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1 Introduction and Main Results

In 1975 and 1977, Gordon [1, 2] firstly used variational methods to study periodic solutions of
2-Body problems, later, many authors (see [3–26]) used variational methods to study singular
Hamiltonian systems. Specially, in [7], Ambrosetti–Coti Zelati studied the periodic solutions of
a fixed energy h ∈ R for Hamiltonian systems with singular potential V ∈ C2(Rn\{0}, R):

q̈ + V ′(q) = 0, (1.1)
1
2
|q̇|2 + V (q) = h. (1.2)

Using Ljusternik–Schnirelmann theory with classical (PS)+ compact condition, they got the
following theorems:

Theorem 1.1 ([7]) Suppose V ∈ C2(Rn\{0}, R) satisfies
(A1) 3V ′(x) · x + V ′′(x)x · x �= 0, ∀x ∈ Ω = R

n\{0};
(A2) V ′(x) · x > 0, ∀x ∈ Ω;
(A3′) ∃α ∈ (0, 2), such that

V ′(x) · x ≥ −αV (x), ∀x ∈ Ω;

(A4′) ∃ δ ∈ (0, 2) and r > 0, such that

V ′(x) · x ≤ −δV (x), ∀ 0 < |x| ≤ r;

(A5′) lim inf |x|→+∞
[
V (x) + 1

2V ′(x) · x] ≥ 0.
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Then ∀h < 0, the system (1.1)–(1.2) has at least a non-constant weak periodic solution which
satisfies (1.1)–(1.2) pointwise except on a zero-measurable set.

Theorem 1.2 ([7]) Let Dh be the connected component of Ωh = {x ∈ Ω |V (x) ≤ h} such that
0 ∈ Dh and let ∂Dh = {x ∈ Dh |V (x) = h}. Let h < 0 be given. Suppose that Dh is compact
and V : Ω → R satisfies (A4′) and

(A1h) V ∈ C2(Rn\{0}, R) and 3V ′(x) · x + V ′′(x)x · x > 0, ∀x ∈ Dh;
(A2h) V ′(x) · x > 0, ∀x ∈ Dh;
(A3′h) ∃ 0 < α′ < 2 such that

V ′(x) · x ≥ −α′V (x), ∀x ∈ Dh;

(A6h) V ∈ C4 in a neighborhood of ∂Dh and

max
ξ∈∂Dh

[V ′′(ξ)ξ · ξ] < 0.

Then the system (1.1)–(1.2) has at least a weak periodic solution for any h < 0.

In [8], Ambrosetti–Coti Zelati used Mountain Pass Lemma with the (PS)+ condition to
study the existence of weak solutions for symmetrical N -Body problems with a fixed energy
h < 0:

⎧
⎨

⎩

mix
′′
i + ∇xi

V (x1, x2, . . . , xN ) = 0, 1 ≤ i ≤ N,

1
2

∑
mi|ẋi(t)|2 + V (x1(t), x2(t), . . . , xN (t)) = h.

(Ph)

They got

Theorem 1.3 ([7]) Suppose V (x) = 1
2

∑
1≤i�=j≤N Vij(xi − xj) and Vij ∈ C1(Rn\{0}, R) sat-

isfies
(V1) Vij(ξ) = Vji(ξ), ∀ ξ ∈ Ω = R

n\{0};
(V2) ∃α ∈ [1, 2), such that

∇Vij(ξ) · ξ ≥ −αVij(ξ) > 0, ∀ ξ ∈ Ω;

(V3) ∃ δ ∈ (0, 2) and r > 0, such that

∇Vij(ξ) · ξ ≤ −δVij(ξ), ∀ 0 < |ξ| ≤ r;

(V4) Vij(ξ) → 0, as |ξ| → +∞.
Then ∀h < 0, the problem (Ph) has a periodic solution.

