It was first introduced to simulate the propagation of
active electrical pulses along a nerve axon in 1962
(34,35). In recent progress of image processing, Ebi-
hara et al (31) studied the FHN model and presented
the conditions for stable results in edge detection and
image segmentation; Liu et al (32) proved its validity
in noise reduction; and Miura et al (33) employed it to
extract features in 3D images, etc.

The purpose of this study was to apply the FHN
based segmentation method for fully automatic WMH
detection on MR T2FLAIR images. In this work, we
extended the classical FHN-based segmentation
method by replacing the threshold constant a with a
matrix A, which represents a local threshold adap-
tively determined from the gray levels of the neighbor-
ing pixels within the area with WHM and normal
brain tissues. To evaluate the proposed adaptive seg-
mentation technique, five types of T2FLAIR images
with different scanning parameters of 127 patients
with WMH were investigated and the final automati-
cally explored lesions were compared to manually
measured WMH by three experienced doctors.

MATERIALS AND METHODS

Patients and Scanning Protocol

This study was approved by the Institutional Review
Board. Written informed consent was obtained. MR
T2FLAIR images of 127 patients diagnosed with white
matter disease who were examined from 2004 to 2006
were included in the study. None of these patients
showed manifestations of serious or moderate disabil-
ity in accordance with the Instrumental Activities of
Daily Living scale (36). The datasets were acquired
with five clinical MR scanners: General Electric (GE,
Milwaukee, WI) Signa 1.5 T, GE Signa 3.0 T, Siemens
(Erlangen, Germany) Sonata 1.5 T, Philips (Eind-
hoven, Netherlands) Gyroscan Intera 1.0 T, and Phi-
lips Gyroscan Intera 1.5 T. For each participant the
dataset was compiled with a single scanner. According
to the scanning parameters, the T2FLAIR images can
be divided into five types (Table 1).

Data Quality Assessment

Before processing T2FALIR images, all MRI datasets
were evaluated in order to achieve a more homoge-
nous quality level. The images were excluded from
further participation if 1) there were no WMH in the
image, 2) artifacts were present. After data quality
assessment, there were 997 T2FLAIR images from
127 patients left (Table 2).

Segmentation Method

Image Preprocessing

Before using the FHN model to segment WMH, skull
and scalp regions were removed from T2FLAIR images
using the brain extraction tool (BET, Smith 2002).
Then an anisotropic diffusion equation (37) (15 itera-
tions, time step ¼ 0.2, conduction coefficient K ¼ 30;
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these values were determined based on trial and
error) was employed to denoise and smooth the
signal.

Classic and Extended FHN Model

The classic FHN RD model consists of two partial dif-
ferential equations:

@u
@t ¼ DuDu þ 1

e u u � að Þ 1� uð Þ � vð Þ
@v
@t ¼ DvDv þ u � bvð Þ

�
½1�

where e(0 < e � 1) is a small positive constant,
describing the time scale relationship between the
variables u and v. a(0 < a < 1), b(b > 0) are con-
stants. DuDu and DvDv are the diffusion terms in
which Du and Dv are the diffusion coefficients.
1
e u u � að Þ 1� uð Þ � vð Þ and (u � bv) are the reaction
terms (for detailed explanation, please refer to (30)).

It is worth mentioning that in this study the con-
stant a in the classic FHN model was extended to a
matrix named A with the same size as the image to be
segmented. That is, for a given T2FLAIR image whose
size is M � N, A is also an M � N matrix. The
construction of A is as follows. We first scale the pre-
processed T2FLAIR image matrix to (0, 1) to get its
normalized form I0. H(i,j) is the average of I0(i,j) and its
eight neighborhoods. Here 1,. . .,M; j ¼ 1,. . .,N. We set
A(i,j) ¼ k � H(i,j). If A(i,j) ¼ s � STD(I0), then we reset
the value of the element as ¼ s � STD(I0). STD(I0) is
the standard deviation of I0. k and s are constants
with empirical values.

Segmentation Process

Since the model has some adjustable parameters
(Du,Dv,b,e,k,s), we used about one-third of the data
(330 T2FLAIR images) as a training set to obtain opti-
mized values. These images were chosen arbitrarily.
The other data were employed as a test set. The seg-
mentation scheme of the proposed approach included
four steps, as demonstrated in Fig. 1.

Step 1: Using the preprocessed T2FLAIR image to
obtain the matrix A with certain values of k and s.

