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a b s t r a c t

Distributed simulation has emerged as an important instrument for studying large-scale complex sys-
tems. Such systems inherently consist of a large number of components, which operate in a large shared
state space interacting with it in highly dynamic and unpredictable ways. Optimising access to the shared
state space is crucial for achieving efficient simulation executions. Data accesses may take two forms:
locating data according to a set of attribute value ranges (range query) or locating a particular state var-
iable from the given identifier (ID query and update). This paper proposes two alternative routing
approaches, namely the address-based approach, which locates data according to their address informa-
tion, and the range-based approach, whose operation is based on looking up attribute value range infor-
mation along the paths to the destinations. The two algorithms are discussed and analysed in the context
of PDES-MAS, a framework for the distributed simulation of multi-agent systems, which uses a hierarchi-
cal infrastructure to manage the shared state space. The paper introduces a generic meta-simulation
framework which is used to perform a quantitative comparative analysis of the proposed algorithms
under various circumstances.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The last decade has witnessed an explosion of interest in com-
plex systems, which involve dynamic and unpredictable interac-
tions between large numbers of components including software,
hardware devices (such as sensors), and social entities (people or
collective bodies). Examples of such systems range from traditional
embedded systems, to systems controlling critical infrastructures,
such as defence, energy, health, transport and telecommunications,
to biological systems, to business applications with decision-mak-
ing capabilities, to social systems and services, such as e-govern-
ment, e-learning, etc. The complexity of such systems renders
simulation modelling the only viable method to study their prop-
erties and analyse their emergent behaviour. Multi-agent systems
(MAS) have emerged as a particularly suitable paradigm for mod-
elling complex systems. When embedded in a real system, an
MAS is itself a complex system whose properties and emergent

behaviour have also to be analysed via simulation (Epstein and
Axtell, 1996; Jennings and Wooldridge, 1998).

The application of agent-based simulation to ever more com-
plex problems has placed it in the highly computation intensive
world with computational requirements far exceeding the memory
and performance capabilities of conventional sequential computer
systems. As a result, parallel and distributed simulation emerges as
a particularly promising and viable approach to alleviate the sim-
ulation bottleneck in the design and analysis of large, complex,
agent-based systems.

Amongst the most influential of these approaches, the Logical
Process Paradigm seeks to divide the simulation model into a net-
work of concurrent logical processes (LPs), each of which models
some object(s) or process(es) in the simulated system. Each LP
maintains and processes a portion of the state space of the system
and state changes are modelled as time-stamped events in the sim-
ulation (Fujimoto, 2000).

In conventional distributed simulations, the shared state is typ-
ically small and the processes interact with each other in a small
number of well-defined ways. The topology of the simulation is
determined by the topology of the simulated system and its
decomposition into processes, and is largely static. However, in
the case of agent-based systems, which operate in complex
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environments and interact with it in highly dynamic and unpre-
dictable patterns, it is often difficult to determine an appropriate
simulation topology a priori. In such systems there is a very large
set of shared state variables which could, in principle, be accessed
or updated by the processes in the model. Encapsulating the shared
state in a single process (i.e., via some centralised scheme) intro-
duces a bottleneck, while distributing it all across the LPs (decen-
tralised, event driven scheme) will typically result in frequent
all-to-all communication and broadcasting.

In Logan and Theodoropoulos (2001) we have proposed an ap-
proach to manage the shared data in distributed simulations of
multi-agent systems (MAS). The approach is based on the notion
of spheres of influence (SoI) and uses a hierarchical simulation
infrastructure to dynamically decompose and distribute the shared
state. This framework has been realised in the context of PDES-
MAS,2 a system for the distributed simulation of multi-agent sys-
tems. Management of shared data in distributed simulations needs
to address two problems, namely data distribution and data access-
ing. In Oguara et al. (2005) we addressed the first problem and de-
scribed data distribution algorithms for the PDES-MAS framework;
in Lees et al. (2003, 2005) we discussed synchronization issues that
arise from such distributions.