Theorem 1.4 ([8]) Suppose V satisfies (V1), (V3), (V4) and
(V2′) ∃α ∈ (0, 2), such that

∇Vij(ξ) · ξ ≥ −αVij(ξ) > 0, ∀ ξ ∈ Ω;

(V5) Vij ∈ C2(Ω, R) and

3∇Vij(ξ) · ξ + V ′′
ij (ξ)ξ · ξ > 0.

Then ∀h < 0, (Ph) has a weak periodic solution.

Motivated by these two papers, we have the following theorem:
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Theorem 1.5 Suppose V ∈ C1(Rn\{0}, R) satisfies
(V1) V (−q) = V (q);
(V2) There exists a constant 0 < α < 2 such that

〈V ′(q), q〉 ≥ −αV (q) > 0, ∀ q ∈ R
n\{0};

(V3) ∃ δ ∈ (0, 2), r > 0, such that

〈V ′(q), q〉 ≤ −δV (q), ∀ 0 < |q| ≤ r;

(V4) V (q) → 0, as |q| → +∞.
Then for any given h < 0, the system (1.1)–(1.2) has at least a non-constant weak periodic
solution which can be obtained by Mountain Pass Lemma.

Corollary 1.6 Suppose 0 < α = δ < 2 and

V (x) = −|x|−α.

Then for any h < 0, (1.1)–(1.2) has at least one non-constant weak periodic solution with the
given energy h.

Remark 1.7 We guess (V5) in Theorem 1.4 can be deleted by combining the arguments of
this paper and [7, 8].

2 Some Lemmas

Lemma 2.1 ([7]) Let f(u) = 1
2

∫ 1

0
|u̇|2dt

∫ 1

0
(h − V (u))dt and ũ ∈ H1 be such that f ′ (ũ) = 0

and f (ũ) > 0. Set

1
T 2

=

∫ 1

0
(h − V (ũ)) dt

1
2

∫ 1

0
| ˙̃u|2dt

. (2.1)

Then q̃(t) = ũ (t/T ) is a non-constant T -periodic solution for (1.1)–(1.2).

Lemma 2.2 ([27]) Let σ be an orthogonal representation of a finite or compact group G in
the real Hilbert space H such that for ∀σ ∈ G,

f(σ · x) = f(x),

where f ∈ C1(H, R).
Let S = {x ∈ H |σx = x, ∀σ ∈ G}. Then the critical point of f in S is also a critical point

of f in H.

Let

Λ0 = {u ∈ H1 = W 1,2(R/Z, Rn), u(t + 1/2) = −u(t), u(t) �= 0}.

By Lemmas 2.1–2.2 and (V1), we have

Lemma 2.3 ([7]) If ū ∈ Λ0 is a critical point of f(u) and f(ū) > 0, then q̄(t) = ū(t/T ) is a
non-constant T -periodic solution of (1.1)–(1.2).

Cerami [13] introduced the following (CPS)c condition:

Definition 2.4 ([13]) Let X be a Banach space, {qn} ⊂ X satisfy

f(qn) → c, (1 + ‖qn‖)f ′(qn) → 0. (2.2)
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Then {qn} has a strongly subsequence, then we call that {qn} satisfies Cerami–Palais–Smale
condition at level c, we denote it by (CPS)c. If (CPS)c holds for all c, we call f(q) satisfies the
(CPS) condition.

Combining the different forms of the Mountain Pass Lemmas in [8, 10, 28, 29], it is not
difficult to get

Lemma 2.5 Suppose f ∈ C1(Λ0, R) and
(AR1) ∃ ρ, β > 0, s.t. f(u) ≥ β, ∀u ∈ Λ0, ‖u‖H1 = ρ,

(AR2) ∃u0, u1 ∈ Λ0 with ‖u0‖H1 < ρ < ‖u1‖H1 s.t. max {f(u0), f(u1)} < β.

Let

C = inf
P∈Γρ

max
0≤ξ≤1

f(P (ξ)),

where

Γρ = {P ∈ C([0, 1], Σρ) | ‖P (0)‖H1 = ρ, P (1) = u1},
Σρ = {u ∈ Λ0 | ‖u‖H1 ≥ ρ}.