Step 2: Substituting matrix A into Eq. [1] and
selecting parameters Du, Dv, b, e with some values.
The initial conditions and boundary conditions for the
two variables (u, v) are no-flux Neumann boundary
conditions given by Eqs. [2] and [3], respectively:

u0 ¼ I0
v0 ¼ 0

�
½2�

@u=@n ¼ 0
@v=@n ¼ 0

�
½3�

where n is the normal to the boundary of the image to
be processed.

Step 3: Using the finite difference scheme to find the
numerical solution of u and v with the discrete space
step h and time step t, respectively. Fixed values uti-
lized for these two parameters were h ¼ 1, t ¼ 0.01.

Step 4: Via image evolution flows, finally transform-
ing the converged matrix u into the segmentation
result. The convergence can be confirmed by verifying
that the mean square error between the results of two
nearby iterations is less than a given small value e.
(In this study, e was chosen empirically as 0.001.).

Step 5: Reselecting values of these parameters in
their respective ranges and comparing the automatic
segmentation results with manual delineation using
similarity index (SI) described in the Evaluation sec-
tion. The highest SI corresponds to the optimized val-
ues of the parameters.

Table 1

Characteristics of the Five Types of T2FLAIR Images

T2FLAIRa

Images

type MR scanner type

Number of

patientsc
Age of

patients (y)d
Matrix

size

Repetition

time

(msec)

Echo

time

(msec)

Number

of slices

Slice

thickness

(mm)

Field of

view (mm)

I GEb Signa 1.5 T 36 (28M/8F) 63.5 6 9.8 256 � 256 9002 2200 18 6 240 � 240

II GE Signa 3.0 T 22 (18M/4F) 61.2 6 9.4 512 � 512 9002 2250 18 6 240 � 240

III Siemens Sonata

1.5 T

17 (10M/7F) 59.4 6 10.8 416 � 512 10000 2500 18 6.5 240 � 240

IV Philips Gyroscan

Intera 1.0T

36 (22M/14F) 63.3 6 9.0 512 � 512 6000 1900 14 6 240 � 240

V Philips Gyroscan

Intera 1.5T

16 (11M/5F) 63.6 6 14.9 256 � 256 7000 2000 14 6 240 � 240

Overall NA 127 (89M/38F) 62.1 6 10.4 NA NA NA NA NA NA
aT2FLAIR, T2 weighed fluid-attenuation inversion-recovery.
bGE, General Electric.
cF, female, M, male.
dData are shown as mean plus-minus standard deviation.NA, not applicable.

Table 2

Data Quality Assessment of the Five Types of T2FLAIR Images

T2FLAIR

images

type

T2FLAIR

images

images

without

WMH

images of

artifacts

presenteda

T2FLAIR

images

remainedb

I 648 314 48 286

II 396 137 31 228

III 306 115 26 165

IV 504 232 39 133

V 224 114 25 185

Overall 2078 872 209 997
aThey were counted within the T2FLAIR images with WMH.
bThere was no patient whose images were all ruled out.
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After training, we got: Du ¼ 0.1, Dv ¼ 10, b ¼ 20, e
¼ 0.0001, k ¼ 0.95, s ¼ 6.5. The whole image prepro-
cessing and WMH segmentation processes were done
with the help of MatLab (MathWorks, Natick, MA)
software.

Evaluation

To evaluate the results processed using the proposed
method, the SI expressed in the following equation is
calculated to measure the coincidence degree of the
segmentation results between the presented technique
and the manual approach (38), given by:

SI ¼ 2 A \Mj j
A þM

� 100% ½4�

where M is the manual delineation result of each
slice. It was generated by a consensus of three clinical
neurology experts and each had more than 10 years’
experience in WMH diagnosis. They used PhotoShop
(Adobe, San Jose, CA) to generate WMH masks. The
lasso tool was used to trace the edges and the eraser
tool was applied to set the parts in the contours to
foreground and others background. A stands for the
automatic segmented result of each slice using the
proposed method; A\M represents the number of
identical pixels between A and M. SI takes values
between 0 and 100%, in which zero means no overlap
at all (total disagreement) and 100% means an ideal

agreement between the two results. An SI value of
70% or higher indicates very good to excellent agree-
ment (39).

Finally, to estimate the improvement in the FHN
model from a fixed threshold to an adaptive threshold
matrix that was proposed in this study, we iterated
the preset threshold a from 0 to 1 with a step of 0.05,
and the independent samples t-test of SI value with
95% confidence interval was used to verify the signifi-
cance of the segmentation difference between the two
strategy groups.