In this paper, we focus on the second problem of data access. Data
accesses target both individual data items (referred to as ID queries)
and selected data items overlapping given query windows (referred
to as range queries). This is a challenging issue, particularly when
both the value and the physical distribution of data items are dy-
namic. The physical distribution of data items refers to the assign-
ment of data items to LPs, which are running in separate threads
and could thus be distributed physically over a set of machines. Value
distribution, in contrast, characterises the content of data items.

Typically, two basic criteria to locate data items can be identi-
fied, namely the physical location of individual data items and their
attribute value. This paper describes two new candidate algorithms
for data accessing in the context of the PDES-MAS framework, the
address-based and the range-based routing, each relying mainly
on one of the two aforementioned respective criteria. Data access
approaches considerably influence the efficiency of simulation exe-
cution and contribute to the complexity of system design. This pa-
per first gives a qualitative comparison of the proposed algorithms
and then provides a quantitative analysis of the dynamics of the
two solutions. The performance of the candidate algorithms has
been analysed with respect to the behaviour of the simulated sys-
tem as well as the characteristics of the simulation infrastructure.
Emphasis has been given to the problem of dynamic range queries.
The experimental framework used can provide a substantial refer-
ence for system designers to address similar problems.

The two algorithms were first outlined in Ewald et al. (2006)
where an initial evaluation was also presented. This paper presents
a more detailed description of the algorithms and an extended set
of results with an in-depth analysis. The rest of the paper is orga-
nized as follows: the PDES-MAS framework is introduced in Sec-
tion 2. Section 3 discusses the alternative approaches to data
accessing. Section 4 provides a qualitative comparison of the pro-
posed routing approaches. Section 5 describes the meta-simulation
model which has been developed to study the dynamics of the
routing approaches. Section 6 presents the benchmark experi-
ments and results. Related work is briefed in Section 7. Section 8
concludes the paper with a summary and ideas for future work.

2. The PDES-MAS framework

PDES-MAS adopts a standard discrete event simulation ap-
proach with optimistic synchronization (Logan and Theodoropou-

los, 2001). When constructing multi-agent systems using the
framework, an MAS is modelled as a network of LPs (Fig. 1). In par-
ticular, each agent is modelled as an Agent Logical Process (ALP). An
ALP has both private state and shared state. The private state is
maintained within the ALP, while the shared state can be accessed
(read or updated) by other ALPs in the model. Changes in the state
of an ALP that may have a causal impact on other ALPs are referred
to as external events and are represented by a time-stamped oper-
ation on the shared state.

The shared state is modelled as a set of shared state variables
(SSVs), each of which is a tuple of the form hSSV ID, attribute type,
value, timestampi. In PDES-MAS, the shared state is maintained
by a tree-structured set of additional logical processes, communica-
tion logical processes (CLP), which cluster agent models and shared
state according to the agents’ SoIs (Logan and Theodoropoulos,
2001). As the access patterns on the shared state change, so does
the configuration of the tree and the distribution of state (i.e., its
allocation to CLPs) to reflect the logical topology of the model.

Redistribution of shared state can be achieved in a number of
ways, such as by creating/deleting CLPs, by migrating ALPs through
the tree, or by migrating state between CLPs. For the purposes of
this paper, we choose to use a fixed tree of CLPs and move SSVs
through the tree to achieve redistribution. SSVs are constantly
moved closer to the ALPs that access them most frequently, reduc-
ing the total access cost and thus contributing to the scalability of
the framework (Oguara et al., 2005). The framework does not make
use of proxies and only one instance of an SSV is present in the tree
at any particular moment. ALPs always link to the leaf CLP nodes in
the tree.

The CLP tree provides common services to the ALPs, which in-
cludes: (a) facilitating the construction of the distributed simula-
tion; (b) clustering and interoperating the ALPs; (c) managing
shared data and balancing load incurred by accessing the shared
state; and (d) facilitating synchronization of the ALPs.

Fig. 2 illustrates the relationship between an ALP and the CLP
tree. The operation of the CLP tree remains transparent to the ALPs
during the simulation. The PDES-MAS framework provides a soft-
ware library to the ALPs to interact with the CLP tree through
two interface modules, referred to as SimulationAmbassador and
AgentAmbassador. An ALP issues requests to access shared state
variables through the SimulationAmassador module which for-
wards the requests to the parent (or the server) CLP. If the required
SSV is not held locally, the server CLP passes the request to its par-
ent CLP to deal with the request. The return data and control mes-
sages (i.e., rollback) are conveyed to the ALP via its
AgentAmbassador module.