Then there exists {un} ⊂ Λ0 such that

f(un) → C, (1 + ‖un‖)f ′(un) → 0.

Furthermore, if f satisfies (CPS)C condition, that is {un} has a convergent subsequence. If

f(un) → +∞, ∀un ⇀ u ∈ ∂Λ0,

then C is a critical value of f , so there exists u ∈ Λ0 such that f ′(u) = 0, and f(u) = C ≥ β > 0.

Lemma 2.6 ([1]) Let V satisfy the so called Gordon’s strong force condition : There exists a
neighborhood N of 0 and a function U ∈ C1(Rn\{0}, R) such that

(i) limx→0 U(x) = −∞;
(ii) −V (x) ≥ |U ′(x)|2 for every x ∈ N \ {0}.

Let

∂Λ0 = {u ∈ H1 = W 1.2(R/Z, Rn), u(t + 1/2) = −u(t), ∃ t0, u(t0) = 0}.
Then we have ∫ 1

0

V (un)dt → −∞, ∀un ⇀ u ∈ ∂Λ0.

Lemma 2.7 (Sobolev–Rellich–Kondrachov, Compact Imbedding Theorem [30, 31])

W 1,2(R/TZ, Rn) ⊂ C(R/TZ, Rn)

and the embedding is compact.

Lemma 2.8 (Eberlein–Shmulyan [32]) A Banach space X is reflexive if and only if any
bounded sequence in X has a weakly convergent subsequence.

Lemma 2.9 ([30]) Let q ∈ W 1,2(R/TZ, Rn) and
∫ T

0
q(t)dt = 0. Then we have

(i) Poincare–Wirtinger’s inequality :
∫ T

0

|q̇(t)|2dt ≥
(

2π

T

)2 ∫ T

0

|q(t)|2dt.
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(ii) Sobolev’s inequality :

max
0≤t≤T

|q(t)| = ‖q‖∞ ≤
√

T

12

( ∫ T

0

|q̇(t)|2dt

)1/2

.

It is not difficult to prove

Lemma 2.10 ∀u ∈ Λ0, we have ∫ 1

0

u(t)dt = 0.

By Lemmas 2.9 and 2.10, ∀u ∈ Λ0, ‖u‖ = (
∫ 1

0
|u̇|2dt)1/2 is equivalent to the H1 = W 1,2(R/Z,

R
n) norm:

‖u‖H1 =
(∫ 1

0

|u̇|2dt

)1/2

+
(∣

∣∣
∣

∫ 1

0

udt

∣
∣∣
∣

)1/2

.

3 Proof of Theorem 1.5

In singular Hamiltonian systems, in order to apply Mountain Pass Lemma for the variational
functional defined on Λ0 (an open set of Banach space), we need a complete condition:

f(un) → +∞, un ⇀ ∂Λ0, (3.1)

which can guarantee that the critical point is in Λ0, not on its boundary. But the assumptions
of Theorem 1.5, we do not have the strong force condition, so we need to revise the potential
V as Vε,

Vε(u) = V (u) + Wε(u), Wε(u) = − ε

|u|γ , γ > 2. (3.2)

We also need to revise the functional f(u) as

fε(u) =
1
2

∫ 1

0

|u̇|2dt

∫ 1

0

(h − Vε (u)) dt. (3.3)

Remark 3.1 Different from earlier papers, here we use Wε(u) with γ > 2 not γ = 2 to perturb
V in order that fε satisfies (3.1) and we can verify all conditions of Mountain Pass Lemma.

After we apply Mountain Pass Lemma to the variational functional fε to get the critical
point uε, we let ε → 0 to get the limit point, which is a weak solution satisfying (1.1)–(1.2)
except on a Lebegue’s zero-measurable set.

