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Although quantum computers promise significant advantages, the complexity of quantum 
algorithms remains a major technological obstacle. We have developed and demonstrated an 
architecture-independent technique that simplifies adding control qubits to arbitrary quantum 
operations—a requirement in many quantum algorithms, simulations and metrology. The 
technique, which is independent of how the operation is done, does not require knowledge of what 
the operation is, and largely separates the problems of how to implement a quantum operation in 
the laboratory and how to add a control. Here, we demonstrate an entanglement-based version 
in a photonic system, realizing a range of different two-qubit gates with high fidelity. 
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Perhaps the most notable future application of quantum science 
is quantum information processing, which promises secure 
communication1 and greatly increased speeds for solving cer-

tain problems such as database searching2, factoring3 and quantum 
simulation4. The excitement surrounding quantum computers lies in 
the fact that the number of elementary operations that they require 
to solve these problems scales only polynomially with the size of the 
input, in contrast to exponential scaling on a conventional compu-
ter. However, even a polynomial scaling of quantum computational 
resources still presents an enormous obstacle to practical realiza-
tion. It may well be that although a quantum computer could, in 
principle, efficiently solve these important problems, it will remain 
practically infeasible to build one that can implement a sufficient 
number of operations, on enough qubits and with sufficient preci-
sion, to do anything useful. This motivates developing methods to 
reduce the resource overhead required to implement key quantum 
algorithms.

Quantum algorithms rely on the decomposition of a functional 
quantum circuit into an elementary logic gate set, such as that 
formed by single-qubit and two-qubit controlled-NOT (CNOT) 
gates5; there have been several experiments to demonstrate univer-
sal quantum gate sets in different physical architectures6 including  
ion traps7,8, linear optics9–13, superconductor14–15, atoms16,17, and even  
small-scale algorithms18–21. However, the large number of elemen-
tary gates required to implement even the modest-sized circuits 
presents a significant challenge. This complexity is due to not only 
the sheer number of elementary operations required but also the 
structure in which these gates are combined.

Controlled-unitary (CU) gates are a particularly important class 
of circuits, where one ‘control’ qubit turns on or off a unitary opera-
tion U acting on a register of ‘target’ qubits (Fig. 1a). These circuits 
feature heavily in Kitaev’s phase estimation algorithm22 that under-
pins Shor′s factoring algorithm3 and quantum simulation4. In the 
context of quantum simulation, U could represent a simulation of 
the time-evolution operator of some physical system, and the abil-
ity to add control qubits allows energy eigenvalues to be read out 
through the phase estimation algorithm23. Phase estimation is also 
a fundamental tool in quantum metrology. However, the current 
standard method of realizing CU gates, which relies on the decom-
position of U into an elementary gate set, may not be suitable for 
these applications: in Kitaev’s phase estimation algorithm U may be 
an unknown ‘black box’ that cannot be decomposed at all.

Here we present and demonstrate a simple method for realizing 
controlled quantum operations (CO), of which CU gates are a sub-
set. In the following we first explain the technique in a way that is 
independent of any particular physical system, before describing a 

conceptual example in a photonic system. We then show that the 
equivalent operation can be achieved by exploiting an entangled 
initial state—reminiscent, but distinct from, cluster state quantum 
computing24,25. Finally, we apply this approach in a series of proof-of-
principle experiments implementing various two-qubit gates which 
include a CNOT, a number of other CU gates, as well as ‘entangle-
ment-filter’ and ‘entanglement-splitter’ gates.

Results
Explanation of the general technique. Our approach for adding 
a control qubit to an arbitrary quantum operation O is shown 
conceptually in Figure 1b. In summary, conditional on the logical 
state of the control, the quantum state of the target register () 
is temporarily shifted into a part of an extended Hilbert space 
on which O does not act (imparts the identity operation). In this 
way the evolution of  is dependent on the control qubit state, if 
it is |0〉 (|1〉) then → (→O). The Hilbert space is extended 
by employing an extra two levels in each quantum information 
carrier in the target register, making each a four-level system with 
logical states |0〉,|1〉,|2〉 and |3〉. The action of each Xa gate is to swap 
information between the bottom two ‘qubit’ levels (|0〉, |1〉) and the 
expanded Hilbert space (|2〉, |3〉), that is, 
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In spite of its conceptual simplicity, the technique has significant 
practical benefits: it largely separates the experimental problems of 
how to implement any given quantum operation in the laboratory 
and how to add a control qubit. This is relevant in many experimental 
cases where it is not at all clear how to directly add a control to a 
quantum operation, for example, when O can be realized in analogue 
fashion by turning on an experimental hamiltonian, or when O is a 
non-unitary operation implemented by directly coupling to a bath. 
Even in the case where O can be constructed with a universal gate 
set, the number of additional operations required to add a control 
will generally be far less following our approach. Furthermore, in 
situations where O is unknown, our method may be the only way to 
add control. This is relevant in quantum metrology where the goal 
is to measure properties of O.