Fig. 3 gives a schematic view of a CLP, which interacts with
other LPs in the system via ports. Ports link the individual LPs to-
gether to form the overall PDES-MAS simulation system. In this2 http://www.cs.bham.ac.uk/research/pdesmas.
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Fig. 1. Overview of the PDES-MAS framework.
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paper, the incoming port of a CLP is referred to as the one from
which a request on accessing SSV is received. Each CLP is also a
router responsible for forwarding access requests to the destina-
tion CLP(s) that host the target data, and forwarding is via the out-
going ports.

The port is specially designed to maintain the distribution of the
values of SSVs in the value space3 classified by the types of SSVs.
The attribute value range denotes a certain range of the values of a
set of SSVs associated with a particular attribute (or a set of attri-
butes). The ‘‘extent” covered by the attribute value range may also

vary with different routing algorithms. The distribution concerns
SSVs in the local CLP and/or SSVs in remote CLPs, for instance the
overall system beyond a port or only the direct neighbours (parent
and/or children nodes if any) to the CLP through a port (i.e., as in
Figs. 5 and 8).

The distribution of the values gives a panorama of the status of
SSVs in the system. No matter what resolution and extent are cho-
sen for an attribute value range, it should always correctly reflect
the status of SSVs and can be refreshed once the status changes.
More details of attribute value range are available in Section 3.

3. Data access in PDES-MAS

Routing approaches are needed for ALPs and CLPs to locate (a)
SSVs according to the attribute value ranges (range query) and/or
(b) a particular SSV from the given ID (ID query and update). The
two types of locating differ from each other significantly. A range
query searches for a group of SSVs based on the specified common
attributes and constraints, and the targets tend to differ in each
query. This is similar to multicast on dynamic groups. In contrast,
ID query aims to locate a unique SSV given its ID, and therefore is
closer to a unicast operation.

Routing access requests to SSVs can be performed via either
their location information in the tree or the attribute value range
information maintained at the ports of the CLPs. SSVs may be
moved between CLPs, but there are no multiple copies of a single
SSV in the overall system. The status of an SSV can be altered by
updating and load management (Oguara et al., 2005). An update
may change the value of the SSV, which directly affects the corre-
sponding attribute value range. Load management may induce the
migration of the SSV to a different location in the CLP tree, thus,
changing the value ranges at related ports. This immediately influ-
ences ID queries on this SSV and possibly range queries.

To facilitate the location of SSVs in the CLP tree, it is helpful to
encode4 the tree to identify the CLPs. The address of an SSV is de-
fined as the code of the CLP at which it is maintained (the CLP is re-
ferred to as the host CLP of this SSV, while the SSV is considered local
to this CLP). When forwarding access requests, a CLP decides through
which port to push the access request to the destination CLP.

The fixed architecture of a CLP tree determines that (a) an SSV
can only migrate from a CLP to its direct neighbours, and (b) be-
tween any ALP and CLP, there exists only one unique path. Once
the target SSVs are located, the returned values need to be simply
propagated along the path which the query just traversed in the re-
verse direction to the source ALP. This section presents two candi-
date approaches to route ID and Range queries through the tree of
CLPs. The two approaches dynamically adapt to different proper-
ties of the shared state and the system.

To store the information efficiently, the overall value range of
each SSV type is divided into a number of segments. Hence, only
one bit per segment is needed to store information about the exis-
tence of SSVs with values covered by this segment. For example in
the case of a CLP containing a set of SSVs with values listed as {20,
53, 56, 70, 80, 190, 310, 370} (see Fig. 13), instead of using a simple
range description, such as [Min(20), Max(370)], the value space can
be segmented as Seg1: [0, 100], Seg2: [100, 200], Seg3: [200, 300],
Seg4: [300, 400], Seg5: [400, 500], . . . The approach logs the num-
ber of SSVs whose values fall onto each segment. For Fig. 4A, the
following segments are defined: {Seg1(5), Seg2(1), Seg3(0),
Seg4(2), Seg5(0)}; the attribute range is {Seg1 [ Seg2 [ Seg4}.
When an update occurs, even if the value of the updated SSV is be-
yond the original [Min, Max], the segmented range may not need
to change. For instance, if the SSV with value 370 is updated to
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3 For example, we define ‘‘X-position” in an extent [0, 100]. Given 100 SSVs of X-
position, the values of these SSVs may distribute evenly from 0 to 99, such as
(0,1, . . . , 99), or concentrate on [50, 51].