RESULTS

Figure 2 shows the evolution of the WMH segmenta-
tion process by employing the extended FHN model.
The variable u related to the image intensity distribu-
tion converges quickly to WMH regions after a few
iterations within several seconds of computation time
in the modified model. The segmentation examples
using both the automatic method and manual delin-
eation are demonstrated in Fig. 3. Four original
T2FAIR images chosen randomly from the test set are
given in Fig. 3a. The corresponding WMH segmenta-
tion results by using the proposed method and man-
ual delineation overlapping with the preprocessed
T2FLAIR images are displayed in Fig. 3b,c, respec-
tively. The SI values between the automatic segmenta-
tion results and the manually generated results are

Figure 1. The total segmentation scheme based on the extended FHN model.

Figure 2. The evolution result of the variable u with different iteration number k. From left to right, k is taken as 1, 4, 7, 10,
13, 20, 40.
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show in Table 3. There is no significant difference
between the segmentation results of the training set
and the manual contouring against those between the
test set and the manual contouring based on SI val-
ues (P ¼ 0.5217). Moreover, we also calculated the SI
values between the segmentation results using the
classic FHN model and the manually delineated
results, as plotted in Fig. 4a. In the classic model, the
threshold a varies from 0 to 1 with a step of 0.05. It is
observed that compared to the classic method, the
extended FHN model with the adaptive threshold ma-
trix A presents a significantly higher SI value in WMH
segmentation results (Fig. 4b) (maximal P < 0.001 at
a ¼ 0.75).

DISCUSSION

In this study an automatic WMH segmentation
method is proposed using an extended FHN model.
The automatically segmented results were validated
against manually drawn WMH on five types of
T2FLAIR images from the 127 patients. Although each
type of image is from a different MR scanner and have
different scanning parameters, the SI values of the
segmentation results between the proposed approach
and the standard manual contouring method indicate
a good agreement in the sizes and locations of the
WMH. This new method also yields relatively low false
positives: I, 9.5% 6 16.5%; II, 9.1% 6 14.5%; III,
14.7% 6 17.6.0%; IV, 11.4% 6 18.6%; V, 9.5 6

16.1%. The false positive was calculated referring to
the literature (26).

In fact, The FHN model was originally derived from
the two-component reaction diffusion equations. It
simulates a system with both the activation and deac-
tivation mechanisms. The two variables u and v sym-
bolize the ‘‘activator’’ and ‘‘inhibitor’’ forces in the sys-
tem. An important characteristic of the original FHN
model is that under a certain condition, that is, when
the ‘‘activator’’ u exceeds a certain threshold a, the
system will evolve into a stable state by exhibiting a
characteristic excursion in its phase space. As ana-
lyzed in the literature (30–33), the thresholding pro-
cess enables its applications in image segmentation,
as it is able to cluster the pixels into two groups: the
foreground and background after finite iterations, the
parameter a in the classic FHN model corresponds to
the segmentation threshold. In addition, this method
takes into account the spatial information of the

Figure 3. The comparison of the automatic segmentation results and manual delineation. a: Original T2FAIR images. b: Seg-
mented results obtained by using the extended FHN model overlapping with the preprocessed T2FLAIR images. c: Manual
contouring results overlapping with the preprocessed T2FLAIR images. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Table 3

Values of Similarity Index Comparing the Automatic Segmentation

Results Using the Extended FNH Model to the Manually

Generated Results

T2FLAIRa Images type SIb value

I 86.0% 6 15.4%

II 85.8% 6 10.5%

III 84.1% 6 14.8%

IV 87.2% 6 14.6%

V 86.3% 6 12.7%

Overall 86.5% 6 14.5%
aT2FLAIR¼ T2 weighed fluid-attenuation inversion-recovery.
bSI, similarity index, data are shown as mean plus-minus standard

deviation.
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pattern distribution, which makes it more suitable to
outline objects with fuzzy edges.