The method can be straightforwardly extended to realize the 
conditional implementation of two different operations O1 or O2 
based on the state of the control qubit. Here whereas the compo-
nent of the state that is unmoved undergoes O1 , the component of 
the state moved into the expanded Hilbert space undergoes O2. A 
further extension would be to add multiple control qubits to imple-
ment one of several quantum operations, based on the state of all of 
the control qubits. For example, with two control qubits, four opera-
tions O1, O2, O3, or O4 could be implemented depending on the state 
of the control qubits.

An alternative approach to extending the Hilbert space would be 
to use another register of qubits and controlled-swap operations to 
move information between the registers. However, whereas adding 
more qubits has proved to be a significant experimental challenge, 
multi-dimensional quantum information carriers are readily availa-
ble in most physical systems currently being investigated or used for 
quantum information processing. Trapped ions systems, for exam-
ple, offer a large number of precisely controllable internal electronic 
and external vibrational degrees of freedom. Our technique could 
be implemented by conditionally moving quantum information  
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Figure 1 | Controlling arbitrary quantum operations using additional 
degrees of freedom. (a) Logic circuit in which quantum operation O is 
implemented on a register of qubits (target register), conditional on the 
logical state of a single control qubit. (b) Our approach to implementing 
the circuit in (a). The target information carriers are four dimensional 
systems with logical states |0〉,|1〉,|2〉 and |3〉. Initially and finally, only the 
bottom two ‘qubit’ levels (|0〉 and |1〉) are populated. Controlled-Xa gates 
(equations 1 and 2) swap information between the qubit levels and the 
upper levels (|2〉 and |3〉), on which O does not act. In this way, conditional 
on the state of the control qubit, the entire quantum state of the target 
register is temporarily moved into an effective quantum memory on  
which O does not act.
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between different electronic transitions, on which subsequent oper-
ations do not operate, or operate differently, on. We note that in 
previous work it was shown how moving part of the state of a target 
qubit into an expanded Hilbert space can simplify adding control 
qubits26. However, this only works in the case where the target is a 
single-qubit unitary and is at the expense of changing how the uni-
tary must be implemented.

Optical version of the scheme. Although our technique is inde-
pendent of the particular physical system and degree of freedom 
employed, it is particularly well suited to an optical version in 
terms of the polarization and spatial degrees of freedom of phot-
onic qubits. As shown in Figure 2a, the controlled-path (CP) gate 
substitutes the CXa in Figure 1b. The CP is a two-photon gate that 
changes the target photon’s path if the control is vertically polarized. 
We note that the CP gate has previously been proposed for imple-
menting controlled gates in the context of weak optical cross-Kerr 
nonlinearities27,28.

To understand how the CP gate works, let’s examine its structure 
shown in Figure 2b. Assume the inputs are two polarization-encoded 
photonic qubits, α|H〉1 + β|V〉1 (control photon 1) and γ|H〉2 + δ|V〉2 
(target photon 2). The first polarizing beamsplitter (PBS) will con-
vert the target state from γ|H〉2 + δ|V〉2 to γ|H〉2b + δ|V〉2r where 2r 
and 2b denote the red and blue spatial modes of the target photon, 
respectively. The subsequent two CNOT gates flip the polarization 
of the target photon, if the first photon is vertically polarized. (It 
is assumed that if a CNOT acts on an unoccupied spatial mode, 
the identity is enacted.) Thus, the two-photon state becomes α|H〉1 
(γ|H〉2b + δ|V〉2r) + β|V〉1(γ|V〉2b + δ|H〉2r). Then the two spatial modes 
2r and 2b of the target photon are mixed on the second PBS which 
converts the two-photon state to α|H〉1(γ|H〉2r + δ|V〉2r) + β|V〉1(γ|V〉2b 
 + δ|H〉2b). Finally, a half-waveplate (HWP) flips the polarization in 

spatial mode 2b and thus converts the state to α|H〉1(γ|H〉2r + δ|V〉2r) 
+ β|V〉1(γ|H〉2b + δ|V〉2b): the result is that the target polarization qubit 
is to be found in one of two orthogonal spatial modes, depending 
on the logical state of the control qubit. By defining |H〉2b, |V〉2b, |H〉2r 
and |V〉2r as |0〉, |1〉, |2〉 and |3〉, respectively, one can easily find that 
a CP exactly realizes the function of a CXa gate.