In order to find the critical point of fε in Λ0, we need to verify all conditions of Mountain
Pass Lemma. Let us begin to prove

Lemma 3.2 Let (V1)–(V2) hold. For all C > 0, if {un} ⊂ Λ0 such that

fε(un) → C > 0, (1 + ‖un‖)f ′
ε(un) → 0, (3.4)

then {un} ⊂ Λ0 has a strongly convergent subsequence, the limit must be in Λ0, that is, fε

satisfies the (CPS)C condition in Λ0.

Proof The proof will be divided into three steps:

Step 1 We show that {un} is bounded.
In fact, by fε (un) → C, we have

−1
2
‖un‖2

∫ 1

0

Vε(un)dt → C − h

2
‖un‖2. (3.5)
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So when n is large enough, it follows that

−1
2
‖un‖2

∫ 1

0

Vε(un)dt ≤ C + 1 − h

2
‖un‖2. (3.6)

By calculations, we get

〈V ′
ε (un), un〉 = 〈V ′(un), un〉 − γWε(un). (3.7)

Note that
−γWε ≥ −αWε. (3.8)

From (V2), (3.7) and (3.8), we have

〈V ′
ε (un), un〉 ≥ −αVε(un) > 0. (3.9)

So

〈f ′
ε(un), un〉 = ‖un‖2

∫ 1

0

(
h − Vε(un) − 1

2
〈V ′

ε (un), un〉
)

dt

≤ ‖un‖2

∫ 1

0

(
h − Vε(un) +

α

2
Vε(un)

)
dt

= ‖un‖2

∫ 1

0

(
h −

(
1 − α

2

)
Vε(un)

)
dt. (3.10)

Since 0 < α < 2, using (3.6) and (3.10), we have

〈f ′
ε(un), un〉 ≤ h‖un‖2 +

(
1 − α

2

) [
2(C + 1) − h‖un‖2

]
=

α

2
h‖un‖2 + C1, (3.11)

where C1 = 2(1 − α
2 )(C + 1) > 0, 0 < α < 2.

By (3.4), we have
〈f ′

ε(un), un〉 ≤ ‖un‖‖f ′
ε(un)‖ → 0. (3.12)

(3.11), (3.12) and h < 0 imply
‖un‖ ≤ C2. (3.13)

Step 2 We prove un ⇀ u ∈ Λ0.

Since H1 is a reflexive Banach space, by Lemma 2.8 and (3.13), {un} has a weakly convergent
subsequence still denoted by {un} such that un ⇀ u.

To prove u ∈ Λ0, we need two lemmas.

Lemma 3.3 Assume the potential Vε satisfies Gordon’s strong force condition. Then for any
weakly convergent sequence un ⇀ u ∈ ∂Λ0, there holds

fε(un) → +∞.

Proof First of all, recall that

fε(un) =
1
2

∫ 1

0

|u̇n|2dt

∫ 1

0

(h − Vε(un))dt.

(1) If u ≡ constant, from uε ∈ ∂Λ0, we deduce u ≡ 0. By Sobolev’s embedding theorem,
we have

‖un‖∞ → 0, n → ∞. (3.14)
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Using (V2), we have C3 > 0, such that

V (u) ≤ − C3

|u|α , ∀ |u| > 0. (3.15)

Therefore, h − V (un) > 0 when n is large enough, it follows that

fε(un) =
1
2

∫ 1

0

|u̇n|2dt

∫ 1

0

(
h − V (un) +

ε

|un|γ
)

dt

≥ 1
2

∫ 1

0

|u̇n|2dt

∫ 1

0

ε

|un|γ dt

≥ ε

2

∫ 1

0

|u̇n|2dt‖un‖−γ
∞ . (3.16)

Then by Sobolev’s inequality, (3.14) and γ > 2, we have

fε(un) ≥ 6ε‖un‖2−γ
∞ → +∞, n → ∞.

(2) If u �≡ constant, by the weakly lower-semi-continuity property for norm, we have

lim inf
n→∞

∫ 1

0

|u̇n|2dt ≥
∫ 1

0

|u̇|2dt > 0. (3.17)

Since Vε satisfies Gordon’s Strong Force condition, then by Lemma 2.6 and (3.17), we have

fε(un) → +∞, n → ∞. �

Lemma 3.4 Vε satisfies Gordon’s strong force condition.

Proof Let

V =
−1

λ|u|λ , 0 < λ <
γ − 2

2
.

Then
lim

|u|→0
V = −∞. (3.17)

By calculation, we obtain

|V ′|2 =
1

|u|2λ+2
.

Note that
−Vε(u) = −V (u) +

ε

|u|γ ≥ ε

|u|γ . (3.18)

Since
ε

|u|γ ≥ 1
|u|2λ+2

, ∀ ε > 0, (3.19)

when |u| is small enough, so there exists a neighborhood N of 0 such that −Vε ≥ |V ′|2, ∀u ∈
N \{0}. Therefore, Vε satisfies Gordon’s strong force condition. �

Combining (3.4), Lemmas 3.3 and 3.4, we deduce un ⇀ u ∈ Λ0.

Step 3 We prove that un → u strongly.
By un ⇀ u ∈ Λ0 and the compact embedding theorem, we have

max
0≤t≤1

|un(t) − u(t)| → 0.
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By the continuity of Vε, V ′
ε and the inner product 〈·〉, we have the uniformly convergent for

0 ≤ t ≤ 1,

Vε(un) → Vε(u),

Wε(un) → Wε(u),

〈V ′
ε (un), un〉 → 〈V ′

ε(u), u〉. (3.21)

From Step 2, we know u ∈ Λ0, so ‖u‖ =
∫ 1

0
|u̇|2dt > 0, otherwise u ≡ 0 ∈ ∂Λ0 by u(t + 1/2) =

−u(t). Then by un ⇀ u and the weakly lower-semi-continuous property of the norm, we have

lim inf
n→∞ ‖un‖ ≥ ‖u‖ > 0. (3.22)

By (3.12), we have

〈f ′
ε(un), un〉 = ‖un‖2

∫ 1

0

[
h − Vε(un) − 1

2
〈V ′

ε (un), un〉
]
dt → 0. (3.23)

Letting n → ∞ in (3.23), by (3.21) and (3.22), we have
∫ 1

0

(h − Vε(u))dt =
1
2

∫ 1

0

〈V ′
ε (u), u〉dt > 0. (3.24)

From (3.4), we deduce f ′
ε(un) → 0, then 〈f ′

ε(un), v〉 → 0, ∀ v ∈ H1, that is,
∫ 1

0

〈u̇n, v̇〉dt

∫ 1

0

(h − Vε(un))dt − 1
2
‖un‖2

∫ 1

0

〈V ′
ε(un), v〉dt → 0, ∀ v ∈ H1. (3.25)

Taking v = u in (3.25), we get

lim
n→∞

∫ 1

0

〈u̇n, u̇〉dt = lim
n→∞ ‖un‖2. (3.26)

By un ⇀ u, we have

lim
n→∞

∫ 1

0

〈u̇n, u̇〉dt =
∫ 1

0

|u̇|2dt = ‖u‖2. (3.27)

From (3.26) and (3.27), it follows that

‖un − u‖2 =
∫ 1

0

|u̇n − u̇|2dt =
∫ 1

0

(|u̇n|2 − 2〈u̇n, u̇〉 + |u̇|2)dt

→ ‖u‖2 − 2‖u‖2 + ‖u‖2 = 0. (3.28)

That is, un → u strongly in H1. �

Lemma 3.5 fε satisfies the condition (AR1) in the Mountain Pass Lemma.

Proof By (3.9), we have C4 > 0 such that −Vε(u) ≥ C4
|u|α , so we have

fε(u) =
1
2
‖u‖2

∫ 1

0

(h − Vε(u)) dt

=
h

2
‖u‖2 − 1

2
‖u‖2

∫ 1

0

Vε(u)dt

≥ h

2
‖u‖2 +

C4

2
‖u‖2‖u‖−α

∞ .
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Then by Sobolev’s inequality, we have C5 > 0 such that

fε(u) ≥ h

2
‖u‖2 +

C5

2
‖u‖2−α.

Since 0 < α < 2, we can choose ‖u‖ = ρ small enough such that h
2 ρ2 + C5

2 ρ2−α = β > 0.
Hence

fε(u) ≥ β > 0, ∀ ‖u‖ = ρ. �

Lemma 3.6 ∃u0 ∈ Λ0 with ‖u0‖ < ρ s.t. fε(u0) < β.

Proof For R̃ > 0, we consider

fε(R̃u) =
1
2
‖R̃u‖2

∫ 1

0

(h − Vε(R̃u))dt.

Using (V3), we have C6 > 0 such that

V (u) ≥ −C6|u|−δ, ∀ 0 < |u| ≤ r.

Then we have

fε(R̃u) ≤ h

2
R̃2‖u‖2 + C6R̃

2−δ‖u‖2

∫ 1

0

|u|−δdt + εC7R̃
2−γ‖u‖2

∫ 1

0

|u|−γdt. (3.29)

Take u(t) = ξ sin (2πt) + η cos (2πt), where |ξ| = 1, |η| = 1, 〈ξ, η〉 = 0, ξ , η ∈ R
n. Then |u| = 1,

‖u‖ = 2π, hence

fε(R̃u) ≤ 4π2

(
h

2
R̃2 + C6R̃

2−δ + εC7R̃
2−γ

)

≤ 4π2(C6R̃
2−δ + εC7R̃

2−γ). (3.30)

Since 0 < δ < 2, so we can take R0 small enough such that 4π2C6R
2−δ
0 < β.

For the above fixed R0, we choose ε > 0 small enough such that

ε4π2C7R
2−γ
0 < β − 4π2C6R

2−δ
0 . (3.31)

In fact, we can choose

0 < ε0 <
β − 4π2C6R

2−δ
0

4π2C7R
2−γ
0

. (3.32)

Choose R1 small enough such that ‖R1u‖ < ρ, take R = min {R0, R1}, and let u0 = Ru.
Then we have

fε(u0) < β, ‖u0‖ < ρ, ∀ 0 < ε ≤ ε0. (3.33)

Lemma 3.7 ∃u1 ∈ Λ0 with ‖u1‖ > ρ s.t. fε(u1) < 0.

Proof Let R > 0. We consider

fε(Ru) =
1
2
‖Ru‖2

∫ 1

0

(h − Vε(Ru))dt.

Taking u = ξ sin (2πt) + η cos (2πt), by (V4), it follows that
∫ 1

0

Vε(Ru)dt → 0, R → +∞.
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So fε(R0u) < 0, when R0 is large enough. Choose R1 large enough such that ‖R1u‖ > ρ. Take
R = max {R0, R1}, and let u1 = Ru. Then

fε(u1) < 0 < β, ‖u1‖ > ρ. �

From Lemmas 3.2–3.7, we know that ∀ 0 < ε ≤ ε0, fε satisfies (AR1), (AR2), (CPS)Cε

condition, and fε(u{n,ε}) → +∞, ∀u{n,ε} ⇀ uε ∈ ∂Λ0. Let

Cε = inf
P∈Γρ

max
0≤ξ≤1

f(P (ξ)).

By Lemma 2.5, we know that ∀ 0 < ε ≤ ε0, there exists uε ∈ Λ0 such that

f ′
ε(uε) = 0, fε(uε) = Cε ≥ β > 0. (3.34)

Let

ω2
ε =

∫ 1

0
(h − Vε(uε))dt
1
2

∫ 1

0
|u̇ε|2dt

.

Then by Lemma 2.3, yε = uε(ωεt) satisfies

ÿε + V ′
ε (yε(t)) = 0, (3.35)

1
2
ω2

ε |u̇ε(t)|2 + Vε(uε(t)) = h. (3.36)

Next, we show that uε converges to some u∗ which gives rise to a solution y∗ of (1.1)–(1.2).