4 No particular coding scheme is preferred as long as it identifies each CLP uniquely
and remains consistent in the simulation.
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380, the updated value still falls onto Seg4 (Fig. 4B). The range has
to be updated only when there is no SSV having a value in one of
the segments (narrowing, Fig. 4D) or any SSV’s value exceeds all
existing segments (expanding Fig. 4C).

3.1. Address-based routing

The address-based routing searches for SSVs according to their
addresses, namely their exact location (host CLP) in the tree. Fig. 5
illustrates an address-based routing approach, which binds the ID
of an SSV to its address. Each server CLP maintains a routing table
containing the addresses of SSVs that have been accessed in the
past. The routing table has a hierarchical format using attribute
IDs as indices. From a particular object attribute’s perspective,
the table maintains the addresses of CLPs hosting the same type

of SSV. The SSV IDs of this type are recorded under the host CLP en-
try. Furthermore, each CLP stores information about the values of
SSVs that are hosted by its immediate neighbours. This information
is obtained and refreshed when updates on those SSVs occur.

3.1.1. Range query with address-based routing
When an ALP issues a Range query (see example in Fig. 5), its

server CLP propagates the request to all CLPs which host SSVs of
that SSV type (in this example, CLP1 and CLP2). If the values of its
SSVs are not within the segments covered by the Range query,
the neighbours of a CLP can stop the query (unless there is another
CLP that needs to be reached).

The address-based routing algorithm is illustrated in Fig. 6.
When a sever CLP receives a range query request for accessing SSVs
of a particular type, it needs to resolve the addresses of these SSVs
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from its routing table. If the attribute ID associated to the SSVs can-
not be found in the table, the server CLP will initiate a global search
for the SSVs with the designated type in the CLP tree. The routing
table will then be updated with the returned results, and the cur-
rent range query finishes. If the attribute ID can be found in the
server CLP’s routing table, the range query request will then be for-
warded to the destinations. When the request reaches the CLP next
to a destination, the CLP checks the query’s range against the attri-
bute range information about the destination to see whether both
ranges overlap. If they don’t overlap, search on the destination CLP
will be given up. If they overlap, the query will be delivered to the
destination CLP, and the results will be returned to the server CLP.
Eventually, the server CLP consolidates results (if any) collected
from itself and the other destination CLPs, and conveys those to
the corresponding ALP, and the range query completes.

3.1.2. ID query with address-based routing
The algorithm for an ID query is straightforward. When an ALP

issues an ID query, the server CLP locates the destination (if the SSV
is not maintained locally) from its routing table and forwards the
query to the particular host CLP.

3.1.3. Migration of shared state variables
When an SSV migrates, the change of the SSV’s address imme-

diately affects the ID-to-address binding. The routing tables in
the server CLPs have to be updated with the new address. A grad-
ual address updating scheme is used to avoid global propagation
for updating addresses. This is illustrated in Fig. 7. The port
through which an SSV migrates is recorded in the original host
CLP, and the CLP becomes the SSV’s correspondence CLP. The map
between port and migrated SSVs is looked up as another routing
table for searching those SSVs. When ALPx originally accessed
SSV1, CLPm was SSV1’s original host CLP. Obviously, at that time
the query from ALPx on SSV1 must be routed to CLPm’s right port
along a fixed path (the original path).

After SSV1 migrates to a new host, from ALPx’s point of view,
there are three different cases: (1) SSV1 has been pushed further
away (Fig. 7A), (2) SSV1 has been brought closer to ALPx (Fig. 7B)

or (3) SSV1 has been moved elsewhere (Fig. 7C). For case (1), when
a new query reaches CLPm, it will be forwarded to CLPm’s direct
neighbour beyond its upper port. The forwarding will be relayed
until the new host is found. For case (2), the new host must be
an intermediate node in the original path, and the query will be an-
swered straightforwardly when reaching the host. For case (3),
along the original path, the query will pass a correspondence CLPn,
and then it will be relayed downwards to the new host CLP of SSV1.
From the above discussion, it is clear that no matter in which new
host an SSV locates, the query will only travel along the unique
path between the ALP and the new host. The routing approach does
not concern any other off-path CLP.

