
G

N

A

K
S

a

A
R
R
A

K
E
T
A
B

1

t
b
m
e
n
v
p
M
A
a
2
i
u

q
a
g
f
f
r
p
a
2
d

0
d

ARTICLE IN PRESS Model

SM-6119; No. of Pages 10

Journal of Neuroscience Methods xxx (2011) xxx– xxx

Contents lists available at SciVerse ScienceDirect

Journal  of  Neuroscience  Methods

jou rna l h om epa ge: www.elsev ier .com/ locate / jneumeth

daptive  estimation  of  EEG-rhythms  for  optimal  band  identification  in  BCI

alyana  C.  Veluvolu ∗, Yubo  Wang, Swathi  S.  Kavuri
chool of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 4 February 2011
eceived in revised form 23 August 2011
ccepted 23 August 2011

a  b  s  t  r  a  c  t

The  amplitude  of  EEG  �-rhythm  is  large  when  the  subject  does not  perform  or  imagine  movement  and
attenuates  when  the  subject  either  performs  or imagines  movement.  The  knowledge  of  EEG individual
frequency  components  in  the  time-domain  provides  useful  insight  into  the  classification  process.  Iden-
eywords:
EG classification
ime-frequency analysis
daptive estimation

tification  of  subject-specific  reactive  band  is crucial  for  accurate  event  classification  in brain–computer
interfaces  (BCI).  This  work  develops  a  simple  time-frequency  decomposition  method  for  EEG  � rhythm
by adaptive  modeling.  With  the  time-domain  decomposition  of  the  signal,  subject-specific  reactive  band
identification  method  is  proposed.  Study  is  conducted  on  30  subjects  for optimal  band  selection  for  four
movement  classes.  Our  results  show  that  over  93%  the  subjects  have  an  optimal  band  and  selection  of
this  band  improves  the  relative  power  spectral  density  by 200%  with  respect  to normalized  power.
CI

. Introduction

The brain–computer interface (BCI) is an emergent technology
hat provides a new pathway for communication by allowing the
rain to control a computer directly, without any physical move-
ent achieved through normal neuromuscular pathways (Wolpaw

t al., 2000; Comment, 2006). Non-invasive EEG-based BCIs for
europrosthesis control has been an attractive control method for
arious applications ranging from cursor control to robotic neuro-
rosthesis (Wolpaw et al., 2000; Graimann et al., 2010; Schalk and
ellinger, 2010; Mueller-Putz et al., 2006, 2000; Sun et al., 2000).

mong the various ways to acquire brain signals, EEG still remains
s the most viable option (Wolpaw et al., 2000; Curran and Strokes,
003; Vaughan, 2000). The analysis for EEG signal can be performed

n both time and frequency domains. Both forms of analysis can be
sed for EEG-based communication (Wolpaw et al., 2000).

Spatial filters (Blankertz et al., 2008) that match the spatial fre-
uencies of the users � or  ̌ rhythms, autoregressive frequency
nalysis (McFarland et al., 2008; McFarland and Wolpaw, 2008) that
ives higher resolution than fast Fourier transform (FFT) analysis
or short time segments to permit rapid device control are popular
or BCI applications. Frequency-domain control based on � and ˇ
hythms can be combined with time-domain control based on slow
otentials to yield better EEG-based communication (McFarland et
l., 1997; Krusienski et al., 2007; Brunner et al., 2010; Guger et al.,
Please cite this article in press as: Veluvolu KC, et al. Adaptive estimatio
Methods (2011), doi:10.1016/j.jneumeth.2011.08.035

003). If the data is available for short time segments, the frequency
omain classification via band-power may  not accurate.
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In Neuper et al. (2000),  it was shown that by estimating the band
power in the frequency band (15–19 Hz) and by applying simple
threshold classification, the foot motor imagery related brain pat-
tern could be detected with 100% accuracy. The amplitude of the
� rhythm is largest when the subject is not moving or not imagin-
ing any movement, and attenuates when the subject is moving or
imagines movement (Wolpaw et al., 2000; Birbaumer et al., 1999;
Pfurtscheller et al., 2000; Pineda et al., 2000; Lotte et al., 2007).
Movement-based BCI’s recognize changes in the human � rhythm
from the central region of the scalp overlying the sensorimotor
cortices (Comment, 2006; Mueller-Putz et al., 2006; Pineda et al.,
2000). The free-running EEG shows characteristic changes in �-
activity, which are unique for the movement of different limbs
(Pfurtscheller and Neuper, 2000). Studies that show that people
can learn to regulate EEG �-rhythm (Mueller-Putz et al., 2000;
Pfurtscheller and Neuper, 2000; McFarland et al., 1997).

In general, the collected EEG signal is then divided into small
segments, and the � (8–13 Hz) and  ̌ (18–27 Hz) powers in each
segment are calculated using frequency domain methods such as
fast-Fourier-transform (FFT), autoregressive spectral analysis to
calculate band-power for event classification. These methods rely
on band power to classify the � rhythm in the range of 8–13 Hz.
A threshold is set for classifying the type of activity based on the
rhythm (Guger et al., 2003; Neuper et al., 2000). As the band remains
fixed for all subjects, large data sets are required for setting the
threshold for classification.

Instead of using the complete � or  ̌ spectral bands, nar-
rowed subject-specific frequency bands are selected to achieve
n of EEG-rhythms for optimal band identification in BCI. J Neurosci

higher accuracy in classification (McFarland and Wolpaw, 2008;
McFarland et al., 2010; Royer et al., 2000; Schalk and Mellinger,
2010). In McFarland and Wolpaw (2008),  spectral bands with mul-
tiple 3 Hz-bins are selected for feature extraction to control cursor

dx.doi.org/10.1016/j.jneumeth.2011.08.035
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C4(LH) (shown in Fig. 1) from 30 s to 55 s is considered for analy-
sis. For rest, C4(R) or C3(R) segment data from time 140 s to 165 s
is considered. Among 34 subjects, only 30 subjects (10 female, 20
male) data was  used in the study. An observer stationed behind the
Fig. 1. EEG recording sequence an

ovements. Recently, similar approach was adopted for three-
imensional movement in virtual space (McFarland et al., 2010;
oyer et al., 2000). Tools to customize frequency band for subjects
re readily available with BCI2000 (Schalk and Mellinger, 2010).
owever, in order to identify the subject specific reactive bands,

arge number of trials/training sessions are needed to identify the
ands for electrode locations. These methods rely on higher-order
e.g. 16-order McFarland et al., 2010; Royer et al., 2000) autore-
ressive algorithm to model the EEG data. The data in short-time
egments is processed and logarithmic amplitudes are employed
s commands for control. In Blankertz et al. (2008),  a heuris-
ic approach was adopted for selection of discriminative spectral
and. Methods that on auto-regressive spectral analysis or FFT
ased spectral estimation methods that does not provide temporal

nformation. Time-domain (temporal) information of the dominant
pectral bands is necessary for customizing subject-specific reac-
ive band for a given electrode location.

Several time-frequency decomposition methods, such as band-
ass filtering, short time Fourier transform and continuous wavelet
ransform, are analyzed for EEG analysis (Allen and MacKinnon,
010; McFarland et al., 2008). In the band-pass filtering approach,
he temporal resolution mainly depends on the filter type and the
lter complexity increases with the spectral resolution. In the short
ime Fourier transform, the spectral and temporal resolution is
air of contradictory which depends on the time window selec-
ion. Recently, it was demonstrated in Allen and MacKinnon (2010)
hat continuous wavelet transform (CWT) is not superior to the
TFT in terms of spectral and temporal resolution. Also its high-
omputation requirement remains as a barrier for real-time BCI
pplications. Auto-regressive methods (McFarland and Wolpaw,
008; Bashashati et al., 2007) and Fourier transform (FFT) are popu-

ar for EEG spectral analysis that only provides spectral information
ut lack temporal resolution.

A simple and efficient method that provides optimal temporal
nd spectral resolution is required for real-time feature extraction
n BCI. This paper develops a time-domain analysis method by esti-

ation of bandlimited EEG �-rhythm through adaptive filtering
Veluvolu and Ang, 2000). The method developed in (Veluvolu and
ng, 2000) is adopted to model the EEG signal through multiple
ourier series as individual frequency components with LMS  algo-
ithm. Compared to FFT, the proposed method does not rely on
ransformation and provides the individual frequency components
n time-domain with optimal temporal resolution and user-defined
requency resolution.

With time-frequency decomposition obtained, a study is con-
ucted on 30 subjects for optimal band identification that
emonstrates the significant change in amplitude for accurate
vent classification. The study also aims to identify the characteris-
ics of reactive band for different electrode locations for various

ovement classes. The time-domain characteristics of subjects
eactive band for different movement classes will be crucial to iden-
ify an optimal band (common reactive band) for the subject. A

easure is formulated based on the average energy distribution in
Please cite this article in press as: Veluvolu KC, et al. Adaptive estimatio
Methods (2011), doi:10.1016/j.jneumeth.2011.08.035

he reactive band for 30 subjects with different movement classes.
ith this measure, a procedure to automatically identify the opti-
al  band is presented. The study shows that selecting the optimal
ings of the 5 classes in each trial.

band for the subject increased the relative power spectral density
by 200%.

2. Methods

Three channels EEG data were recorded monopolarly from C3,
C4 and Cz corresponding to the international 10/20 system (Jasper,
1958), with the right mastoid as ground and left mastoid as ref-
erence. Analog-to-digital conversion and amplification of the EEG
data was  done by LXE3204 of LAXTHA (www.laxtha.com) which
can provide 4 channels EEG data recording with one reference and
one ground additionally. The data was sampled at 512 Hz.

34 subjects (12 female, 22 male) aged between 22 and 27 par-
ticipated in the research study. All of the subjects are healthy and
none of them has prior knowledge about EEG data collection. The
subjects sat on a comfortable chair to make sure their limbs were in
rest position. All participants gave written informed consent prior
to study procedures. The study was  approved by the Kyungpook
National University Ethical Committee.

Four trials were recorded for each subject in one session. During
the trial, 5 classes of movement were carried out: resting, left hand
movement, right hand movement, left leg movement, and right leg
movement. The sequence of each trial is shown in Fig. 1. Subjects
were not informed of the sequence and the interval of each activity
in order to minimize anticipatory actions. Each action began with
an acoustic stimulus lasted 0.5 s followed by a picture and textual
description shown on 26′ ′ computer screen to indicate the appro-
priate limb movement. The experiment setup is shown in Fig. 2. The
data used for the comparison between various classes lasted 25 s,
starting 10 s after the start of each class. For e.g. data in the segment
n of EEG-rhythms for optimal band identification in BCI. J Neurosci

Fig. 2. Recording of EEG from a subject.

dx.doi.org/10.1016/j.jneumeth.2011.08.035
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ubject verified whether the desired movement instructed on the
creen was performed by the subject. No feedback was provided
o the subject about the movement performed. Four subjects failed
o perform the required movement or performed no movement in
t least two trials. When a subject fails to perform a minimum of 2
rials correctly, the subject data was excluded from the study. How-
ver, in the 30 subjects data chosen for analysis, 5 subjects in one or
wo trials failed to follow the instruction and performed a wrong

ovement or no movement. These trials were identified and the
mproper segments were removed from the data for analysis.

Subjects participated in two conditions:

1) Rest: in which subjects sat in a chair comfortably and placed
their hands on the table; a blank screen was shown, and they
were instructed not to think of anything.

2) Self-generated movement: subjects were cued to move his
left/right hand or left/right leg at their own  pace with a beep
and on screen instructions.

.1. Bandlimited multiple Fourier linear combiner (BMFLC)

Since EEG is comprised of quasi-periodic or quasi-sinusoidal sig-
als characterized by coupled, harmonically related frequencies,
here have been several Fourier based works (Akim and Kiymik,
000; Krusienski et al., 2007; Brunner et al., 2010). A parameter-

zed �-rhythm model has been formulated with a matched filter for
ccurate tracking with harmonically related phase-coupled sinu-
oidal components (Krusienski et al., 2007; Brunner et al., 2010).

In this paper, we focus on bandlimited Fourier linear combiner
ased on LMS  algorithm to estimate/track the �-rhythm. Fourier

inear combiner (FLC) (Vaz and Thakor, 2000; Vaz et al., 2000) is an
daptive filter that forms a dynamic truncated Fourier series model
f an input signal. The FLC operates by adaptively estimating the
ourier coefficients of the known frequency model according to the
MS  algorithm. To overcome the drawbacks in tracking bandlimited
ignals, the band limited multiple Fourier combiner is developed to
rack modulated signals (Veluvolu and Ang, 2000).

In order to estimate the unknown �-rhythm, we  consider the
ignal to be distributed in the band of [ω1 − ωn] and then divide
he frequency band of interest into ‘n’ finite number of divisions as
hown in Fig. 3(b). For the estimation of the unknown signal, we
hen choose a series comprising of sine and cosine components to
orm band-limited multiple-Fourier linear combiner (BMFLC):

k =
n∑

r=1

ark sin(ωrk) + brk cos(ωrk) (1)

here yk denotes the estimated signal at sampling instant k. ark,
rk represents the adaptive weights corresponding to the frequency
r at instant k. The following series only considers ‘n’ fundamen-

al frequencies in the band. The division of the band, step size �ω
in Fig. 3(b)) and selection of the fundamental frequencies will be
resented in the later part of the section. We  then adopt the LMS
lgorithm (Widrow and Stearns, 1985) to adapt the weights ark, brk
n (1) to the incoming unknown signal. The architecture of the pro-
osed algorithm is shown in Fig. 3(a). The algorithm can be stated
s follows:

k =
{

[ sin(ω1k) sin(ω2k) . . . sin(ωnk) ]T

[ cos(ω1k) cos(ω2k) . . . cos(ωnk) ]T

}
(2)

= wT x (3)
Please cite this article in press as: Veluvolu KC, et al. Adaptive estimatio
Methods (2011), doi:10.1016/j.jneumeth.2011.08.035

k k k

k = sk − yk (4)

k+1 = wk + 2�xk�k (5)
 PRESS
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where

wk = [ a1k . . . ank b1k . . . bnk ]T (6)

and xk are the adaptive weight vector and reference input vector
respectively. sk is the reference signal, �k represents the error term
and � is an adaptive gain parameter. Input signal amplitude and
phase are estimated by the adaptive vector wk.