Lemma 3.8 ∃C8, C9 > 0 s.t. C8 ≤ ‖uε‖ ≤ C9.

Proof Since uε ∈ Λ0, so ‖uε‖2 =
∫ 1

0
|u̇ε|2dt �= 0, otherwise uε(t) ≡ 0 ∈ ∂Λ0 by u(t + 1/2) =

−u(t). By 〈f ′
ε(uε), uε〉 = 0, we have

‖uε‖2

∫ 1

0

[
h − Vε(uε) − 1

2
〈V ′

ε(uε), uε〉
]

dt = 0.

Then

h =
∫ 1

0

(
Vε(uε) +

1
2
〈V ′

ε (uε), uε〉
)

dt. (3.37)

Letting γ → 2, we have

h =
∫ 1

0

(
V (uε) +

1
2
〈V ′(uε), uε〉

)
dt.

By (V3), we get

h ≤
(

1 − δ

2

) ∫ 1

0

V (uε)dt. (3.38)

If ‖uε‖ → 0, as ε → 0, then ‖uε‖∞ → 0, from (3.15), we deduce that
∫ 1

0

V (uε)dt → −∞,

which is a contradiction with (3.38). So we claim

‖uε‖ ≥ C8 > 0. (3.39)

From (3.34), we know

fε(uε) = inf
P ∈Γρ

max
0≤ξ≤1

fε(P (ξ)), ∀ 0 < ε ≤ ε0.
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So we have

fε(uε) ≤ inf
P∈Γρ

max
0≤ξ≤1

fε0(P (ξ)) ≤ max
0≤ξ≤1

fε0(P (ξ)) = C10, ∀ 0 < ε ≤ ε0.

That is,

fε(uε) =
1
2
‖uε‖2

∫ 1

0

(h − Vε(uε))dt ≤ C10, ∀ 0 < ε ≤ ε0. (3.40)

By (3.9), we have

h =
∫ 1

0

(
Vε(uε) +

1
2
〈V ′

ε (uε), uε〉
)

dt ≥
(

1
2
− 1

α

) ∫ 1

0

〈V ′
ε (uε), uε〉dt.

So
∫ 1

0

〈V ′
ε (uε), uε〉dt ≥ h

1
2 − 1

α

> 0. (3.41)

Then by (3.37), we obtain
∫ 1

0

(h − Vε(uε))dt ≥ h

1 − 2
α

. (3.42)

(3.40) and (3.42) imply

‖uε‖ ≤ C9. (3.43)

The proof is completed. �
Since E is a reflexive Banach space, by (3.43) and Lemma 2.8, there is a subsequence, still

denoted by {uε} such that uε ⇀ u∗, then by compact embedding theorem, uε → u∗ uniformly.
In the following, we can use almost the same proofs of Ambrosetti–Coti Zelati [7] to get

Lemmas 3.9–3.11, but we should remember γ > 2, so in order to get our result, we need to let
γ → 2, for the convenience of the readers, we write the complete proofs.

Lemma 3.9 (1) V (u∗(t)) �≡ h. (2) u∗(t) �≡ 0.

Proof (1) If not, V (u∗(t)) ≡ h, then

V (uε(t)) →V (u∗(t)) ≡ h, 〈V ′(uε(t)), uε(t)〉 → 〈V ′(u∗(t)), u∗(t)〉.
Since

h =
∫ 1

0

(
Vε(uε) +

1
2
〈V ′

ε (uε), uε〉
)

dt,

letting γ → 2, we get

h =
∫ 1

0

(
V (uε) +

1
2
〈V ′(uε), uε〉

)
dt.

Then letting ε → 0, we have

h = h +
1
2

∫ 1

0

〈V (u∗), u∗〉dt.

