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Abstract The locally twisted cube LTQn is a newly introduced inter-
connection network for parallel computing. As a variant of the hypercube
Qn, LTQn has better properties than Qn with the same number of links
and processors. Yang, Megson and Evans [Locally twisted cubes are 4-
pancyclic, Applied Mathematics Letters, 17 (2004), 919-925] showed that
LTQn contains a cycle of every length from 4 to 2n. In this note, we im-
prove this result by showing that every edge of LTQn lies on a cycle of
every length from 4 to 2n inclusive.
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1 Introduction

The architecture of an interconnection work is usually represented by
a connected simple graph G = (V, E), where the vertex-set V is the set
of processors and the edge-set E is the set of communication links in the
network. The edge connecting two vertices x and y is denoted by (x, y).
A graph G is weakly pancyclic if it contains cycles of all lengths from 4 to
|V | in G. The pancyclicity is an important measurement to determine if a
topology of network is suitable for an application where mapping rings of
any length into the topology of network is required. Large amount of related
work appeared in the literature [3, 4, 5]. Vertex-pancyclicity and edge-
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pancyclicity are two stronger pancyclic properties. A graph G is weakly
vertex(edge)-pancyclic if, for each vertex(edge) and any integer l ranging
from 4 to |V |, there is a cycle of length l containing the vertex(edge). It is
clear that a weakly edge-pancyclic graph is also a weakly vertex-pancyclic
graph. Vertex-pancyclicity and edge-pancyclicity of some graphs have been
discussed [6, 7, 8].

The hypercube network Qn has proved to be one of the most popular
interconnection networks since it has a simple structure and is easy to
implement. As a variant of Qn, the locally twisted cube LTQn, proposed
by Yang et al [1], has many properties superior to Qn. For example, LTQn

has about half of the diameter of Qn [1]. In particular, Yang et al [2] proved
that LTQn contains a cycle of length from 4 to 2n. In this note, we improve
this result by showing the following theorem.

Theorem Every edge of LTQn lies on a cycle of every length from 4
to 2n inclusive for n ≥ 2.

The proof of the theorem is in Section 3. In Section 2, the definition
and basic properties of LTQn are given.

2 Locally Twisted Cubes

An n-dimensional locally twisted cube LTQn(n ≥ 2), proposed first
by Yang et al [1], has 2n vertices. Each vertex is an n-string on {0, 1}. Two
vertices x = x1x2 . . . xn and y = y1y2 . . . yn are adjacent if and only if one
of the following conditions are satisfied.

(1) There is an integer 1 ≤ k ≤ n − 2 such that
(a) xk = ȳk (ȳk is the complement of yk in {0, 1}),
(b) xk+1 = yk+1 + xn, and
(c) all the remaining bits of x and y are identical.

(2) There is an integer k ∈ {n − 1, n} such that x and y differ only in
the kth bit.

According to the above definition, it is not difficult to see that LTQn

can be recursively defined as follows. LTQ2 is a graph consisting of four ver-
tices labelled with 00, 01, 10, and 11, respectively, connected by four edges
(00, 01), (00, 10), (10, 11) and (01, 11). For n ≥ 3, LTQn is constructed
from two disjoint copies of LTQn−1 by adding 2n−1 edges as follows. Let
LTQ0

n−1 denote the graph obtained by prefixing the label of each vertex
of one copy of LTQn−1 with 0, let LTQ1

n−1 denote the graph obtained
by prefixing the label of each vertex of the other copy of LTQn−1 with
1, and connect each vertex x = 0x2x3 . . . xn of LTQ0

n−1 with the vertex
1(x2+xn)x3 . . . xn of LTQ1

n−1 by an edge, where ‘+’ represents the modulo
2 addition. For short, we denote LTQn = L ⊕ R, where L ∼= LTQ0

n−1 and
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R ∼= LTQ1
n−1 and call edges between L and R cross edges. Moreover, we

write a cross edge as (uL, uR), where uL ∈ L and uR ∈ R.
We use LTQ

ij
n−2 to denote the (n− 2)-dimensional locally twisted cube

which is a subgraph of LTQn induced by the vertices labelled ijx3 . . . xn.
We say an edge of LTQn to be critical if it is an edge in LTQi

n−1 with one
endpoint in LTQi0

n−2 and the other in LTQi1
n−2 for i ∈ {0, 1}.

Lemma 1 Let LTQn = L ⊕ R with n ≥ 3. If (uL, vL) ∈ E(L) is
a critical edge of LTQn, then (uR, vR) ∈ E(R) is also a critical edge of
LTQn, where uR and vR are the neighbors of uL and vL in R, respectively.

Proof Suppose that (uL, vL) ∈ E(L) is a critical edge of LTQn and,
without loss of generality, assume that uL = 00u3u4 . . . un. We have
vL = 01(u3 + un)u4 . . . un, uR = 1(0 + un)u3u4 . . . un and vR = 1(1 +
un)(u3 + un)u4 . . . un. By definition of LTQn, uR and vR are adjacent,
hence (uR, vR) is a critical edge in R.

Note that if LTQn = L ⊕ R, then, for any two adjacent uL and vL

in L, their neighbors uR and vR in R are not always adjacent in R, and
vice versa. However, it is clear from Lemma 1 that if (uL, vL) is a critical
edge, then their neighbors uR and vR in R must be adjacent in R, and vice
versa. Thus, the vertices uL, vL, vR, uR, uL form a 4-cycle. Critical edges
play an important role in the proof of our theorem. A cycle in LTQn is
called a 2-critical if it contains at least two critical edges. It is easy to see
that every vertex in LTQn is incident with a critical edge and every cross
edge lies on a 2-critical cycle of length four.

Lemma 2 If the length of a cycle is greater than 2n−2 in the subgraph
LTQ0

n−1 of LTQn for n ≥ 4, then it must be a 2-critical cycle.

Proof Note that the (n − 2)-dimensional crossed cube LTQ
0j
n−2 for

j ∈ {0, 1} has only 2n−2 vertices. Since any cycle in LTQ00
n−2 or in LTQ01

n−2

has length at most 2n−2, any cycle of length greater than 2n−2 in LTQ0
n−1

must contain vertices in both LTQ00
n−2 and LTQ01

n−2 and so contain at least
two critical edges between LTQ00

n−2 and LTQ01
n−2.

3 Proof of Theorem

In this section, we give the proof of Theorem stated in Introduction.

Proof We prove the theorem by induction on n ≥ 2. The theorem is
true for n = 2.

For n = 3, by the symmetric property of LTQ3 (see Fig. 1), we only
need to show that the theorem holds for the edge e ∈ {(000, 001), (010, 000)}.
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Figure 1: (a)An ordinary drawing of LTQ3 (b) a symmetric drawing of LTQ3

All cycles of lengths from 4 to 8 containing (000, 001)(labelled by under-
lines) and (010, 000)(labelled by overlines) are as follows.

(1) length 4: 〈000, 001, 011, 010, 000〉;

(2) length 5: 〈000, 001, 111, 110, 010, 000〉;

(3) length 6: 〈000, 001, 111, 101, 011, 010, 000〉;

(4) length 7: 〈000, 001, 111, 101, 100, 110, 010, 000〉;

(5) length 8: 〈000, 001, 111, 110, 100, 101, 011, 010, 000〉;
Hence, the theorem is true for n = 3.
Assume now that the theorem is true for all 3 ≤ k < n. Let e be any

edge of LTQn and let ℓ be any integer with 4 ≤ ℓ ≤ 2n, where n ≥ 4. To
complete the proof of the theorem, we need to show that e is contained in
a cycle of length ℓ by considering two cases according as e is a cross edge
or not.

Case 1. The edge e is not a cross edge. Then the edge e is in L or R.
Without loss of generality, we may assume e is in L.

If 4 ≤ ℓ ≤ 2n−1, by the induction hypothesis, there exists a cycle of
length ℓ in L ⊂ LTQn that contains e.

Suppose that 2n−1 + 1 ≤ ℓ ≤ 2n−1 + 3. By the induction hypothesis,
there exists a cycle C of length 2n−1 − 3 in L containing e. For n ≥
4, we have 2n−1 − 3 > 2n−2, and so C is a 2-critical cycle by Lemma
2. Thus, we can choose a critical edge (uL, vL) in C different from e.
Then the neighbors of uL, vL are uR, vR in R with (uR, vR) ∈ E(R) by
Lemma 1. By the induction hypothesis, there exists a cycle C′ of length
4 ≤ ℓ′ ≤ 6 in R containing (uR, vR). Thus P ′ = C′ − (uR, vR) is a path
between vR and uR in R. Let P = C − (uL, vL). Then P contains e and
P + (vL, vR) + P ′ + (uR, uL) is a cycle of length ℓ in LTQn containing e

(see Fig. 2 (a)).
Suppose that 2n−1 + 4 ≤ ℓ ≤ 2n. Let ℓ′ = ℓ − 2n−1. Then 4 ≤ ℓ′ ≤
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2n−1. By the induction hypothesis and Lemma 2, there exists a 2-critical
cycle C of length 2n−1 in L containing e. We can choose a critical edge
(uL, vL) different from e. Without loss of generality, let uR and vR be
the neighbors of uL and vL, respectively. Then uR and vR are adjacent
in R. Let P = C − (uL, vL). Obviously e lies on P . By the induction
hypothesis there exists a cycle C′ of length ℓ′ in R that contains (uR, vR).
Let P ′ = C′ − (vR, uR). Then P + (vL, vR) + P ′ + (uR, uL) is a cycle of
length ℓ in LTQn and contains e (see Fig. 2 (b)).
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Figure 2: Illustrations for the proof of Theorem

Case 2. The edge e is a cross edge between L and R. We may assume
e = (uL, uR) and uL = 0u2u3 . . . un. Then uR = 1(u2 + un)u3 . . . un

The cycles of length 4 and 5 containing e are as follows.
Let vL = 0ū2(u3 +un) . . . un, and vR = 1(ū2 +un)(u3 +un) . . . un, then

(uL, vL) and (uR, vR) are critical edges and 〈uL, vL, vR, uR, uL〉 is a cycle
of length four in LTQn containing e. And if un = 0

〈0u2u3 . . . un, 0u2u3 . . . ūn, 1(u2 + ūn)u3 . . . ūn,

1(u2 + ūn)u3 . . . un, 1(u2 + un)u3 . . . un, 0u2u3 . . . un〉.
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is a cycle of length five in LTQn containing e.
If un = 1

〈0u2u3 . . . un, 0u2u3 . . . ūn, 1(u2 + ūn)u3 . . . ūn,

1(u2 + un)u3 . . . ūn, 1(u2 + un)u3 . . . un, 0u2u3 . . . un〉.

is a cycle of length five in LTQn containing e.
For ℓ ≥ 6,we can write ℓ = ℓ1+ℓ2 where ℓ1 = 2, ℓ2 ≥ 4 or ℓ1 ≥ 4, ℓ2 ≥ 4.

Consider the cycle 〈uL, vL, vR, uR, uL〉 of length four in LTQn containing
e. By the induction hypothesis, there exists a cycle C of length ℓ1 in
L containing (uL, vL) if ℓ1 ≥ 4 and exists a cycle C′ of length ℓ2 in R

containing (uR, vR). Let P = (uL, vL) if ℓ1 = 2 or P = C − (uL, vL) if
ℓ1 ≥ 4; P ′ = C′ − (vR, uR). Then P + (vL, vR)+ P ′ + (uR, uL) is a cycle of
length ℓ in LTQn and contains e (see Fig. 2 (c)).

By the induction principle, the theorem follows.
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