Returning to Figure 2a, suppose that the control photon is again 
initially in the arbitrary polarization-qubit state α|H〉 + β|V〉 and the 
target photons are initially in the multi-qubit state |〉. The photons 
pass through a sequence of CPs which changes the path of all target 
photons if the control photon is vertically polarized, thus the state 
is converted to α|H〉|〉r + β|V〉|〉b where r and b denote the collec-
tive red and blue spatial modes, respectively. Next, the blue spatial 
modes b of the target photons are acted upon by U, whereas the red 
spatial modes r do not pass through the unitary, as indicated by the 
dotted lines. The state is therefore converted to α|H〉|〉r + β|V〉U|〉b. 
Finally, by repeating the sequence of CPs, we obtain the desired state 
α|H〉|〉 + β|V〉U|〉 at the output.

There is a clear advantage over the conventional quantum compu-
tational approach to adding control qubits, in terms of the number 
of logic gates required. Assuming that U, which is a unitary acting on 
n qubits, can be decomposed into a circuit of p CNOTs and q single- 
qubit gates, one would use p Toffoli gates and q two-qubit control-
led gates to build the corresponding CU gate, which can further be 
decomposed into (3p + q) to (6p + 2q) CNOTs and even more single-
qubit gates29. Although 4n more CNOTs suffice to add a control to 
the n-qubit unitary U by using our method, at least (2p + q) more 
CNOTs are needed if one sticks to the traditional scheme. For most 
quantum algorithm applications, such as Shor′s algorithm where U 
is a modular exponentiation gate, the typical value of (p + q) is about 
72n3 which is on the order of O(n3) and thus (2p + q) is much larger 
than 4n when n becomes large29,30. Furthermore, if U is a non-uni-
tary operation, then the conventional approach is to rewrite this as a 
unitary on a larger Hilbert space, at a significant cost to the number 
of gates required. There is no additional cost to add controls to non-
unitary operations following our approach.

Entanglement-based scheme. Even a two-qubit demonstration 
of our scheme would require two CP gates and subsequently four 
CNOT gates, which is presently out of reach using current linear-
optical quantum information processing technology. However, the 
effect of the CP gate is to generate entanglement between the con-
trol qubit and target register, and this kind of entanglement can be 
generated directly from existing photon sources. We now present 
an alternative entanglement-based version of our scheme which is 
feasible with current technology.

Consider the optical circuit schematic shown in Figure 2c. At the 
input, a spatially-entangled n-photon state is injected that is an equal 
superposition of finding one photon in each of the n red modes and 
one photon in each of the n blue modes. In the case where the polar-
ization of the n-photon input state is |φ〉 = (α|H〉 + β|V〉)|〉, where 
α|H〉 + β|V〉 is the upper control qubit and |〉 is the joint state of 
the lower (n–1) target register qubits, then the initial state can be 
written as 