In most available applications of FHN models in
image segmentation, a single constant threshold a is
usually applied. The premise of a successful segmen-
tation of the WMH using the FHN model is that the
local threshold is within the range determined by the
gray level values of WMH and normal brain tissues.
However, in the case of T2FLAIR images of WMH, due
to the gray level intensity inhomogeneity among differ-
ent T2FLAIR images and within a given T2FLAIR
image, this premise cannot always be satisfied. As a
consequence, a single global threshold a does not pro-
vide satisfactory segmentation results. In this study,
the single constant a in the classic FHN model was
extended to a matrix named A to adaptively detect
WMH. Based on local intensity distribution of the nor-
malized preprocessed T2FLAIR image, the adaptive
threshold of each pixel is represented by a corre-
sponding element in the matrix A. Specifically, in this
work, each element of matrix A was first constructed
using the local average of the normalized intensity
(within a 3-by-3 neighborhood) multiplying a coeffi-
cient k which is less than one. If we only do so, most
of pixels will turn out to be foreground due to their
intensities being higher than each corresponding
threshold. We found that the averaged intensities of
normal brain tissues are approximately proportional
to STD(I0). So a proper value of parameter s can be
chosen in order to make s � STD(I0) be between the
intensity of normal brain tissues and WMH. In addi-
tion, when we fixed this value of s, the situation also
could be obtained for most other images. Now, A(i,j) is
reassigned to s � STD(I0) if any A(i,j) < s � STD(I0).
Here we should note that the intensities of almost all
of the background and normal tissue are lower than
their new threshold and, on the contrary, most of the
WMH pixels have the converse situation. Thanks to
the efficiency of clustering fuzzy objects of the FHN
model in image processing (30), the former will evolve

to the new background after a limited number of iter-
ations in Step 4 and the latter will be left out as the
foreground.

It is worth mentioning that we did not correct the
bias field which leads to a smoothly varying intensity
inhomogeneity for the same tissue over an entire MR
image. Bias field correction may help achieve better
performance of our method. However, this operation
would increase computational complexity and time
cost. Moreover, since our proposed model has an
adaptive threshold matrix, it isn’t quite sensitive to
the intensity in-homogeneities.

It also has to be mentioned that the thresholding
process involved in the proposed method is essentially
different from the traditional thresholding technique,
which is widely applied in classical segmentation algo-
rithms. And it differs from the fuzzy connectedness
technique put forward by Udupa et al (21) for multiple
sclerosis delineation as well, which also employs spa-
tial information for image segmentation. In the con-
ventional thresholding method a successful edge-
detection operation requires a significant contrast
between the foreground and background in a histo-
gram. However, this condition cannot always be satis-
fied for most clinical T2FLAIR images, which often-
times have fuzzy and blurry edges. In addition, for
many clinical images with multiple intensity levels,
local contrast cannot indeed be reflected in a histo-
gram. As a consequence, these methods inevitably
lead to under- or overestimated results. The idea of
the fuzzy connectedness is based on the principle that
the object information in images is fuzzy and has a
special connectedness, which is also fuzzy. In prac-
tice, one computes a map of the connectedness of ev-
ery pixel in the original image in relation to a specific
pixel (manually designated) belonging to the object of
interest. The neighboring connectedness or affinity
between two pixels is defined via a function that indi-
cates the degree of adjacency and the similarity of
their intensity values. Once the map is computed, the

Figure 4. Comparison of WMH segmentation results achieved by the classic FHN model and the proposed extended FNH
model. a: The SI values based on the classic FHN model in which the threshold a varies from 0 to 1.0 with a step of 0.05. b:
The SI value by using the extended FNH model with an adaptive threshold matrix A. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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segmented object is obtained by the simple threshold-
ing method. Although the practical results of segmen-
tation obtained by this method are good in some
cases, it also has some weaknesses: It is a semiauto-
matic technique where the operator needs to allocate
special points on the objects of interest and the seg-
mentation results strongly depend on the affinity
function defined and the choice of the threshold used
for the binarization of the connectedness map. In our
work, through combining the adaptive threshold ma-
trix and the FHN model, the mutual interaction
between the reaction term and diffusion term at a
local area in a given image, the extended FHN utilizes
the spatial and intensity distribution information in
its nonlinear dynamical evolution. Namely, with the
blurry interfaces between WMH and normal brain tis-
sue being gradually highlighted, the lesion border at
the stable or converged state from T2FLAIR images is
finally extracted.

This study is certainly not without limitations.
Although T2FLAIR provides the best contrast between
normal tissue and WMH compared to other imaging
technologies, it may overestimate lesion load, which
usually appears on the edge of the lateral ventricle
region. Previous researchers have reported that pro-
ton density weighted images may be effective in elimi-
nating these false positives (24). Therefore, multicon-
trast images could be taken into consideration to
improve the lesion segmentation performance in
future work.

In summary, we have demonstrated an extended
FHN model with a threshold matrix to automatically
segment WMH on five types of T2FLAIR images. The
WMH segmentations are consistent with those from
manual delineations based on SI evaluations. These
results suggest that the proposed approach provides a
more effective and convenient tool for clinical quanti-
tative WMH analysis.
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