As a result of migrating an SSV, the value range of its type may
change in both the original and the new host. Therefore, the attri-
bute value ranges related to the two hosts have to be re-computed
and updated. However, this does not influence the routing on other
SSVs.

3.2. Range-based routing

The range-based routing approach uses information about the
attribute value range to locate SSVs in the tree. Under this ap-
proach, a CLP forwards a query according to (a) the availability of
the SSV type being queried beyond its ports and (b) the value range
of SSV(s) belonging to the given type.

3.2.1. Range query with range-based routing
The approach matches the query window with the attribute va-

lue ranges along the searching paths to gradually approach the po-
tential targets. When an ALP issues an attribute value range query,
a range-based routing will start from its server CLP. Searching will
stop at the directions where the query window and attribute value
ranges do not overlap. Like the address-based routing, the range-
based routing stores the value range for each port by segmenting
it. But instead of only considering the neighbour CLPs, each bit
marks the existence of matching SSVs somewhere beyond the port.
The port information will be kept up to date according to returned
messages from neighbours; if an empty message is returned, there
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are no matching SSVs behind the corresponding port and this infor-
mation will be used in the future. Obviously, the port information
may need to be updated when the value of any SSV changes.

In the example shown in Fig. 8, CLPm keeps a record of the SSVs
within the enclosed areas in its three ports, respectively. Suppose
that a range query for SSV type ‘‘X-pos” and range [2,6] reaches
CLPm: The CLP has two possible directions to relay the query. Direc-
tion B will be given up as the attribute value range [8,9] does not
overlap the window [2,6]. The query will be forwarded only to-
wards direction A, as the corresponding attribute value range
[1,5] matches the condition. Fig. 9 depicts the range-based routing
algorithm, it applies to any intermediate CLP which receives a
range query request from a port. The CLP checks whether there is
any SSV matching the queried value range. After that, the attribute
ranges maintained by the other two ports will be compared with
the queried range, the query will then be sent to the other CLPs
through the ports whose attribute values overlap the range query.

The CLP waits for the results (if any) returned from the other ports
and conveys them together with local targets (if any) to the port
via which the range query arrives. The range query operation on
this CLP completes.

3.2.2. Shared state variable (ID) query with range-based routing
The above approach can also be applied to access SSVs by ID. In

this case, the ID number range is segmented as well, so that ID que-
ries can be resolved in a similar way as Range queries. Further-
more, load management has direct influence on the ID range.
After an SSV migrates, the ID range of its original and new host
CLP may change. This issue is similar to dealing with the SSV up-
date in attribute value range query.

4. A qualitative comparison

This section discusses the respective advantages and disadvan-
tages of the two proposed approaches from a qualitative point of
view.

ALPx

Original Host CLP (CLPm)
of SSV1:

To be found through 
upper portCorrespondence CLP 

of SSV1:
To be found through 

left port

ALPx

Original Host CLP(CLPm) 
of SSV1:

To be found through right
port

(A) Pushed further away (B) Moved closer along the original path  
ALPx

New Host 
CLP

Original Host CLP(CLPm)
of SSV1:

To be found through right
port

(C) Moved to elsewhere 

Correspondence CLP(CLPn) 
of SSV1:

To be found through right
port

Trace of the SSV’s moveALP CLP

CLPn

Original path 
(from ALPx to CLPm ) 

New Host 
CLP(CLPn)

New Host 
CLP

Fig. 7. Gradual address updating and routing.

ALPx

CLPm

SSV type
X-pos of tiles 

(101)

CLP
UPPER PORT

CLP
RIGHT PORT

Fragment of a CLPm’ s record on the value 
range about SSVs on all other CLPs

CLP
LEFT PORT

Segment 1
TRUE

...

Segment n
FALSE

X-pos of tiles (101): 
SSV1, SSV2, SSV3, SSV4, SSV5

SSV3= 8

SSV4= 5

SSV5= 1
SSV2= 9

SSV1= 1

[8, 9][0, 1]

[1, 5]

Searchdirect ion A

Search  

Direc tion 

B

Fig. 8. Illustrating a design for range-based routing.

Check local SSVs 
matching the 

specified range 

Any target SSVs 
found?

Finish range query

Y

N

Pack the data

Checking the 
attribute ranges at 

two other ports

An intermidiate CLP

Any range 
overlaps?

Y

N

Pack the data to 
be returned and 

send it out 
through the 

incoming port

Forward the 
query up via this 
port and block 

for returned 
data

Fig. 9. A range-based routing algorithm.

2350 D. Chen et al. / The Journal of Systems and Software 81 (2008) 2345–2360



4.1. Availability of shared state variables

Both approaches provide correct information of where SSVs
may be available and avoid routing accesses to those CLPs which
do not contain any SSV of the requested type. The major difference
is that the address-based approach gives exact locations while the
range-based approach directs the accesses to the correct searching
paths.

4.2. Efficiency in performing range queries

When performing a range query, the range-based approach for-
wards the query to the potential targets in a bottom up fashion. In
the target narrowing procedure, those out-of-range SSVs can be fil-
tered out effectively. The address-based approach needs to route
the access to the neighbours (in the searching path) of all CLPs to
match the query and the host CLPs ranges. In general, the range-
based approach forwards a range query to a smaller set of CLPs
than the address-based solution does. The two approaches require
searching within the same number of potential host CLPs. They do
not differ in the complexity of searching within those hosts or the
overhead in delivering results to the requesters.

4.3. Complexity for maintaining range information

The range-based approach relies on the attribute value range
information. From a CLP’s point of view, the attribute value ranges
(in the other CLPs beyond each of its ports) must be available and
accurate. A range-based algorithm needs to manage the segmented
ranges properly. A fine-grained segmentation can obtain accurate
routing, while a coarser segmentation will reduce broadcasting of
updated ranges. In the address-based approach, no range informa-
tion is maintained or broadcasted. A CLP needs to simply compute
its local attribute value range prior to notifying its direct neigh-
bours. In the case of handling SSV migration, the address-based ap-
proach does not incur any extra communication overhead for
routing. In contrast, the range-based approach has to consider
the immediate impact on the previous and current host CLPs,
which may involve updating attribute value ranges on the CLPs.

4.4. Efficiency of ID queries

The address-based approach is able to resolve the address at the
server CLP immediately for an SSV ID query, and the SSV can be ac-
cessed via a fixed path without routing to irrelevant CLPs. Using
the range-based approach, querying an individual SSV is not
straightforward.

4.5. Complexity for maintaining routing information

The address-based approach assigns different tasks to different
CLPs (servers and intermediate nodes in the tree) with server CLPs
keeping addresses of all the SSVs in its client ALPs’ interest. How-
ever, address resolving within a centralised node can be optimised.
The address change of any SSV does not affect routing. On the other
hand, the range-based approach distributes the routing informa-
tion throughout the CLP tree in an implicit manner. The address
changing of any SSV may affect multiple CLPs or even the entire
CLP tree.

5. Model of the simulation system

A comparative and quantitative analysis of the two proposed
approaches is a non-trial task, as it involves the evaluation of effi-
ciency in performing range queries and ID queries, the complexity

of maintaining routing information, and maintaining range infor-
mation, design complexity, etc. From the scale of the CLP tree
and the number of SSVs, it is relatively straightforward to estimate
the computational and communicational complexity of the ad-
dress-based routing approach using mathematical approaches
(Epstein and Axtell, 1996). However, the evaluation of range-based
routing needs to consider other complicated factors at both appli-
cation level and simulation level.

For a quantitative analysis, one approach would be to directly
implement and integrate the two approaches into the PDES-MAS
kernel. However, this would require considerable implementation
efforts, and at least part of the implementation could be in vain, as
the strategies may not meet the performance requirements. To
avoid this we have adopted a meta-simulation approach, as pro-
posed for instance in Liu et al. (1999), Perumalla et al. (2005),
Rajive et al. (2001).

The design of the meta-simulation (Ewald, 2006) follows a lay-
ered approach similar to He et al. (2003) and Ioannidis (1996). At
the top layer, we find the application model, which is responsible
for generating realistic query patterns. The next layer is the mid-
dleware layer, where the routing approaches are described and
the PDES-MAS framework is represented. The third layer, which
typically is reserved for the model of the underlying infrastructure,
is implicitly represented in the performance measurements which
are integrated by calculating the costs of queries in the second
layer. Thus, similar to many simulations of P2P systems, the char-
acteristics of the underlying network are abstracted away by only
counting hops and messages.

5.1. Application model

The application model focuses on the simulation of situated
agents, wherein an agent has a position within the model that
determines its region of interest: only objects situated in the region
can be accessed by the agent. In addition, situated agents are usu-
ally able to change their own positions. This behaviour was mod-
elled for a two-dimensional environment, as shown in Fig. 10. An
agent moves step-wise towards a pre-selected target along the
shortest path, and it randomly chooses a new target on arrival.
The distance of the new target, the target distance (mark ‘‘a”), is de-
fined by the number of steps it takes the agent to reach it. The dis-
tance an agent can move in each step is referred to as the step size
(mark ‘‘b”), which reflects the rate of change of the agent’s access
pattern. The step size and target distance determine the activity
scope and movement speed of an agent. After each step of move-
ment, an agent generates ID or Range queries concerning its cur-
rent region of interest.

We assume that all SSV types within the MAS model have a spa-
tial meaning, i.e., the value ranges for Range queries reflect the ac-
tual positions of the agents. Each SSV type represents a certain
dimension of the environment, such as ‘‘X-pos” or ‘‘Y-pos”. Note
that this assumption should not affect the generality of our model.
We assume that other SSV types, such as non-spatial attributes of
the modelled objects, are accessed on demand after range queries
identified all objects in the agent’s region of interest. SSVs may
have a uniform value distribution or multiple normal distributions,
illustrated in Fig. 11A and B, respectively.

5.2. PDES-MAS model

The model of the PDES-MAS framework has been simulated
using discrete time steps, and it is formed by a set of SSVs. Each
SSV consists of its (unique) ID, type, value and position in the
CLP tree. The modelled CLP tree is binary and complete; therefore
its structure can be defined by its depth. Another important
parameter is the number of segments used by both routing algo-

D. Chen et al. / The Journal of Systems and Software 81 (2008) 2345–2360 2351



rithms, which determines the granularity of the description of the
value distribution of SSVs. To precisely identify the effect of each
individual ‘‘impact factor”, the model adopts different SSV distribu-
tion patterns for different runs,5 while assuming that the locations
of SSVs are fixed (as proposed in Oguara et al., 2005) in each run. This
avoids bias and additional parameters to be explored, since the
dynamics of load balancing might be very complex. Instead, param-
eterisable properties of the SSV distribution are introduced in the
next section. As the SSV distribution would be controlled by any load

management scheme, its impact on routing algorithm performance
allows to investigate the relationship between routing and load bal-
ancing in a more general way. Nevertheless, the actual performance
of both routing algorithms in combination with concrete load man-
agement schemes (such as Oguara et al., 2005) is an interesting re-
search issue.

6. Experiments and results

The experiments aim to study the impact on the routing algo-
rithms by (1) the distribution patterns of the values of SSVs in
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Fig. 11. Illustrating different SSV value distribution patterns.

Fig. 10. Illustrating different agent movement patterns.

5 The overall impact of combing routing and load management will be bench-
marked on the PDES-MAS framework using realistic cases.
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the value space (SSV Value Distribution); (2) the behaviour or access
pattern of ALPs on SSVs; (3) the physical distribution of SSVs in the
CLP tree (SSV Distribution Pattern); and (4) the distribution of the
values of SSVs in each individual CLP.6 Factors 1 and 2 are at appli-
cation level, related only to the agents and their environment,
whereas factors 3 and 4 are at simulation level and can be parame-
terised. Moreover, certain additional factors have particular influ-
ence on the range-based routing approach, namely (5) the ratio of
number of updates to number of range queries; (6) the fluctuation
between the updated value and the original value; and (7) the gran-
ularity of value segments.

The environment for the experiments is set as a two-dimen-
sional space containing 6200 objects of eight types. SSVs are de-
fined as the X-pos or Y-pos of any object in the environment
(12,400 SSVs of 16 types), and they have numerous value distribu-
tions. On initialisation, the 64 agents are distributed in a random,
uniform manner over the space. The default settings of other
parameters for the experiments are summarised in Tables 1 and
2. The step size per dimension and the target distance conform
to normal distributions, (l = 2.0, r = 1.0) and (l = 5.0 and
r = 2.0), respectively. The diameter of an agent’s region of interest
is set to 2.0. For example, an agent at the Pos-X = 50 could query a
range of [49, 51] for all types associated with this dimension. The
parameters roughly represent average values between worst and
best cases for each routing approach. This allows us to observe
the behaviour of each algorithm in a relatively small parameter
space. The parameter space region that we investigated contains
both kinds of setups: those in which the address-based routing is
preferable, and those in which range-based routing is better (as
illustrated for instance in Figs. 10, 11 and 21). In each of the follow-
ing experiments, we always adjust one parameter while applying
default values to the rest. This tends to explore the ‘‘general” sce-
narios in reality, and avoids biased analysis due to only using spe-
cial cases with extreme settings. Each agent randomly generates
eight requests for any type of SSV in each step. The simulation exe-
cutes 300 time steps, which allows the simulated system to evolve
significantly.

The physical distribution of SSVs can be adjusted with two
parameters, namely root imbalance and CLP fluctuation. Root imbal-
ance describes the percentage of additional SSVs hosted by the root
CLP comparing to the rest. When root imbalance = 0, SSVs are dis-
tributed evenly on all CLPs. When root imbalance = 1, all SSVs are
concentrated on the root CLP. Let n be the number of CLPs, r 2 [0,
1] the root imbalance, and si 2 [0, 1] the share of SSVs hosted by
CLPi, i.e., s2 = 0.6 means that 60% of all SSVs are hosted by CLP2.
We can then define s1 (the share of SSVs on the root CLP) as
1þr�ðn�1Þ

n and si with i = 2, . . . ,n as 1�r
n , so that

Pn
i¼1si ¼ 1þr�ðn�1Þ

n þ ðn� 1Þ � 1�r
n ¼ 1. The CLP fluctuation constraints

the maximum difference between the greatest and smallest value
of SSVs of the same type on an individual CLP. For example, sup-
pose CLP fluctuation = 0.05 and the designated type of SSVs has a
value space from 0 to 100, then the difference of these SSVs’ value

on the CLP is not greater than 0.05 � 100 = 5: A CLP may host two
SSVs of type X-pos with values 80 and 82, but another SSV of type
X-pos, with value 75, cannot be hosted by the same CLP, because
82 � 75 > 5. Since SSVs do not migrate but have dynamic values,
this condition holds only for the initial state. The experimental re-
sults are reported in terms of routing cost and accuracy.

The routing cost is measured using two metrics: the number of
messages and the number of hops to be traversed in resolving each
access to SSVs. The number of messages is the number of all mes-
sages that are generated by the routing algorithm in order to re-
solve a query. We regard the transmission of information from
one CLP to another as a single message. If the same information
is propagated along several CLPs, it is counted as multiple mes-
sages. Hence, the number of messages is a measurement of the
overall bandwidth consumption. The number of hops is the maxi-
mum number of messages that had to be sent sequentially until
the request could be resolved. This means, that the number of hops
corresponds to the maximal path length from the ALP generating
the request to a CLP which had to be contacted, multiplied by 2
(for the query and the corresponding response). This is very similar
to the notion of critical paths in parallel computing. Hence, the
number of hops is a measurement of the overall latency. The two
metrics for the routing algorithms are denoted by the variables
range-basedmessages, range-basedhops and address-basedmessages, ad-
dress-basedhops for the range-based and address-based algorithm,
respectively.

In order to calculate the accuracy of the routing algorithms, the
minimal number of messages and hops (optmessages and opthops) are
computed, which constitute the absolute limit for optimising the
cost of any routing algorithm. For instance, