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A belief rule base inference methodology using the evidential reasoning (RIMER) approach has been
developed recently. A belief rule base (BRB), which can be treated as a more generalized expert system,
extends traditional IF-THEN rules, but requires the assignment of some system parameters including rule
weights, attribute weights, and belief degrees. These parameters need to be determined with care for reli-
able system simulation and prediction. Some off-line optimization models have been proposed, but it is
expensive to train and re-train these models in particular for large-scale systems. Moreover, the recursive
algorithms are also proposed to fine tune a BRB online, which require less calculation time and satisfy the
real-time requirement. However, the earlier mentioned learning algorithms are all based on a predeter-
mined structure of the BRB. For a complex system, prior knowledge may not be perfect, which leads to
the construction of an incomplete or even inappropriate initial BRB structure. Also, too many rules in
an initial BRB may lead to over fitting, whilst too few rules may result in under fitting. Consequently, such
a BRB system may not be capable of achieving overall optimal performance. In this paper, we consider
one realistic and important case where both a preliminary BRB structure and system parameters assigned
to given rules can be adjusted online. Based on the definition of a new statistical utility for a belief rule as
investigated in this paper, a sequential learning algorithm for online constructing more compact BRB sys-
tems is proposed. Compared with the other learning algorithms, a belief rule can be automatically added
into the BRB or pruned from the BRB, and our algorithm can also satisfy the real-time requirement. In
addition, our algorithm inherits the feature of RIMER, i.e., only partial input and output information is
required, which could be either incomplete or vague, either numerical or judgmental, or mixed. In order
to verify the effectiveness of the proposed algorithm, a practical case study about oil pipeline leak detec-
tion is studied and examined to demonstrate how the algorithm can be implemented.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It has become increasingly important to model and analyze
decision problems using hybrid information with uncertainty
(Walley, 1996; Yang, Liu, Xu, Wang, & Wang, 2007). In order to
solve these problems, a generic rule base inference methodology
using the evidential reasoning (RIMER) approach was proposed
by Yang, Liu, Wang, Sii, and Wang (2006). This methodology estab-
lishes a nonlinear relationship between antecedent attributes and
an associated consequent, and can reflect the dynamic nature of
decision-making problems. The RIMER is developed based on the
evidential reasoning (ER) approach (Yang & Singh, 1994; Yang,
Wang, Xu, & Chin, 2006), Dempster–Shafer theory of evidence
(Dempster, 1968; Shafer, 1976), decision theory (Huang & Yong,
1981), and fuzzy set theory (Zadeh, 1965). It is well known that
the IF-THEN rule-based method (Sun, 1995) and the fuzzy IF-THEN
ll rights reserved.
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hou).
rule-based method (Chen & Saif, 2005; Xu, Liu, Ruan, & Li, 2002)
can only cope with fuzzy uncertainty and are not applicable in
cases where there exists probabilistic uncertainty. The RIMER ap-
proach provides a more informative and flexible scheme than the
traditional IF-THEN rule base for knowledge representation, and
is capable of capturing vagueness, incompleteness, and nonlinear
causal relationships. Equipped with the Windows-based and
graphically designed intelligent decision system (IDS) (Yang &
Xu, 1999), the RIMER has already been applied to the safety anal-
ysis of offshore systems (Liu, Yang, & Sii, 2005).

In the RIMER, the belief rule base (BRB), which can be treated as
a more generalized expert system, is used as the tool of knowledge
representation. In a BRB, there are several types of system param-
eters including belief degrees, attribute weights, and rule weights.
These parameters need to be determined accurately. However, it is
difficult to determine these parameters entirely subjectively, in
particular for a large-scale rule base with thousands of rules. Also,
a change in a rule weight or an attribute weight may lead to
changes in the performance of a BRB (Yang et al., 2007). As such,
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some optimization models have been proposed to train a BRB
(Yang et al., 2007). Because these models are off-line trained and
in essence are locally optimal, it is very expensive and time con-
suming to train and re-train them. In order to solve these prob-
lems, the recursive algorithms for online updating the BRB
systems have also been developed and they are fast to converge,
which is very important for training systems that have a high level
of real-time requirement (Zhou, Hu, Yang, Xu, & Zhou, 2009). How-
ever, these optimal algorithms are all based on a predetermined
structure of BRB (Xu et al., 2007; Zhou et al., 2009).

For a complex system, prior knowledge may not be perfect,
which may lead to the construction of an incomplete or even inap-
propriate initial BRB structure. For example, if there are too many
belief rules in an initial BRB, the learning task becomes too compli-
cated to handle, or it is possible to result in over fitting; if there are
too few rules in an initial BRB, it may lead to under fitting. Conse-
quently, the system may not be capable of achieving overall opti-
mal performance. To achieve an overall optimal BRB, it is not
sufficient to just statistically tune parameters for given rules, but
the structure of a BRB system need to be adjusted as well. The final
performance of a supervised BRB learning system depends on both
its system structure and system parameters (Yang et al., 2007).

Unfortunately, there exists no method to adjust online both the
BRB structure and system parameters. Sequential learning algo-
rithms have been investigated in various areas. They can add or
statistically prune a neuron for radial basis function (RBF) net-
works (Huang, Sundararajan, & Saratchandran, 2004, 2005; Lu,
Sundararajan, & Saratchandran, 1997, 1998) and fuzzy rules for a
fuzzy inference system (FIS) (Rong, Sundararajan, Huang, & Sarat-
chandran, 2006). But these algorithms are not inappropriate in
the case where there exists probabilistic and fuzzy uncertainty. Be-
cause the RIMER approach can deal with cases where there exists
probabilistic and fuzzy uncertainty (Yang et al., 2006, 2006), it is
necessary to develop a sequential learning algorithms for online
constructing BRB systems.

Based on the definition of the new concept of statistical utility
for a belief rule, in this paper, a sequential learning algorithm is
proposed for online constructing BRB systems. Compared with
existing learning algorithms (Yang et al., 2007; Zhou et al., 2009),
a belief rule can be automatically added into a BRB or pruned from
the BRB, and our algorithm can also satisfy the real-time require-
ment. In addition, our algorithm inherits the feature of the RIMER,
i.e., only partial input and output information is required, which
could be either incomplete or vague, either numerical or judgmen-
tal, or mixed. In order to verify the effectiveness of our algorithm, a
practical case of oil pipeline leak detection is studied and examined
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to demonstrate how our algorithm can be implemented. This
shows that our algorithm may be widely applied in engineering.

This paper is organized as follows. In Section 2, some prelimi-
naries about the RIMER approach and rule-based information
transformation techniques are briefly reviewed. Section 3 presents
an investigation into the statistical utility of a belief rule in a BRB. A
sequential learning algorithm for online constructing a BRB system
is proposed in Section 4. A practical case study of pipeline oil leak
detection is presented to verify the algorithms in Section 5. The pa-
per is concluded in Section 6.

2. Preliminaries

2.1. Belief rule base

A belief rule base (BRB), which captures the dynamic of a sys-
tem, consists of a collection of belief rules defined as follows (Yang
et al., 2006):

Rk : If x1 is Ak
1 ^ x2 is Ak

2 � � � ^ xMk
is Ak

Mk
;

Then fðD1;b1;kÞ; . . . ; ðDN; bN;kÞg
With a rule weight hk and attribute weight d1;k; d2;k; . . . ; dMk ;k;

ð1Þ

where x1; x2; . . . ; xMk
represents the antecedent attributes in the kth

rule. Ak
i ði ¼ 1; . . . ;Mk; k ¼ 1; . . . ; LÞ is the referential value of the ith

antecedent attribute in the kth rule, Ak
i 2 Ai. Ai ¼ fAi;j; j ¼ 1; . . . ; Jig

is a set of referential values for the ith antecedent attribute, and Ji

is the number of the referential values. hkð2 Rþ; k ¼ 1; . . . ; LÞ is
the relative weight of the kth rule, and d1;k; d2;k; . . . ; dMk ;k are the rel-
ative weights of the Mk antecedent attributes used in the kth rule.
bj;kðj ¼ 1; . . . ;N; k ¼ 1; . . . ; LÞ is the belief degree assessed to Dj,
which denotes the jth consequent. If

PN
j¼1bj;k ¼ 1, the kth rule is said

to be complete; otherwise, it is incomplete. Note that ‘‘^” is a logical
connective to represent the ‘‘AND” relationship. In addition, sup-
pose that M is the total number of antecedent attributes used in
the rule base.

2.2. Belief rule inference using the evidential reasoning approach

When the antecedent attributes, i.e., the inputs of the BRB are
available, the evidential reasoning (ER) approach is used as the
inference tool. Using the ER analytical algorithms (Wang, Yang, &
Xu, 2006), the final conclusion OðYðnÞÞ that is generated by aggre-
gating all rules, activated by the actual input vector
x̂ðnÞ ¼ ½x̂1ðnÞ; . . . ; x̂MðnÞ�T , can be represented as follows:

OðYðnÞÞ ¼ hðx̂ðnÞÞ ¼ fðDj;bjðx̂ðnÞÞÞ; j ¼ 1; . . . ;Ng; ð2Þ

where bjðx̂ðnÞÞ denotes the belief degree in Dj at time instant n, and
Eqs. (3) and (4) hold.
where bjðx̂ðnÞÞ is the function of the belief degrees
bi;kði ¼ 1; . . . ;N; k ¼ 1; . . . ; LÞ, the rule weights hkðk ¼ 1; . . . ; LÞ, the
attribute weights �diði ¼ 1; . . . ;MÞ, and the input vector x̂ðnÞ.
xkðx̂ðnÞÞ, the activation weight of the kth rule at time instant n,
can be calculated by
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where dið2 Rþ; i ¼ 1; . . . ;MÞ is the relative weight of the ith ante-
cedent attribute used in the kth rule. ak

i ðx̂iðnÞÞ 2 fai;jðx̂iðnÞÞ;
i ¼ 1; . . . ;M; j ¼ 1; . . . ; Jig, the individual matching degree, is the
degree of belief to its jth referential value Ak

i;j in the kth rule at time
instant n. akðx̂ðnÞÞ ¼

QM
i¼1 ak

i ðx̂iðnÞÞ
� ��di is called the normalized com-

bined matching degree.

2.3. Rule-based information transformation technique for quantitative
data

In the RIMER, ak
i ðx̂iðnÞÞ could be generated using various ways,

depending on the nature of an antecedent attribute and data avail-
able such as a qualitative attribute using linguistic values, which is
an important characteristic of the RIMER. The input information
can be one of the following types: continuous, discrete, symbolic,
and ordered symbolic. In order to facilitate data collection, a
scheme for handling various types of input information has been
summarized by Yang (2001), Yang et al. (2006, 2007). In the pro-
posed scheme, there is an important technique, i.e., rule-based
information transformation technique (Yang, 2001), which is used
to deal with the input information that includes qualitative assess-
ment and quantitative data. In this paper, we will only consider the
quantitative input. So we first review this technique for the quan-
titative data in this subsection.

Suppose that the input of a quantitative antecedent attribute is
given by numerical values. In this case, equivalence rules need to
be extracted from the decision maker. This can be used to trans-
form a value to an equivalent expectation, thereby relating a par-
ticular value to a set of referential values (Yang et al., 2006).
Therefore, a value ci;jði ¼ 1; . . . ;M; j ¼ 1; . . . ; JiÞ can be judged to
be a referential value Ai;j in a BRB, or

ci;j means Ai;j; i ¼ 1; . . . ;M; j ¼ 1; . . . ; Ji: ð6Þ

Suppose that a large value ci;ðjþ1Þ is preferred over a small value ci;j.
Let ci;Ji

and ci;1 be the largest and smallest feasible values, respec-
tively. Then, an input value x̂iðnÞ is represented using the following
equivalent expectation:

Sðx̂iðnÞÞ ¼ fðci;j;ai;jðx̂iðnÞÞÞ; i ¼ 1; . . . ;M; j ¼ 1; . . . ; Jig; ð7Þ

where ai;jðx̂iðnÞÞ can be calculated by

ai;jðx̂iðnÞÞ¼
ci;jþ1� x̂iðnÞ
ci;jþ1�ci;j

if ci;j6 x̂iðnÞ6 ci;jþ1; j¼1; . . . ; Ji�1; ð7aÞ

ai;jþ1ðx̂iðnÞÞ¼1�ai;jðx̂iðnÞÞ if ci;j6 x̂iðnÞ6 ci;jþ1;

j¼1; . . . ; Ji�1; ð7bÞ
ai;sðx̂iðnÞÞ¼0 for s¼1; . . . ; Ji; s–j; jþ1: ð7cÞ

The quantitative antecedent attribute, x̂iðnÞ, may also be a ran-
dom variable and may not always take a single value but several
values with different probabilities. In order to solve this problem,
the corresponding rule-based information transformation tech-
nique has also been proposed by Yang (2001).

3. Statistical utility of a belief rule

In this Section, based on the definition of utility and the neu-
ron’s ‘‘significance” concept of RBF proposed by Huang et al.
(2004, 2005), we will give the statistical utility’s definition for a be-
lief rule.

Firstly, according to the definition of the expected utility (Yang,
2001; Yang et al., 2006), the expected utility of hðx̂ðtÞÞ on the kth
belief rule can be calculated by
ukðx̂ðtÞÞ ¼
XN

j¼1

uðDjÞxkðx̂ðtÞÞbj;k; ð8Þ

where xkðx̂ðtÞÞðk ¼ 1; . . . ; LÞ is calculated by Eq. (5) and
uðDjÞðj ¼ 1; . . . ;NÞ denotes the utility of an individual consequence
Dj.

Then, according to Eqs. (5) and (8), the average expected utility
of hðx̂ð1ÞÞ; . . . ; hðx̂ðnÞÞ on the kth belief rule can be given as follows:
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where ckðx̂ðtÞÞ ¼ hk
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If the limits of the numerator and denominator both exist in Eq.

(9), the following equation can be obtained.
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In order to determine lim
n!þ1

UðkÞ, we must compute firstly Ek de-
fined by

Ek ¼ lim
n!þ1

Pn
t¼1ckðx̂ðtÞÞ

n
: ð11Þ

When the number of the inputs n is large, we obtain the follow-
ing approximation result.

Ek �
Z

X
ckðx̂Þpðx̂Þdx; ð12Þ

where X denotes the sampling range of x̂ and pðx̂Þ is the sampling
density function.

Furthermore, if x̂1ðtÞ; . . . ; x̂MðtÞ are assumed to be independent
of each other and piðx̂iÞ is the sampling density function of the
ith input in the BRB, we get

pðx̂Þ ¼
YM
i¼1

piðx̂iÞ: ð13Þ

Putting Eq. (13) and ckðx̂Þ into Eq. (12) leads to
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Suppose that x̂iði ¼ 1; . . . ;MÞ changes in the interval ½ai; bi�.
According to the earlier mentioned independence assumption,
there is

Ek � hk
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Ik
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where Ik
i ck

i

� �
¼
R bi

ai
ak

i ðx̂iÞ
� ��di piðx̂iÞdx̂i. ck

i 2 fci;j; i¼ 1; . . . ;M; j¼ 1; . . . ; Jig
is given by Eq. (6) and denotes the referential value of the ith ante-
cedent attribute in the kth belief rule.

From Eq. (14), it is obvious that Ek is dependent on the referen-
tial value ck

i . So we define EkðckÞ , Ek, where ck ¼ ½ck
1; . . . ; ck

M �
T rep-

resents the referential vector of the antecedent attributes in the
kth belief rule. Thus, when Ik

i ðck
i Þ is determined, EkðckÞ can be ob-

tained by Eq. (15), and the following equation can be obtained once
EkðckÞ is put into Eq. (10).

lim
n!þ1

UðkÞ �
Ekð0ckÞ

PN
j¼1uðDjÞbj;kPL

l¼1ElðclÞ
; ð16Þ

where Eq. (16) is considered as the statistical utility of the kth belief
rule. If the sampling density function pðx̂Þ is known, we can deter-
mine the statistical utility of a belief rule, which will be investigated
under the assumption of the uniform distribution in Appendix A.
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The statistical utility of a belief rule gives a measure of the
information content in a belief rule and the contribution made
by that belief rule to the BRB output over all the input data re-
ceived so far. It directly links the required learning accuracy to
the utility of a belief rule in the learning algorithm so as to realize
a compact BRB system. In other words, if the statistical utility of a
belief rule is large, it is logical to say that this rule is significant and
should be added to a BRB. If an activated belief rule is insignificant
in the BRB, it should be pruned. The detail algorithm will be given
in Section 4. Therefore, the statistical utility provides a basis to
determine the structure of a BRB.
4. A sequential learning algorithm for online constructing a BRB
system

In this paper, the proposed sequential learning algorithm for
online constructing a BRB system consists of two aspects: structure
identification and parameter adjustment. The structure identifica-
tion mainly includes adding and pruning of a belief rule. The
parameter adjustment includes updating the rule weights, the
attribute weights, and the belief degrees of a BRB system.
4.1. Adding a belief rule

Firstly, suppose that in an initial BRB, there have been L belief
rules, M antecedent attributes, Jiði ¼ 1; . . . ;MÞ referential values
of the ith antecedent attribute, and N consequences, which are kept
constant in structure identification. Moreover, suppose that these L
belief rules are all significant. Here adding a belief rule can be
interpreted as follows: if the criteria as given later are satisfied
on the basis of the available input and output information of a
BRB system, a new set of referential values of M antecedent attri-
butes will be added and a new belief rule can be constructed.

According to the earlier mentioned statistical utility definition
for a belief rule, when a new observed data pair ðx̂ðnÞ; ŷðnÞÞ arrives
at time instant n, where x̂ðnÞ is an input vector and ŷðnÞ is the cor-
responding output vector, the following two criteria may be used
to determine whether a new belief rule is added.

kx̂ðnÞ � �cðnÞk > e;
ŷðnÞELþ1ðcLþ1ÞPLþ1

l¼1
ElðclÞ

> eg ;

8<: ð17Þ

where �cðnÞ¼ ½�c1ðnÞ; . . . ;�cMðnÞ�T ; �ciðnÞ 2 fci;j; i¼1; . . . ;M; j¼ 1; . . . ; Jig
and k � k is the Euclidean norm. �cðnÞ denotes the referential vector
of the antecedent attributes of a belief rule being nearest to x̂ðnÞ un-
der the Euclidean distance sense. e is the distance threshold and eg

is the adding threshold. Lþ 1 is the number of the new belief rule.
The output of a BRB, ŷðnÞ, may be either measured using instru-
ments or assessed by experts, so the output can be either numerical
or judgmental. When ŷðnÞ is numerical, it can be directly used in Eq.
(17); When ŷðnÞ is judgmental, it can be represented as
ŷðnÞ ¼ fðDj; b̂jðnÞÞ; j ¼ 1; . . . ;Ng, and determined by (Yang et al.,
2007)

ŷðnÞ ¼
XN

j¼1

uðDjÞb̂jðnÞ; ð17aÞ

where b̂jðnÞ denotes the degree of belief to which Dj is assessed for
the observed data at time instant n.

In Eq. (17), the first criterion requires that a new belief rule may
be added if the input data is sufficiently far from the existing belief
rule (in the Euclidean distance sense). The second one requires that
the statistical utility of a newly added belief rule is greater than a
given approximation accuracy.
Once the two criteria given in Eq. (17) are satisfied, a new belief
rule, i.e., the ðLþ 1Þth rule, may be added. The parameters of the
new rule can be determined as follows:

(1) The referential value vector of the antecedent attributes is
cLþ1 ¼ x̂ðnÞ: ð18aÞ
(2) The belief degree bj;Lþ1ðj ¼ 1; . . . ;NÞ, which Dj is assessed for
ŷðnÞ can be determined using Rule-based information transfor-
mation technique (Yang, 2001):
bj;Lþ1¼
uðDjþ1Þ� ŷðnÞ
uðDjþ1Þ�uðDjÞ

if uðDjÞ6 ŷðnÞ6uðDjþ1Þ; j¼1; . . . ;N�1;

ð18bÞ
bjþ1;Lþ1¼1�bj;Lþ1 if uðDjÞ6 ŷðnÞ6uðDjþ1Þ; j¼1; . . . ;N�1;

ð18cÞ
bs;Lþ1¼0 for s¼1; . . . ;N;s–j; jþ1: ð18dÞ
(3) The weights of the antecedent attributes �diði ¼ 1; . . . ;MÞ in the
ðLþ 1Þth belief rule are all assigned to be the same as in the
other rules. The rule weight can be set as
hLþ1 ¼ 1: ð18eÞ
The parameters set to the newly added belief rule by Eqs. (18a)–
(18e) ensure that with the input x̂ðnÞ, the output of the newly con-
structed BRB is ŷðnÞ. It means that the BRB can replicate the rela-
tionship between the current input and output more accurately
after a new belief rule is added.

4.2. Pruning of a belief rule

If the statistical utility of the kth belief rule is less than the given
threshold ep, i.e., this rule is insignificant, it should be removed. The
criterion to prune a belief rule can be described by

EkðckÞ
PN

j¼1uðDjÞbj;kPL
l¼1ElðclÞ

< ep; ð19Þ

where ep is the pruning threshold.
In Eqs. (18) and (19), the parameters e; eg , and ep should be cho-

sen appropriately in advance. These parameters can be determined
according to the following experience.

(1) The distance threshold e is set to around 10% of the upper
bound of input variables.

(2) The adding threshold eg is chosen according to the desired
accuracy. In general, the pruning threshold ep is set to
around 10% of eg .

(3) Obviously, if e and eg are small, the system performance will
be better, but the resulting BRB’s structure is more complex,
which is a disadvantage when there is high real-time
requirement. Therefore, we should choose these parameters
carefully according to the expected system performance.

4.3. Parameter adjustment of a BRB

Once the structure of a BRB is determined using the observed
data pair ðx̂ðnÞ; ŷðnÞÞ on the basis of the initial BRB, some parame-
ters, such as the rule weights, the attribute weights, and the belief
degrees, should be updated using ðx̂ðnÞ; ŷðnÞÞ. We have recently
proposed the recursive algorithms for online updating the param-
eters of a BRB under numerical and judgmental outputs, respec-
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tively (Zhou et al., 2009). So we will outline these algorithms in this
subsection and then use them directly.

It has been proved that the probabilistic representation of be-
lief is the only appropriate representation of belief, which acts
correctly under Dempster’s combination rule (Halpern & Fagin,
1992). Since evidence is represented as belief distributions, belief
is represented as probability and the Dempster’s combination
rule is adopted in the ER approach (Yang & Singh, 1994; Yang
et al., 2006). It has also been pointed that when the inputs of
the BRB are independent, the true outputs, ŷð1Þ; . . . ; ŷðnÞ, can
also be assumed to be independent (Zhou et al., 2009). There-
fore, there is

f ðŷð1Þ; . . . ; ŷðnÞjx̂ð1Þ; . . . ; x̂ðnÞ;Q Þ ¼
Yn

t¼1

f ðŷðtÞjx̂ðtÞ;Q Þ; ð20Þ

where ŷ is numerical and is considered as a random variable.
f ðŷðtÞjx̂ðtÞ;Q Þ is assumed to be the conditional probability density
function (pdf) of ŷ at time instant t and Q is the unknown parame-
ter vector.

The expectation of the log-likelihood of Eq. (20) at time instant
n is defined as

Lnþ1ðQ Þ , E
Xn

t¼1

log f ðŷðtÞjx̂ðtÞ;Q Þ
�����x̂ð1Þ; . . . ; x̂ðnÞ;Q ðnÞ

( )
; ð21Þ

where Ef�j�g denotes the conditional expectation at Q ¼ Q ðnÞ.
The recursive formulation of Eq. (21) can be written as

Lnþ1ðQ Þ ¼ LnðQ Þ þ Eflog f ðŷðnÞjx̂ðnÞ;Q Þjx̂ðnÞ;Q ðnÞg: ð22Þ

Define

C1ðQ ðnÞÞ ,rQ log f ðŷðnÞjx̂ðnÞ;Q ðnÞÞ; ð23Þ

N1ðQ ðnÞÞ , E �rQrT
Q log f ðŷðnÞ x̂ðnÞ;Q Þj jx̂ðnÞ;Q ðnÞ

n o
: ð24Þ

Based on the recursive EM algorithm (Chung & Bohme, 2005;
Dempster, Laird, & Rubin, 1977; Titterington, 1984), the optimal
parameter vector Q ðnþ 1Þ is given as follows:

Q ðnþ 1Þ ¼ Q ðnÞ þ 1
n
½N1ðQ ðnÞÞ��1C1ðQ ðnÞÞ; ð25Þ

where Q consists of the rule weights, attribute weights and belief
degrees satisfying the equality and inequality constraints (Yang
et al., 2006, 2007):

0 6 hk 6 1; k ¼ 1; . . . ; L; ð25aÞ
0 6 �dm 6 1; m ¼ 1; . . . ;M; ð25bÞ
0 6 bj:k 6 1; j ¼ 1; . . . ;N; k ¼ 1; . . . ; L; ð25cÞXN

j¼1

bj;k ¼ 1; k ¼ 1; . . . ; L: ð25dÞ

Hence, the recursive algorithm (25) can be revised as follows:

Q ðnþ 1Þ ¼
Y
H1

Q ðnÞ þ 1
n
½N1ðQ ðnÞÞ��1C1ðQ ðnÞÞ

� �
; ð26Þ

where H1 is a constraint set composed of the constraints
(25a)–(25d), and

Q
H1
f�g is the projection onto the constraint set

H1, ensuring that the estimation of Q can satisfy the given con-
straints. The detail of the algorithm

Q
H1
f�g has been proposed by

Zhou et al. (2009).
If the analytic formulations of N1ðQ ðnÞÞ and C1ðQ ðnÞÞ are

known, the execution of the algorithm (26) will be less time con-
suming. So the following assumption is given.

We hope that for a given input, x̂ðnÞ, the BRB system can gener-
ate an output, yðnÞ, as close to ŷðnÞ as possible. Here, ŷðnÞ is consid-
ered as a random variable, and yðnÞ can be considered as its
expectation. Hence, we assume that the probability density func-
tion (pdf) of ŷðnÞ obeys the following normal distribution:

f ðŷðnÞjxðnÞ;Q Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr
p exp �ðŷðnÞ � yðnÞÞ2

2r

( )
; ð27Þ

where Q ¼ ½VT ;r�T denotes the parameter vector, and r denotes
variance. V ¼ ½hk; �dm;bj;k�

T is parameter vector of the BRB and
k ¼ 1; . . . ; L; m ¼ 1; . . . ;M and j ¼ 1; . . . ;N. The output yðnÞ is repre-
sented as a distribution, and its average score is given by Yang
(2001), Yang et al. (2006, 2007).

yðnÞ ¼
XN

j¼1

lðDjÞbjðx̂ðnÞÞ; ð28Þ

where lðDjÞ represents the utility of an individual consequent Dj

and bjðx̂ðnÞÞ is calculated by Eq. (3).
When Eq. (27) is put into (26), the analytic formulation of the

recursive algorithm can be obtained. The detailed algorithm has
also been given by Zhou et al. (2009).

When the output of the BRB is judgmental, the similar result is
obtained as follows:

Q ðnþ 1Þ ¼
Y
H2

Q ðnÞ þ 1
n
½N2ðQ ðnÞÞ��1C2ðQ ðnÞÞ

� �
; ð29Þ

where H2 is a constraint set composed of the constraints (25a)–
(25d), and

Q
H2
f�g is the projection onto the constraint set H2. In

addition, there are

C2ðQ ðnÞÞ ,rQ log f ðbBðnÞjx̂ðnÞ;Q ðnÞÞ; ð29aÞ
N2ðQ ðnÞÞ , Ef�rQrT

Q log f ðbBðnÞjx̂ðnÞ;Q Þjx̂ðnÞ;Q ðnÞg; ð29bÞ

where bBðnÞ ¼ ½b̂1ðnÞ; . . . ; b̂NðnÞ�T : b̂jðnÞðj ¼ 1; . . . ;NÞ is the degree of
belief to which Dj is assessed for the observed data at time instant
n, and there is ŷðnÞ ¼ fðDj; b̂jðnÞÞ; j ¼ 1; . . . ;Ng.

Similarly, we also assume that bB obeys the complex normal
distribution:

f ðbBðnÞjxðnÞ;Q Þ ¼ ð2pÞ�N=2jvj�1=2

� exp �1
2
ðbBðnÞ � BðnÞÞTv�1ðbBðnÞ � BðnÞÞ

� �
;

ð30Þ

where BðnÞ ¼ ½b1ðnÞ; . . . ;bNðnÞ�
T is generated by the BRB system

using Eq. (3) for a given input. Q is the unknown vector and is com-
posed of the parameter vector V ¼ ½hk; �dm;bj;k�

T . The entries of the
covariance matrix v are symmetric positive definite. V is included
in BðnÞ and k ¼ 1;2; . . . ; L; m ¼ 1; . . . ;M; j ¼ 1; . . . ;N.

When Eq. (30) is put into (29), we can also obtain the analytic
formulation of the recursive algorithm under the judgmental
output.

In the earlier mentioned recursive algorithm, we have the fol-
lowing remarks:

(1) It is obvious that with some appropriate assumptions, the
proposed recursive algorithms are analytic. Also, under
some conditions, the algorithms converge to a locally opti-
mal point. Moreover, only part of belief rules are activated
at time instant n, so the algorithms can converge fast and
can satisfy the real-time requirements.

(2) Adding a belief rule leads to the increase in the dimension-
ality of the parameters in a BRB. In other words, the dimen-
sionality of the parameter vector V will be changed into
V ¼ ½h1; . . . ; hL; hLþ1; �d1; . . . ; �dM; b1;1; . . . ;bN;1;b1;L; . . . ;bN;L;

b1;Lþ1; . . . ;bN;Lþ1�
T
: ð31Þ
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If the dimensionality of VðnÞ changes, CiðQ ðnÞÞði ¼ 1;2Þ and
NiðQ ðnÞÞ will accordingly change.
4.4. The whole algorithm to construct a BRB system

As a result of the earlier mentioned discussion, the procedure of
the proposed learning algorithm for online constructing a BRB sys-
tem can be summarized as the following steps.

Step 1: Suppose that in an initial BRB, there have been two belief
rules that are both significant. The referential values of
the antecedent attributes of the first rule are chosen as
aiði ¼ 1; . . . ;MÞ, and the ones of the second rule are cho-
sen as bi in the initial BRB, where x̂i changes in the inter-
val ½ai; bi�. In addition, the appropriate values of e; eg and
ep are determined appropriately.

Step 2: Suppose that there are L belief rules in the BRB, which is
updated by the input and output information before time
instant n. When the observed data pair, ðx̂ðnÞ; ŷðnÞÞ, is
available at time instant n, the criteria for adding a belief
rule in Eq. (17) are checked. If they are satisfied, a new
belief rule, i.e., the ðLþ 1Þth rule is added, and the param-
eters of this rule are determined using Eqs. (18a)–(18e).
Otherwise, go to Step 3.

Step 3: The parameters of the BRB including L belief rules are
updated using the recursive algorithms as given in sub-
section 4.2, and the criteria for pruning a belief rule in
Eq. (19) is checked. If the criteria are satisfied, the
kth ðk ¼ 1; . . . ; LÞ rule is removed. Then the dimensional-
ity of the BRB is reduced.

Step 4: Once the BRB is updated, its knowledge is used to per-
form inference from the given inputs.

For the earlier mentioned algorithm, the following remarks can
be given.

(1) In Step 1, the significance assumption of the two rules in the
initial BRB shows that these rules cannot be pruned, which
ensures that x̂iðnÞ ði ¼ 1; . . . ;MÞ is always located in the
range represented by the referential values of the ith ante-
cedent attribute and the rule-based information transforma-
tion technique can be used.

(2) In Step 3, the kth belief rule, satisfying xkðx̂ðnÞÞ–0, is called
the activated rule. Only the parameters in the activated rule
are updated and the statistical utility of this rule changes
accordingly. Therefore, only the activated rule should be
considered to be checked according to the pruning criteria.

(3) In the proposed algorithm, based on the belief rules deter-
mined by human expert in the initial BRB and the criteria
given in Section 4, a belief rule is added or pruned automat-
ically and also the parameters of the BRB system are updated
using the training data sequentially (one by one). By this
algorithm, there is no need to wait for a long time to collect
a complete set of data, which is very important when there
is high real-time requirement. Therefore, we can see that
this algorithm is sequential and can be used to construct a
compact BRB system.
Fig. 1. The FlowDiff of the pipeline.
5. A practical case study

In order to present the implementation of the proposed sequen-
tial learning algorithm and demonstrate its potential application in
engineering, we apply it to build a BRB system for oil pipeline leak
detection with data taken from an operational long distance oil
pipeline installed in Great Britain (Xu et al., 2007).
5.1. Problem formulation

When a leak develops in a pipeline, some leak data can be ob-
tained. The leak data include the difference between inlet flow
and outlet flow, the average pipeline pressure change over time
and the leak rate, denoted by FlowDiff, PressureDiff, and LeakSize,
respectively. FlowDiff and PressureDiff are the two very important
factors in detecting whether there is leak in the pipeline, and they
can be treated as the antecedent attributes of the rule base, and
their calculation equations have been proposed by Xu et al.
(2007). In addition, LeakSize is the consequent attribute of the rule
base.

Based on the proposed sequential learning algorithm, we use
the data to construct a BRB system for detecting leaks and estimat-
ing leak sizes without generating false alarms.
5.2. Online constructing a BRB for leak detection

During the leak trial, 2008 samples of 25% leak data are col-
lected at the rate of 10 s per sample. Figs. 1 and 2 give FlowDiff
and PressureDiff, respectively, when there is no leak and 25% leak.
In order to online construct a BRB, 900 data sets are collected in
the three periods of 7 a.m.–7:49 a.m., 9:38 a.m.–10:28 a.m., and
10:51 a.m.–11:41 a.m. (Figs. 1 and 2). Then these data are used
to construct the BRB using the proposed algorithm. The process
of constructing and testing the BRB is implemented as following
steps:

Step 1: Set the initial BRB.
According to the prior expert knowledge, it is known that
FlowDiff and PressureDiff changes in the intervals [�10, 3]
and [�0.01, 0.01], respectively. In order to construct the
initial BRB, we give some linguistic terms as follows:
for FlowDiff, negative large (NL) and positive large (PL)
denote �10 and 3, respectively; for PressureDiff, negative
large (NL) and positive large (PL) denote �0.01 and 0.01,
respectively. For the consequent attribute, LeakSize, 5 ref-
erential points are used: zero (Z), very small (VS), med-
ium (M), high (H), and very high (VH), i.e.,
D ¼ ðD1;D2;D3;D4;D5Þ ¼ ðZ; VS; M; H; VHÞ: ð32Þ
The quantified results of the consequent attribute are given in Table
1.Thus, the initial BRB is constructed as shown in Table 2. We as-
sume that the two belief rules are significant, i.e., they will not be
pruned when the BRB is updated.From Figs. 1 and 2, FlowDiff and
PressureDiff are assumed to obey normal and uniform distributions,
respectively. In addition, it is assumed that e ¼ 0:6; eg ¼ 0:0005,
and ep ¼ 0:00005.



Fig. 2. The PressureDiff of the pipeline.

Table 1
The referential points of LeakSize.

Linguistic terms Z VS M H VH

Numerical values 0 2 4 6 8

Table 2
Initial belief rules for pipeline oil leak detection provided by an expert.

Rule
number

FlowDiff AND
PressureDiff

LeakSize distribution
fD1;D2;D3;D4;D5g ¼ f0;2;4;6;8g

1 NL AND NL fðD1; 0Þ; ðD2;0Þ; ðD3;0Þ; ðD4; 0Þ; ðD5;1Þg
2 PL AND PL fðD1;1Þ; ðD2; 0Þ; ðD3;0Þ; ðD4; 0Þ; ðD5; 0Þg
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Fig. 4. Training data and the output by the newly constructed BRB.
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Fig. 3. Number of rules in the BRB.
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Step 2: Construct a BRB for leak detection online.
Nine hundred training data are used to construct a BRB
by the proposed algorithm. Fig. 3a shows the number
Table 3
Updated belief rules and rule weights of the newly constructed BRB.

Rule number Updated rule weight FlowDiff AND PressureDif

1 0.0009 NL AND NL
2 1.0000 NM AND Z
3 1.0000 NS AND Z
4 0.6714 NS AND PS
5 1.0000 PL AND PL
of belief rules in the BRB. Fig. 3b gives the more detailed
process of online identifying the structure of the BRB
from the 250th to 600th training data. From Fig. 3, we
can see that the number of the belief rules changes with
time and reaches a fixed value at last.
In the process of updating the BRB, except for the refer-
ential values of the antecedent attributes that have been
provided by an expert in Step 1, some new referential
values are added as follows: for FlowDiff, two numerical
reference values that are �5.55 and �5.15 are added;
for PressureDiff, two numerical reference values that are
0 and 0.001 are added. In order to construct the BRB,
equivalence between the numerical value and quality
assessment should be provided by the decision maker
(Yang, 2001). Thus, �5.55 and �5.15 are qualified as neg-
ative medium (NM) and negative small (NS); 0 and 0.001
are qualified as zero (Z) and positive small (PS). Then, the
newly constructed BRB which includes five belief rules
can be represented in Table 3. In Table 3, the updated
rule weight and the belief degrees are also given.
Fig. 4 shows that the newly constructed BRB can closely
replicate the relationship among FlowDiff, PressureDiff,
and LeakSize in the training data. In addition, through cal-
culation, the Mean Squared Error (MSE) (Lewis, 1982)
between the trained and the estimated leak data gener-
ated by the newly constructed BRB is 0.4199. Compared
with the leak data, the MSE is small, which further dem-
onstrate the proposed algorithm.

Step 3: Test the newly constructed BRB.
All the 2008 data shown in Figs. 1 and 2 are used to test
the newly constructed BRB as given in Table 3. Fig. 5
gives the observed LeakSize and the estimated LeakSize
for the same antecedent values [FlowDiff(t), Pressure-
Diff(t)]. Through calculation, the MSE between the
observed and the estimated leak data generated by the
f LeakSize distribution fD1;D2;D3;D4;D5g ¼ f0;2;4;6;8g

fðD1; 0:2785Þ; ðD2; 0:0372Þ; ðD3; 0Þ; ðD4; 0:0628Þ; ðD5;6214Þg
fðD1; 0:0566Þ; ðD2; 0:0288Þ; ðD3; 0:0339Þ; ðD4; 0:7423Þ; ðD5; 0:1384Þg
fðD1; 0:6768Þ; ðD2; 0:3198Þ; ðD3;0:0014Þ; ðD4; 0:0010Þ; ðD5; 0:0010Þg
fðD1; 0:6750Þ; ðD2; 0:2649Þ; ðD3; 0:0003Þ; ðD4; 0:0588Þ; ðD5; 0:0010Þg
fðD1;6920Þ; ðD2;0:2988Þ; ðD3;0:0082Þ; ðD4;0:0001Þ; ðD5; 0:0010Þg
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newly constructed BRB is 0.7880. It demonstrates that
the estimated outcomes match the observed ones very
well. Fig. 6 displays the observed and estimated LeakSize
on the time scale. It shows that the newly constructed
rule base can detect the leak that happened at around
9:37 a.m. and ended at around 10:49 a.m.

For the earlier mentioned practical case study, we have the fol-
lowing remarks.

(1) In Table 3, some new referential values of the antecedent
attributes are added and all the possible combinations of
the referential values, such as the combination ‘‘NL AND
PL”, are not included. It shows that the BRB is constructed
based on the training data, so the belief rules who are incon-
sistent with the training data will not be added into the BRB.
Therefore, only if the training data include all the possible
working patterns of the oil pipeline leak, the newly con-
structed BRB may simulate the real system accurately.

(2) From Figs. 4 and 5, it can be concluded that the newly con-
structed BRB can be used to detect oil pipeline leak. In addi-
tion, we see that there is noise in the 25% leak detected,
Fig. 6. Testing data of no leak and 25% leak and
which may be due to noise data recorded from instruments.
Therefore, in a real leak detection system, some kind of noise
reduction process to smooth data should be included.
5.3. Comparative studies

In order to demonstrate the validity of the proposed algorithm
further, the following two aspects in the earlier mentioned case
study are compared with the works developed by Xu et al.
(2007) and Zhou et al. (2009).

(1) Because the structure identification is needed in our pro-
posed algorithm, compared with 500 training data used by
Xu et al. (2007), 900 training data are used to accomplish
the BRB construction for oil leak detection. It shows that
the more information is needed in this case study, which is
due to the fact that the BRB structure and parameters need
to be estimated simultaneously.

(2) From Fig. 3, we see that the number of belief rules increases
or decreases with time, which shows that the structure of
the BRB can be identified automatically due to the criteria
for adding or pruning a belief rule. Moreover, compared with
the BRB, which is composed of 56 belief rules and used for
leak detection by Xu et al. (2007) and Zhou et al. (2009),
the final BRB, as given in Table 3, constructed by the sequen-
tial learning algorithm in this paper only includes five belief
rules, which shows that the proposed algorithm can con-
struct the more compact BRB system.
6. Conclusions

This paper is concerned with a sequential learning algorithm for
online constructing the belief rule-based systems. The proposed
algorithm provides a novel way to estimate the structure and the
parameters of a BRB system simultaneously, which is very impor-
tant for the BRB to achieve the overall optimal performance. Simi-
lar to the other optimization models reported for training BRB
systems, the proposed algorithm can be used to handle a range
of knowledge representation schemes, thereby facilitating the con-
struction of various types of BRB systems, in particular online BRB
systems. A practical case study for pipeline oil leak detection is
examined to demonstrate how the proposed sequential learning
algorithm is implemented, which shows that the proposed algo-
the output by the newly constructed BRB.
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rithm for online constructing the BRB systems may be widely ap-
plied in engineering.

There are several features in the proposed algorithm. First of all,
using the idea of statistical utility of a belief rule, which is quanti-
tatively defined from a statistical viewpoint as the average infor-
mation of a belief rule and also the contribution of that belief
rule to the overall performance of the BRB system, the proposed
algorithm can automatically add or prune a belief rule. This is very
helpful to produce a more compact BRB and reduce the system
complexity. Secondly, due to an analytical description of relation-
ship between system inputs and outputs that could be discrete
or continuous, complete or incomplete, linear, nonlinear or non-
smooth, or their mixture (Yang et al., 2006), the proposed recursive
algorithm is also analytical, which is very useful to reduce calcula-
tion required and satisfies real-time requirements (Zhou et al.,
2009). Thirdly, in the proposed algorithm, a belief rule is added
or pruned automatically and also the parameters of the BRB system
are updated using the training data sequentially (one by one).
When new information becomes available, the algorithm immedi-
ately adjusts the structure and the parameters of the BRB without
having to wait for all information to be provided. Therefore, the
algorithm is sequential, which is of great practical significance. Fi-
nally but by no means least importantly, the proposed algorithm
can be used to process incomplete or vague information, which
inherits from the similar feature of RIMER. Equipped with the ear-
lier mentioned features, the sequential learning algorithm is capa-
ble of online constructing more compact BRB systems and
simulating a range of real systems, especially when there is a high
level of real-time requirement and uncertainties.

If the available training data is incomplete (for example, there
are missing data), a possible drawback of the proposed algorithm
is that the newly constructed BRB might not provide a representa-
tive set of rules for simulating the original system. Therefore, only
when the training data include all the possible working patterns of
the systems, the newly constructed BRB may simulate the origi-
nally real system accurately. On the other hand, some thresholds
need to be chosen by human experts in the algorithm. The inappro-
priate thresholds may decrease the accuracy of the newly con-
structed BRB to simulate the original system.

Although the recursive algorithms for updating the parameters
of the BRB systems can converge under some conditions (Zhou
et al., 2009) due to the introduction of structure identification,
which is an estimating problem of discrete parameters in essence,
the convergence of the proposed sequential learning algorithm
needs further research.
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Appendix A

In order to calculate Ik
i ðck

i Þ in Eq. (15), the sampling probability
density function pðx̂Þ should be known. In this Appendix, we as-
sume that x̂ obeys the uniform distribution.

Under the previously mentioned assumption, piðx̂iÞði ¼ 1; . . . ;MÞ
has the following formulation.

piðx̂iÞ ¼
x̂i � ai

bi � ai
; ðA:1Þ

where x̂i changes in the interval ½ai; bi�.
According to Eq. (15), Ik
i ðck

i Þ can be determined by
(1) If j ¼ 1, i.e., ck
i ¼ ci;j, from Eq. (7a), there isZ
Ik
i ðck

i Þ¼
ci;jþ1

ci;j

ai;jðx̂iÞ
�di pðx̂iÞdx̂i

¼
Z ci;jþ1

ci;j

ci;jþ1� x̂i

ci;jþ1�ci;j

 !�di

pðx̂iÞdx̂i

¼�
ðci;jþ1�xiÞ

�di ðxi�ci;jþ1Þð�dixiþxiþci;jþ1�aið2þ�diÞÞ
ðci;jþ1�ci;jÞ

�di ðai�biÞð�d2
i þ3�diþ2Þ

�����
ci;jþ1

xi¼ci;j

:

ðA:2Þ
(2) If j ¼ Ji, i.e., ck
i ¼ ci;Ji

, by Eq. (7b), there is !�
Ik
i ðck

i Þ¼
Z ci;j

ci;j�1

ai;jðx̂iÞ
�di pðx̂iÞdx̂i¼

Z ci;j

ci;j�1

x̂i�ci;j�1

ci;j�ci;j�1

di

pðx̂iÞdx̂i

¼�
ðci;j�1�xiÞ

�di ðxi�ci;j�1Þð�dixiþxiþci;j�1�aið2þ�diÞÞ
ðci;j�1�ci;jÞ

�di ðai�biÞð�d2
i þ3�diþ2Þ

�����
ci;j

xi¼ci;j�1

:

ðA:3Þ
(3) If j ¼ 2; . . . ; Ji � 1, i.e., ck
i ¼ ci;j, from Eqs. (7a) and (7b), there isZ c Z c
Ik
i ðck

i Þ¼
i;j

ci;j�1

ai;jðx̂iÞ
�di pðx̂iÞdx̂iþ

i;jþ1

ci;j

ai;jðx̂iÞ
�di pðx̂iÞdx̂i

¼
Z ci;j

ci;j�1

x̂i�ci;j�1

ci;j�ci;j�1

 !�di

pðx̂iÞdx̂iþ
Z ci;jþ1

ci;j

ci;jþ1� x̂i

ci;jþ1�ci;j

 !�di

pðx̂iÞdx̂i;

ðA:4Þ

where the analytic result of Eq. (A.4) can be obtained using Eqs.
(A.2) and (A.3).

Thus, the statistical utility of a belief rule can be calculated
after substituting Eqs. (A.2), (A.3), (A.4) into Eq. (16). Moreover,
the statistical utility is put into the proposed sequential adaptive
learning algorithm to construct a BRB. Similarly, if the quantita-
tive attribute is a random variable, its statistical utility can also
be calculated.

Similarly, we can also suppose that the sampling probability
density function pðx̂Þ obeys the other distributions such as normal
distribution and exponential distribution.
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