From the architecture, it is clear that n-FLC’s are combined to
form BMFLC to estimate bandlimited signal. Since we  select a band
of frequencies, the corresponding weights adapt to the frequencies
present in the input signal. Due to the LMS  algorithm, the corre-
sponding weights adapt to the change in frequency of the incoming
signal. The adaptive gain parameter � can be chosen to have fast
convergence without loosing stability. The stability of the algorithm
can be established similar to (Vaz and Thakor, 2000). As the func-
tions in xk (2) are orthogonal with a mean power of 1/2 for each
function, the autocorrelation matrix of xk becomes diagonal and
can be obtained as

R = E[ xk xT
k ] = 1

2
I (7)

According to Widrow and Stearns (1985),  the practical bound for
convergence is given by

0 < � <
1

tr[R]
= 1/n (8)

where tr[·] represents the trace of the matrix. Hence, for the BMFLC
algorithm the adaptive gain parameter � should be less than 1/n  to
achieve convergence.

Since the objective is to identify the optimum band of the EEG
�-rhythm, we estimate the whole range of �-rhythm by choos-
ing f1 = 8 Hz, w1 = 2�f1 and fn = 14 Hz, wn = 2�fn. The adaptive gain
parameter � decides the adaptive rate of the algorithm. The accu-
racy of estimation also depends on the frequency spacing �ω/2�.
A small �ω will increase the number of fundamental frequencies
(i.e. weights wk) and the estimation process will be highly accurate.
A very small �ω  also increases the computational complexity. An
appropriate value of � should be selected according to (8) for the
convergence of the algorithm. The accuracy for various values of
�ω/2� and � are analyzed and the findings are presented in Section
3.

2.2. Analysis with BMFLC

In this section, we first present the proposed method for time-
frequency decomposition of the rest-EEG and movement-EEG
followed by identification of optimal band. The identified optimal
band will be later used for better event classification. The block dia-
gram of the procedure is given in Fig. 4. The three steps A, B and
C shown in Fig. 4 are organized as three sub-sections for ease of
analysis.

2.2.1. Time-frequency decomposition
By construction of BMFLC, the weight vectors wk represents

the amplitude information of each frequency component at time
instant k. This information forms the basis for time-frequency
decomposition of the signal. Each amplitude weight represents
the magnitude of the corresponding frequency in the signal. The
modelled signal with BMFLC at time instant k is given by
n of EEG-rhythms for optimal band identification in BCI. J Neurosci

yk = wT
k xk (9)

Since the reference vectors xk are pre-defined and constant, our
analysis will be focused on the weight vector wk. From (5) and

dx.doi.org/10.1016/j.jneumeth.2011.08.035
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Fig. 3. (a) BMFLC architecture and (b

rchitecture in Fig. 3, wk contains both the sine and cosine vector
erms and so the weight vectors can be re-expressed as

ws
k

= [ a1k . . . ank ]T

wc
k

= [ b1k . . . bnk ]T

here wk = [ ws
k

wc
k ]

T
, ws

k
and wc

k
are sine and cosine weights.

In order to evaluate the individual frequency components, we
ompute the square-root of the sum of squares of the sine and
osine components to obtain

f
k

=
[ √

a2
1k

+ b2
1k

2
. . .

√
a2

nk
+ b2

nk

2

]T

(10)

here wf
k

is the absolute weight vector of the frequency com-
onents at instant k. The time-frequency decomposition matrix
ermed D can be obtained for the signal with m samples as

 = [ wf
1 . . . wf

k
. . . wf

m ]

(11)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
a2

11 + b2
11

2

√
a2

12 + b2
12

2
.  . .

√
a2

1m + b2
1m

2√
a2

21 + b2
21

2

√
a2

22 + b2
22

2
.  . .

√
a2

2m + b2
2m

2
...

...
. . .

...√
a2 + b2

√
a2 + b2

√
2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)
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n1 n1

2
n2 n2

2
.  . .

anm + bnm

2

his time-frequency decomposition contains the absolute values
f all the frequency components with spacing �ω. These weights

Fig. 4. Flowchart of
ency distribution for multiple FLC’s.

are useful to extract the time-frequency characteristics of the EEG
signal.

2.2.2. Optimal band selection
The reactive band can be clearly visualized from the time-

frequency decomposition of the signal. To quantify the optimal
band for the subject, we first analyze spectra power distribution
in all the frequency components for rest and each movement class.
The square of all the amplitudes of individual frequency compo-
nents will provide power distribution in each class of a trial and are
given by

Prest = Drest ⊕ Drest

Pmov = Dmov ⊕ Dmov
(12)

where Prest and Pmov represent the power distribution matrices for
rest and movement. Dmov and Drest represents the time-frequency
decomposition matrix (11) corresponding to rest and movement
of the subject. The operator ⊕ represents the element by element
multiplication of the matrix.

To identify the dominant frequency components, we  analyze
the average power of all the frequency components. For the above
matrices Prest and Pmov, the average power can be obtained by
computing the mean of all the rows as each row corresponds to a
specific frequency. The difference of the average power distribution
between the two matrices will identify the dominant frequency
components between two  classes (e.g. C3(R) and C3(RH) in a single
trial). The difference of the average power can be obtained as
n of EEG-rhythms for optimal band identification in BCI. J Neurosci

PDiff = avg{Prest} − avg{Pmov} (13)

where avg(·) is a row operation to compute the mean of every row
that corresponds to frequency components ωi. PDiff will be a vec-
tor with elements corresponding to the power difference of all the

 EEG analysis.

dx.doi.org/10.1016/j.jneumeth.2011.08.035
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requency components. This measure will provide power variation
n all the frequency components in the �-band between the two
lasses under consideration.

The area under the curve PDiff will provide information about
nergy distribution between the two movement classes. The region
ith the maximum energy distribution can be identified for all the
ovement classes and trials separately and an optimal band can

e selected for the subject. The measure to identify the optimal
and will be discussed together with the analysis of 30 subjects in
ection 3 later.

.3. Normalized power between events

The classification accuracy depends on the accurate reactive
and selection. By considering the most reactive frequency compo-
ents for each subject the classification accuracy can be improved.

n Neuper et al. (2000),  it was shown that selection of optimum
requency bands for subjects when compared with standard fre-
uency bands has higher success rate. In this section, we employ
he optimum band identified in the previous section for calculation
f normalized power.

We first calculate the normalized power (�V2/Hz) or power
pectral density (PSD) with respect to time for the signal in the
omplete �-band (8–14 Hz) during rest and movement as follows:

Crest = sum(Prest)
BW

Cmov = sum(Pmov)
BW

(14)

here the bandwidth BW = 14 − 8 = 6 Hz and sum(·) represents the
olumn operation to compute the sum of all components power at
nstant k.

Similarly, for the EEG signal in the optimum band, the normal-
zed power can be obtained as

C+
rest = sum(P+

rest)
BW+

C+
mov = sum(P+

mov)
BW+

(15)

here P+
rest only contains the rows of Prest that corresponds to the

dentified optimum band of the subject and BW+ represents the
dentified optimum bandwidth.

To quantify the effect of optimal band selection for all subjects,
e analyze the relative power-spectral density. This is necessary

s some subjects may  have large power (large EEG amplitude) and
ay  lead to bias in the analysis. To accurately quantify the effect of

ptimal band on the normalized power (PSD) between two events
e.g. C4(LH) and C4(R)), we divide the normalized power (�V2)/Hz
ith the average power of the two events (e.g. C4(LH) and C4(R))

o form relative power spectral density (rP/Hz).

. Results

In this section, we first analyze the accuracy of BMFLC for EEG
Please cite this article in press as: Veluvolu KC, et al. Adaptive estimatio
Methods (2011), doi:10.1016/j.jneumeth.2011.08.035

stimation. In order to estimate the �-rhythm, all the data was
andpass filtered in the band of 8–14 Hz. To evaluate the perfor-
ance of EEG estimation with BMFLC, we employ the root mean

quare (RMS) defined as RMS(s) =
√

(
∑m

k=1(sk)2)/m where m is the

able 1
ccuracy with BMFLC.

30 Subjects × 4 trials �ω/2� = 0.1 Hz �ω/2�  =
(%  Accuracy) � = 0.007 � = 0.015

Average (±STD) 98.85 (±0.03) 98.62 (±
Time (sec)

Fig. 6. Mean-squared error over signal duration for all trials/subjects.

number of samples, s the input signal and sk input signal at instant
k. Percentage accuracy of the performance is quantified as

% Accuracy = RMS(s) − RMS(�)
RMS(s)

× 100 (16)

where � is the error signal. For demonstration, the bandpass filtered
EEG � rhythm in the band of 8–14 Hz when subject #1 is perform-
ing movement C4(LH) for a single trial is shown in Fig. 5. In the band
of 8–14 Hz, the estimated � rhythm with �ω/2�  = 0.5 Hz, � = 0.035
using BMFLC is also shown in the same figure together with the esti-
mation error. The optimal value of � = 0.035 (� < 1/n  = 1/n  =0.769)
according to condition (8) is chosen for good estimation accuracy.
For clarity, a small portion of the signal is presented in Fig. 5. To
study the robustness of the algorithm, % accuracy of each trial with
all the five classes (see Fig. 1) is computed individually for 30 sub-
jects for different values of �ω and �. As �ω decreases, the number
of frequency components n increases and the gain parameter �
decreases. The mean and standard deviation (±STD) of % accuracy
for 30 subjects over 4 trials are tabulated in Table 1. For different
values �ω, the optimal values of � are selected. The % accuracy
remained constant and it shows the robustness of the algorithm. A
value of 0.1–0.5 for �ω/2�  is optimum for estimation of �-rhythm
to obtain an accuracy of 96–98%. Also, the mean squared error for all
trials and subjects over the signal duration is shown in Fig. 6. For
subject # 1, the single trial data in the segment C4(R) (see Fig. 1)
is considered for the rest and the data in the segment C4(LH) for
the left hand movement. The proposed algorithm is applied sepa-
rately for both the data with frequency spacing �ω/2�= 0.5 Hz and
n of EEG-rhythms for optimal band identification in BCI. J Neurosci

� = 0.035. The weight vectors of individual frequency components
of the EEG rhythm when subject is at rest are shown in Fig. 7(b).
The frequency components for the left hand movement C4(LH) are
shown in Fig. 7(a). BMFLC inherently divides the time domain signal

 0.2 Hz �ω/2�  = 0.4 Hz �ω/2� = 0.5 Hz
 � = 0.03 � = 0.035

0.04) 98.47 (±0.06) 98.34 (±0.05)

dx.doi.org/10.1016/j.jneumeth.2011.08.035
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Fig. 7. Subject #1, time-frequency decomposition with BMFLC we

nto individual frequency components. The amplitude of each fre-
uency component gives the strength of the particular frequency in
he rhythm and these components corresponds to time-frequency

atrix wf
k
. When subject is performing movement, the individ-

al components decrease in the �-band as shown in Fig. 7(a). The
ime-frequency decomposition map  for the movement C4(LH) and
est C4(R) are shown in Fig. 7(c) and (d) respectively. From the
ime-frequency decomposition, it can be clearly visualized that
Please cite this article in press as: Veluvolu KC, et al. Adaptive estimatio
Methods (2011), doi:10.1016/j.jneumeth.2011.08.035

he activity is mainly limited to the band 9–11 Hz. Time-frequency
ecomposition for subject #1, C4(R) using short-time Fourier trans-
orm (STFT) and wavelet decomposition are shown in Fig. 7(e) and
 (parameters for the proposed method �ω/2� = 0.5 Hz, � = 0.035).

(f) respectively. For sake of ideal comparison, similar frequency
gap is employed with STFT and wavelet transform. Similar reac-
tive band can be identified with all the three methods. Without
the need of high computation, BMFLC provides optimal temporal
resolution and user-defined frequency resolution �ω/2�. Similar
analysis is conducted for all events in all the trials for 30 subjects.
The analysis revealed similar reactive band characteristics when
events C4(RH), C4(RL), C3(LH) and C3(LL) are compared with C4(R)
n of EEG-rhythms for optimal band identification in BCI. J Neurosci

or C3(R). Most of the energy of the signal in the event is confined
to a specific reactive band. For illustration, time-frequency maps
for subjects #10, #13, #20 with distinct reactive bands are shown

dx.doi.org/10.1016/j.jneumeth.2011.08.035
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Fig. 8. Time-frequency deco

n Fig. 8 for rest and movement. To identify the optimal band for
he subject, PDiff for all the four movement classes with respect to
est are evaluated for all four trials as discussed in Section 2.2.2. For
llustration, the plot of the PDiff for subject # 1 with all four move-

ent classes with respect to the frequency for a single trial data is
hown in Fig. 9(a). From the plot, it is clear that the 9–11 Hz band is
eactive for the subject # 1 for all the four movement classes. Plots
f PDiff for 16 subjects for all four movement classes for single trial
ata are shown in Fig. 9. Most subjects exhibited a distinctive reac-
ive band. To quantify the band and bandwidth for the subject, we
rst evaluate the distribution (area under the PDiff curve) for the
-band and the reactive band. The power ratio % for a movement

lass in a single trial is defined as

R = Aopt

A�
× 100 (17)

here Aopt is the area under the PDiff curve for the selected reactive
and and A� is the total positive area under the PDiff curve for the
ntire �-band. Since PDiff vector represents the average power over

 period of time, Aopt represents the average power in the optimal
and and A� represents the average power in the �-band. PR also
epresents % average energy ratio of optimal band to �-band.

For a selected reactive bandwidth BW+, the PR is computed for
ll the movement classes in all the four trials for the subject. The
verage PR resulting from various movement classes and trials for a
ubject provides the measure of average energy % associated with
he selected reactive band and bandwidth. To analyze the effect of
Please cite this article in press as: Veluvolu KC, et al. Adaptive estimatio
Methods (2011), doi:10.1016/j.jneumeth.2011.08.035

andwidth on PR, the average PR for subjects for various bandwidths
2 Hz, 2.5 Hz and 3 Hz) are tabulated in Table 2. The distribution of
he subjects in the table reveals that the average PR of 60–80% exists
n most subjects. For only few subjects, an increase in BW+ increased

able 2
ubjects with the optimal band % energy.

Band width No. of subjects with PR

50–60% 60–70% 70–80% 80–85%
BW+ = 2 Hz 3 16 8 1
BW+ = 2.5 Hz 2 13 11 2
BW+ = 3 Hz 2 12 10 4
tion for movement and rest.

the energy %. The table shows that most subjects have an average
PR close to 70%. Hence in this study the average PR = 70% is chosen as
the basis to identify the optimal band for the subject. The identified
optimal bands for 16 subjects are shown in Fig. 9. The optimal bands
shown in Fig. 9 are average of four trials for all movement classes. In
Fig. 9, subjects are grouped as good, average, below average and no
band subjects. Subjects who  displayed a very distinctive common
band in all trials are considered as good subjects. In Fig. 9(a)–(e)
are marked as good subjects. In Fig. 9(f)–(k) represent the aver-
age subjects and all subjects have a common band. However some
subjects in one or two trials, a movement class failed to follow the
other movement classes (for e.g. Fig. 9(j)–(k)). For some subjects
the energy and frequency band depended on the electrode location.
For e.g. subject #4 has separate peaks for both electrode locations.
However a common band was selected as shown in Fig. 9(h). For
some subjects, a large energy difference existed between electrode
locations C3 and C4. For e.g. subjects #27 and #7 (see Fig. 9(k)–(m))
show a large difference in power in electrode locations. For sub-
jects #14, #26 a band was  not identified in at least 3 trials. Careful
observation revealed that the subjects had a power decrease in the
�-band as opposed to power increase as shown in Fig. 9(k)–(m)
and are grouped as no band subjects. Few subjects have a reactive
bandwidth greater than 2 Hz. For e.g. subject #4 has a reactive band
of 9.5–12 Hz.

For some subjects, there was a slight mismatch in the band
between two electrode locations C3 and C4. Most subjects dis-
played a common band for both the C3 and C4 locations. For a
given subject, as the reactive band is mainly dependent on the rest
C3(R) or C4(R), the band remained constant during all the trials. The
reactive band varied from subject to subject, but remained fixed
irrespective of the event performed as shown in Fig. 9.

The distribution of optimal band for 30 subjects is shown in
Fig. 10(a). Over 93% of the subjects has a distinct reactive band
with bandwidth 2 Hz. The study also shows that 40% of the sub-
jects has a reactive band in the range of 9–11 Hz whereas only 8%
of the subjects has the reactive band in the range of 12–14 Hz. In
n of EEG-rhythms for optimal band identification in BCI. J Neurosci

Fig. 10(b), the distribution of subjects with different bandwidths
is shown. 70% of subjects have a bandwidth of 2 Hz, where as 10%
subjects have 2.5 Hz bandwidth. One has to note that the distri-
bution is likely to change with the change of basis measure 70%.

dx.doi.org/10.1016/j.jneumeth.2011.08.035
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Fig. 9. Plots of PDiff and optimal band selection in 16 subjects. G, good subjects; A, average subjects; BA, below average subjects; NB, no band subjects.
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Fig. 10. Optimal band distribution in 30 subjects.
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Fig. 11. Normalized power for the �-band vs. optimal band for single trial data.

Table 3
Comparison of r-power spectral density (rP/Hz) in �-band and optimal band.

30 subjects× 4 trials Average of r-power spectral density (rP/Hz)

�-Band (8–14 Hz) Optimal band % Increase with
optimal band

Event Rest Movement Diff. Rest Movement Diff.

LH (C4) 11.78 ± 2.1 4.71 ± 2.12 7.06 ± 4.21 31.57 ± 5.61 8.37 ± 4.02 23.19 ± 8.4 228%
 

 

A
t
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t
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t
w
F
t
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t
(
F
n
d
s
s
m
d
a

4

o
c

LL  (C4) 11.62 ± 1.87 4.8 ± 1.87 6.81 ± 3.74
RH  (C3) 11.14 ± 2.54 5.28 ± 2.56 5.85 ± 5.1 

RL  (C3) 11.5 ± 1.84 4.94 ± 1.78 6.53 ± 3.62

s discussed in Section 2.3,  the normalized power or power spec-
ral density (PSD) variations are computed for subject #1 C4(R) and
4(LL) events for a single trial and are shown in Fig. 11(a1). The dis-
inction between the rest and left hand motion can be seen in the

 band. With the identified optimal band (9–11 Hz), the difference
n normalized power increased as shown in Fig. 11(a2). The dif-
erence in normalized power increases by 200% across time with
he selection of optimal band. The normalized power variations
ith optimal bands for subjects #10, #13 and #20 are presented in

ig. 11.  The distinction between rest and activity are not very dis-
inct as the characteristics vary from subject to subject. Subject #10
oes not have a very clear distinction between C3(RH) and C3(R) in
he �-band as shown in Fig. 11(b1). Selection of the optimal band
10.5–12.5 Hz) increases the power difference by 200% as shown in
ig. 11(b2). To further quantify the effect of optimal band on the
ormalized power (PSD) we analyze the relative power spectral
ensity (rP/Hz) for all the subjects. The analysis conducted for 30
ubjects for four events (LH, LL, RH and RL) in all trials and mean ±
tandard deviation is tabulated in Table 3. It reveals that the opti-
um  band improves the difference in the relative power spectral

ensity by a minimum 200% with respect to normalized power on
n average across the time.

. Discussion
Please cite this article in press as: Veluvolu KC, et al. Adaptive estimatio
Methods (2011), doi:10.1016/j.jneumeth.2011.08.035

For many subjects, a significant change in �-rhythm does exist
ver the entire band 8–14 Hz. However, closer examination of spe-
ific narrower frequency bands for a subject may  provide good
31.13 ± 4.84 8.78 ± 4.19 22.34 ± 7.4 227%
30.06 ± 4.6 9.15 ± 4.31 20.91 ± 7.96 257%
29.12 ± 3.99 9.37 ± 3.94 19.75 ± 7.9 202%

difference in the activity with the dominant frequency components.
Time-frequency decomposition provides more insight about the
characteristics of the EEG and dominant frequency components,
their time-domain characteristics. The amplitude weights of indi-
vidual frequency components provide extra information about the
subject when compared to conventional methods of calculating the
band power using FFT or STFT. The frequency gap �ω/2�  in the pro-
posed method can be varied according to the requirement. A small
�ω/2�  can be selected for high time-frequency resolution. Based
on the amplitudes of individual frequency components, the most
reactive frequencies for a subject can be identified to improve the
threshold level for event classification. This method also provides
optimal temporal and user-defined frequency resolution and can
be employed for feature extraction in BCI.

Earlier methods for identifying the subject specific reactive
bands relied on heuristic based methods and require large num-
ber of trials to train the subjects. The proposed method can clearly
identify the subjects optimal band for an electrode location with
fewer number of trials. A period of 25 s for identification of the band
for a movement class was considered to analyze the time-domain
characteristics of the reactive band. It was evident from the time-
frequency maps that the reactive band indeed remained constant
through out the entire time-period.

For most subjects a common optimal band existed for all move-
n of EEG-rhythms for optimal band identification in BCI. J Neurosci

ment classes. Fig. 9 shows that all the four movement classes have
a common band. In most of the earlier studies, bandwidth of 3 Hz
was employed to customize the reactive band based on heuristic
methods. The selection of proper optimal band depends on the

dx.doi.org/10.1016/j.jneumeth.2011.08.035
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ubject’s energy distribution and an exact band cannot be quan-
ified directly. In this paper, a basis measure of 70% is employed
o identify the subject-specific optimal band. A larger band can be
mployed for all subjects, but it will eventually decrease the power
pectral density. Although the analysis in the paper is limited to
ctual movement-related data, the proposed method will be useful
or identifying the optimal band related to movement-imagery for
CI applications. Similar results may  not be obtained with imagined
ovement, however a good difference in power spectral density

an be obtained with a proper selection of optimal band with the
roposed method.

The proposed method of optimal band identification can be
mployed for identifying users with a narrow reactive band. The
sers with a narrow frequency band will operate BCI with higher
ccuracy compared to subjects without a band. The proposed
ethod in combination with spatial filtering will provide opti-
al  temporal, spatial and time-resolution for real-time feature

xtraction in BCI’s. Identifying the optimal bands in � and ˇ-bands
eparately for each electrode location will improve the perfor-
ance of classifiers. Although the analysis has been limited to
-band in this paper, the same approach can be extended to ˇ-band

o identify the optimal band in ˇ-band for electrode locations. Simi-
ar optimal bands for subjects can also be identified with traditional

ethods like STFT and Wavelet transform.
Results are illustrated for 16 subjects for optimal band identifi-

ation. Our study reveals that optimal band exists in most subjects
nd it improves the spectral power density difference between rest
nd movement. The study clearly identified the optimal band for
he subjects and the optimal band can be selected for better event
lassification. An average of 200% improvement in power spectral
ensity with respect to normalized power can be obtained with the
roposed method.
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