Hence 〈V (u∗), u∗〉 = 0, this is a contradiction with (V2).
(2) If not, u∗ ≡ 0, uε → 0 uniformly.
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Since

h =
∫ 1

0

(
Vε(uε) +

1
2
〈V ′

ε (uε), uε〉
)

dt,

letting γ → 2, then by (V3), we have

h =
∫ 1

0

(
V (uε) +

1
2
〈V ′(uε), uε〉

)
dt ≤

(
1 − δ

2

) ∫ 1

0

V (uε)dt.

So ∫ 1

0

V (uε)dt ≥ h

1 − δ
2

. (3.44)

On the other hand, since uε → 0 uniformly, by (3.15), we have
∫ 1

0

V (uε)dt → −∞, ε → 0, (3.45)

which is a contradiction with (3.44). �

Lemma 3.10 There are numbers δ, Δ > 0, s.t.

δ ≤ ωε ≤ Δ. (3.46)

Proof From Lemma 3.9, we conclude that there exists a closed interval I such that

|I| > 0, u∗(t) �= 0, V (u∗(t)) �= h, ∀ t ∈ I. (3.47)

Integrating (3.36) on I, we have

1
2
ω2

ε

∫

I

|u̇ε|2dt +
∫

I

Vε(uε)dt = h|I|. (3.48)

From (3.43), we deduce
∫

I

|u̇ε|2dt ≤
∫ 1

0

|u̇ε|2dt ≤ C2
9 .

From (3.34), h − Vε(uε) > 0, then by (3.47), Vε(uε) → V (u∗) uniformly on I and
∫

I
(h −

V (u∗))dt > 0, it follows that

ω2
ε ≥ 2

∫
I
(h − Vε(uε))dt

C2
9

→ 2
∫

I
(h − V (u∗))dt

C2
9

> 0. (3.49)

Integrating (3.36) on [0, 1], we have

1
2
ω2

ε

∫ 1

0

|u̇ε|2dt +
∫ 1

0

Vε(uε)dt = h.

Then by (3.3), (3.37), (3.39) and (3.40), we have

ω2
ε =

4fε(uε)
‖uε‖4

≤ 4C10

C4
8

. (3.50)

Lemma 3.11 Suppose that (V1)–(V4) hold. Then for any h < 0, u∗ is a weak solution of
(1.1)–(1.2).
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Proof Let
J = {t ∈ [0, 1] |u∗(t) = 0}. (3.51)

Integrating (3.36) on J , we have

1
2
ω2

ε

∫

J

|u̇ε|2dt +
∫

J

Vε(uε)dt = h|J |. (3.52)

Combining (3.52), Lemma 3.8 and Lemma 3.10, we obtain
∫

J

Vε(uε)dt = |J |h − 1
2
ω2

ε

∫

J

|u̇ε|2dt ≥ |J |h − 1
2
Δ2C2

9 . (3.53)

But uε → 0 uniformly on J , if J has positive measure, then
∫

J
Vε(uε)dt → −∞, which is a

contradiction with (3.53).
Let Kn ⊂ [0, 1]\J be an increasing sequence of compact sets with

⋃

n≥1

Kn = [0, 1]\J,

and set
K∗

n = {u∗(t) | t ∈ Kn}.
Each K∗

n ⊂ R
n\ {0} is compact and has a neighborhood Nn such that N n ⊂ R

n\ {0}. Then
Vε → V in C1(Nn, R), and therefore V ′

ε (uε(t)) → V ′(u∗(t)) uniformly on Kn.
Since uε satisfies

ω2
ε üε + V ′

ε (uε) = 0,

by Lemma 3.10, we have
ωε → ω∗ �= 0.

It follows that

uε → u∗ in C2(Kn, Rn),

ω∗2ü∗ + V ′(u∗) = 0 on Kn.

Since
⋃

Kn = [0, 1] \ J , it follows that

ω∗2ü∗ + V ′(u∗) = 0, ∀ t ∈ [0, 1] \ J,

and y∗(t) = u∗(ω∗t) satisfies

ÿ∗ + V ′(y∗) = 0, ∀ t ∈ [0, 1] \ J.

The energy conservation (1.2) on [0, 1] \ J follows directly from (3.36). �
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