1
2

(| | | | )f f〉 〉 + 〉 〉⊗ ⊗
r b

n
r

n
bvac vac

where r and b label the collective red and blue spatial modes, 
respectively, and |vac〉 represents an unoccupied mode. From now 
on we will drop the unoccupied vacuum modes from the nota-
tion. Note that, as we will show, it is possible to create such a state 
from a spontaneous parametric down conversion photon source. 
The quantum operation U acts only on photons in the blue spa-
tial modes of the target register. The information about whether 
the target state  does or does not undergo the operation U is 
therefore encoded in the spatial mode of the control photon.  
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Figure 2 | Optical implementation of the scheme. (a) Implementation of a 
CU gate. The circuit is composed of three parts: controlled-path gates (CP) 
at the beginning, which move the target qubits from upper spatial modes 
(labelled red) to lower spatial modes (labelled blue) if the control qubit is 
in the logical state |1〉; the unitary gate U in the middle is implemented on 
the lower spatial modes; and CPs at the end, which combine the upper and 
lower spatial modes. (b) Construction of a CP gate. When the control is in 
the logical state |0〉, nothing is applied on the target and the photon exits 
in the red mode. When the control is |1〉, the polarization of the target flips 
and the photon exits in the blue mode. HWP flips back the polarization 
of the target photon in the blue mode. (c) Entanglement-based scheme. 
Instead of implementing CPs before the unitary gate U, one sets the input 
state in an equal superposition of photons either all in the red modes or 
all in the blue modes. The CPs after U are substituted by a series of non-
polarization BS. (d) Linear combinations of quantum operations . The two 
photons are either in the red modes 1r,2r or in the blue modes 1b,2b which 
pass through quantum operations A and B, respectively. Then two spatial 
modes 1r,1b (2r,2b) of photon 1 (2) are combined at a BS. By postselecting 
two photons at ports 1,2 or 1′,2′ (1,2′ or 1′,2), one can effectively realize the 
quantum operation A + B (A − B).
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Mixing the two control modes on a PBS and postselecting on finding 
the control photon in the lower spatial mode move this information 
into the polarization of the control photon, yielding the state:

1
2

( | | | | )a y b yH V Ur b〉 〉 + 〉 〉
 

Finally, the red and blue modes of each target qubit are mixed on 
non-polarising beamsplitters (BS) to remove the path information. In 
the case where all photons exit in the lower paths, the output state is 

1

2n
H V U( | | | | )a y b y〉 〉 + 〉 〉

 

as required. The probability of success is (1/2)n, however all combi-
nations of the control photon arriving in lower spatial mode and an 
even number of target photons arriving in lower spatial modes will 
give a state with the same form as in equation 5. There are 2n–2 such 
combinations that the total probability of success is 1/4, regardless 
of the number of qubits U acts on. The important feature of our 
approach —that any operation (known or unknown) can be con-
trolled without changing the way the operation is done—is retained 
in the entanglement-based approach.

This approach can be reformulated in a more general way as shown 
in Figure 2d. Here we consider the two-photon case for simplicity. 
Beginning with the two-photon input state of equation 3, the red and 
blue modes pass through quantum operations A and B respectively. 
The state ( / )( | | )1 2 A Br bf f〉 + 〉  is obtained. After mixing the spa-
tial modes on the two BSs, one would get (A + B)|φ〉 if the two photons 
exit at ports 1 and 2 or 1′ and 2′. Otherwise, if the two photons exit at 
ports 1 and 2′ or 1′ and 2, (A–B)|φ〉 would be obtained. To realize the 
CU gate, one just needs to set A = |H〉〈H|I and B = |V〉〈V|U, where 
|H〉〈H| and |V〉〈V| denote projectors onto |H〉 and |V〉, respectively.

This approach provides a new perspective on constructing quan-
tum gates: Whereas the traditional decomposition method can 
be regarded as performing multiplication, which corresponds to 
rewriting the target gate matrix as the product of several gate matri-
ces, our method is performing linear combination, which means 
rewriting the target gate matrix as the sum of several gate matrices. 
This entanglement-based scheme would be useful for small-scale 
applications as well as subroutines in larger calculations, and it 
could be made deterministic, following the original prescription for 
linear optical quantum computation31. Introducing nonlinearities is 
another way to approach a unit success probability27.

Experimental demonstration. We now present experimental  
demonstrations of several two-qubit CU gates using this general 
entanglement-based method (specifically corresponds to Fig. 2d). 
Figure 3 shows a schematic diagram of our experiment. Note the 

(4)(4)

(5)(5)

simplicity of this scheme relative to the previous demonstration 
of photonic CU gates26, in particular, the fact that it requires no 
quantum interference. A continuous-wave laser is focused onto a 
BiBO crystal and thus produces photon pairs through the type-I  
spontaneous parametric-down conversion (SPDC) process. We 
collect two photons from four points from the SPDC cone, as 
shown, resulting in a two-photon four-mode state32 of the form  
( / )(| | | | )1 2 1 2 1 2H H H Hr r b b〉 〉 + 〉 〉 . By passing each mode through 
several waveplates, we prepare a state ( / )(| | ), ,1 2 1 2 1 2f f〉 + 〉r r b b ,  
where |φ〉 can be an arbitrary two-qubit separable state. Here we 
designate photon 1 as the control, which is in modes 1r and 1b, and 
photon 2 as the target, which is in modes 2r and 2b. Before modes 
1r (2r) and 1b (2b) are combined at a BS, we let the four modes pass 
through four single-qubit gates A1, B1, A2 and B2 that are constructed 
from waveplates or PBSs. Then, by measuring the two-photon  
coincidences between detectors at ports 1 and 2, we get the state 
(A + B)|φ〉, where A = A1A2 and B = B1B2. As explained above , by 
setting A1 = |H〉〈H|, A2 = I, B1 = |V〉〈V| and B2 = U, the corresponding  
CU gate is obtained.

We constructed a series of CU gates, including CNOT,  
C-Hadamard (CH), CPhase (CZ), CZ(π/2) and CZ(π/4) gate, by set-
ting B2 = X,H,Z,Zπ/2 and Zπ/4, respectively. To evaluate the perform-
ance of these gates, we adopted the method introduced in ref. 33.  
For each gate, two truth tables are measured in complimentary 
bases. The bases we chose are shown in Figure 4. The fidelity of these 
truth tables with the ideal (F1 and F2) bound the process fidelity of 
the gate via: 

( ) ( , )F F F F F1 2 1 21+ − ≤ ≤P Min  

We have also performed full-process tomography on one of these gates 
(see Methods section). From FP we can calculate the output state fidel-
ity averaged over all input states through the average gate fidelity: 

F dF
d

= +
+

P 1
1

,

where d is the dimension of the gate (d = 4 for a two-qubit gate). The 
results are shown in Figure 4.

This method is not limited to realizing CU gates. By changing 
the values of A1, A2, B1, and B2, one can implement various two-
qubit quantum operations. For example, by setting A1 = A2 = |H〉〈H| 
and B1 = B2 = |V〉〈V|, one can realize a very useful quantum gate 
known as entanglement filter (EF)34,35. An EF is a special (non- 
unitary) quantum gate which filters multi-qubit states on the basis of  
correlations. Here our two-photon EF transmits photon pairs, only if 
they share the same horizontal or vertical polarization, without meas-
uring the polarization state. Compared with the previous method34,35, 
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Figure 3 | Experimental setup for realizing CU gates. A 60 mW continuous-wave (CW) laser beam with a central wavelength of 404 nm is focused onto 
a BiBO crystal to create photon pairs. Both the horizontal (modes 1r and 2r) and vertical (modes 1b and 2b) photon pairs are collected. Before collection 
into polarization-maintaining fibres (PMF), the photons are spectrally filtered by narrow-band filters (∆λFWHW = 3.2 nm). A1, B1, A2 and B2 are four single-
qubit gates. By post-selecting the case the two photons exit at ports 1 and 2, one would effectively realize a two-qubit quantum gate (A1A2 + B1B2). 
The phase between the two components is stabilized by monitoring the coincidence count rates between detectors 1′ and 2′.
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our method is simpler and more intuitive. We implement this two-
photon EF using the setup shown in Figure 3 where A1 = A2 = |H〉〈H| 
and B1 = B2 = |V〉〈V| and the results are shown in Figure 5a.

Another interesting feature of our approach is that the method 
of realizing a quantum gate is not unique: one can choose differ-
ent sets of A and B to get the same A + B. Take the two-photon EF, 
for example. We can realize it in another way by setting A1 = A2 = I 
and B1 = B2 = Z. This can be verified by comparing the matrix of 
II + ZZ with |H〉〈H||H〉〈H| + |V〉〈V||V〉〈V| that are equivalent 
up to a constant of order unity. Unlike the first way of realizing 
an EF, one does not use any projection but only unitary operators, 

which means that in fact no components are filtered out: Whereas 
the |H〉|H〉 and |V〉|V〉 components would exit at 1 and 2 or 1′ and 
2′ that corresponds to realizing the quantum gate A + B, the |H〉|V〉 
and |V〉|H〉 components would exit at 1 and 2′ or 1′ and 2 which 
corresponds to realizing A–B. As the |H〉|V〉 and |V〉|H〉 components 
are not filtered out in this case, we call the device an entanglement 
splitter (ES). The ES operation is deterministic and the experimental 
data from this gate are shown in Figure 5b and c.

Interestingly, the mechanics of the ES can be understood in a dif-
ferent way. The following equations always hold 

Z Z I I Z Z I I Z Z
Z Z I I Z Z I I Z Z

⊗ ⊗ + ⊗ 〉 = + ⊗ + ⊗ 〉
⊗ ⊗ − ⊗ 〉 = − ⊗ − ⊗ 〉

( ) | ( ) |
( ) | ( ) |

f f
f f

which means (II + ZZ)|φ〉 (or (II − ZZ)|φ〉) is always the eigen-
state of operator ZZ with eigenvalue  + 1 (or  − 1) no matter what 
the two-qubit state |φ〉 is. Then one can deduce that II + ZZ (or 
II − ZZ) must be a projector that projects any input state to the 
eigenstate of ZZ with eigenvalue  + 1 (or  − 1). As our circuit real-
izes II + ZZ and II − ZZ simultaneously, it can be regarded as an 
eigenstate generator of, or eigenvalue measuring device for, opera-
tor ZZ. One can easily find the above reasoning would hold when 
replacing ZZ with any two-qubit operator W that fulfill W2 = II. 
This example nicely illustrates the power of linear combination of 
quantum gates. Although an alternative implementation of an EF 
has previously been reported35 (the ES has not been realized), as far 
as we know, our method is the only solution for constructing these 
kinds of entangling gates.

The imperfections of our experimental results are mainly due to 
three effects. First, the photons generated in the SPDC source are 
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not completely indistinguishable; second, the phase between the two 
spatial modes is not perfectly stabilized (to zero); third, the optical 
components are not perfectly set to the desired values (for example,  

waveplates’ angles). For the EF experiment, A1, B1, A2 and B2 are all 
projectors, and implemented with PBS. In this case, the |H〉|V〉 and 
|V〉|H〉 components are nearly completely filtered out and this is not 

BBO

B2

A2

PBS
BS

PBS
BS

A1

B1

1
Half-waveplate

Quarter-waveplate

2
r2
b21

b1
r1

2

Figure 6 | Experimental setup in a Sagnac structure. A 60 mW 
continuous-wave (CW) laser beam with a central wavelength of 404 nm  
is focused onto a type-II BBO crystal to create entangled photon pairs.  
The PBS part of the cubes convert the polarization-entangled state to 
spatial-entangled state. A1, B1, A2 and B2 are four single-qubit gates.  
By post-selecting the case where the two photons exit at ports 1 and 2, one  
would effectively realize a two-qubit quantum gate (A1A2 + B1B2).  
The displaced-Sagnac structure makes the phase between modes r1 and b1 
(r2 and b2) inherently stable. 
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Figure 8 | Process matrix of the CNOT gate. (a) Ideal process matrix. (b) Maximum-likelihood experimentally reconstructed process matrix. (i) Real and 
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affected by phase errors between the two spatial modes. However in 
the ES experiment, no component is filtered out, the suppression of 
|H〉|V〉 and |V〉|H〉 is all based on interference, which is very sensi-
tive to phase errors between the two spatial modes. The implemen-
tation of the CU gates is in between of the two previous cases, where 
A1, B1 are projectors and A2, B2 are unitaries. This explains why the 
fidelity values of the CU gates are higher than those of the ES and 
lower than those of the EF.

Discussion
Our method will allow simplification of small-scale linear opti-
cal circuits. For example, the CNOT gate (or other entangling  
gates) demonstrated above could be combined with a postselected 
version of the same gate to perform a sequence of two entangling 
gates on two photonic qubits. This would require two photons rather 
than four—which would normally be required for the first gate to  
be heralded. This type of approach is likely to be of great benefit 
in circuits of up to 6–10 photons where the appropriate entangled 
states can be generated32 and where one can rely on inefficient  
measurement.

This new approach to realizing quantum circuits also enables  
a quantum state to control the implementation of a quantum 
gate, thereby opening up the possibility to have truly quantum 
inputs to quantum information processors. As shown in Figure 2a,  
if we set the control to be ( / )(| | )1 2 0 1〉+ 〉  and let the red  
and blue spatial modes of the target pass through gate O1 and 
O2 instead of I and U respectively, where O1 and O2 repre-
sent two arbitrary quantum gates, the output state would be 
( / )(| | | | ) ( / )(| | ) |1 2 0 1 1 2 0 11 2 1 2〉 〉+ 〉 〉 = 〉 + 〉 〉O O O Oy y y , where 
|〉 is the initial target state. In some sense, our circuit realizes a 
peculiar entangled ‘state’ ( / )(| | )1 2 0 11 2〉 + 〉O O  in which a quan
tum bit and a quantum gate are entangled (without needing to 
know what the gate is). This peculiar entanglement connecting a 
qubit with quantum gates may have some useful implications. An 
immediate application is to teleport a qubit onto a quantum gate 
by using this entangled ‘state’. In this sense, one can get a quantum 
gate αO1 + βO2 by teleporting a qubit α|0〉 + β|1〉. This is a novel way 
to control a quantum gate by using a quantum bit that is related to 
ideas of programmable quantum gate arrays36.

In summary, we have proposed a different approach to realiz-
ing the controlled operations that are at the heart of the majority of 
important quantum algorithms. With this method, one can directly 
integrate an arbitrary operation into the circuit to build the cor-
responding CU gate even if the unitary U is unknown. This is in 
contrast to other methods that harness extra degrees of freedom26,37 
that work only for known single-target qubit unitaries. Our method 
is not limited to CU gates but can be extended to realize more gen-
eral entangling gates. We demonstrated the power of this approach 
by experimentally implementing several high-fidelity two-qubit 
gates. In each case, the implementation of the control circuit was 
completely independent of the choice of quantum operation. This 
method has the potential to change the way we implement quantum 
circuits for all algorithms and will find a wide range of applications 
across quantum information science and technology as the com-
plexity of the quantum circuits implemented grows to include more 
sophisticated algorithms.

Methods
An alternative experimental demonstration. In the experiments described in the 
main text, we prepared the spatial entangled state ( / )(| | ), ,1 2 1 2 1 2f f〉 + 〉r r b b  as the 
input (Fig. 3) for implementing the various two-qubit quantum gates, where |φ〉 is 
an arbitrary polarization-encoded two-qubit separable state. Here we want to point 
out that the phase between the two components |φ〉1r,2r and |φ〉1b,2b was stabilized by 
using monitoring and feedback method. Although the phase-stabilizing approach 
is good enough to construct these quantum gates, for application such as the phase 
estimation algorithm, where phase itself is the target to be measured, a setup with 
inherent phase stability is required.

Here we present an experimental demonstration of the same scheme by using 
a setup which is inherently phase-stable. Instead of using a type-I SPDC source to 
produce the spatial entangled photon pairs, we use a type-II SPDC source to get 
polarization-entangled photon pairs first and then convert them to spatial entan-
gled photons. In this way, we can build a displaced-Sagnac structure in the setup to 
make the phase stable. Figure 6 shows the schematic diagram of our experiment. 
We use the same continuous wave laser to pump a BBO cystal cut for type-II SPDC 
and get the two-photon state ( / )(| | | | )1 2 1 2 1 2H V V H〉 〉 + 〉 〉 .

By placing PBS/BS cubes (half-PBS, half-BS) in both arms and by letting  
the photons pass through the PBS part of the cubes, we get the state  
( / )(| | | | )1 2 1 2 1 2H V V Hr r b b〉 〉 + 〉 〉 . Th e HWP and quarter-waveplate (QWP) on 
each path convert the state to ( / )(| , | , )1 2 1 2 1 2f f〉 + 〉r r b b  that is exactly the same 
as the spatial entangled state in the original experiments. We let the four spatial 
modes 1r, 2r, 1b and 2b pass through four single-qubit gates A1, A2, B1 and B2, 
respectively, and then mix the spatial modes 1r and 2r (1b and 2b) on the BS part 
of the cube. By postselecting the case when two photons exit at ports 1 and 2, the 
quantum operation A + B is obtained. Here we set A1 = |H〉〈H|, B1 = |V〉〈V|, A2 = I, 
B2 = X and thus realize a CNOT gate.

As the phase θ between r and b modes is inherently stable in this setup, we can 
now show the variation of the coincidence rates with θ. By setting |φ〉 to be | + 〉|H〉, 
the state ( / )(| | | | )1 2 H H V V〉 〉+ 〉 〉  is obtained. We then place a set of waveplates 
(QWP, HWP and QWP) in the path of photon 2, as shown, to continuously tune 
the phase between the spatial modes r and b and measure the | + 〉| + 〉 and | + 〉| − 〉 
two-photon coincidence rates at the output, where | ( / )(| | )±〉 = 〉± 〉1 2 H V . As 
shown in Figure 7, two complementary cosine curves are obtained as expected.

We fully characterize the CNOT gate through quantum process tomography, 
and the experimentally reconstructed process matrices are shown in Figure 8. We 
observe a high process fidelity of 96.13 ± 0.17% with the ideal case. 
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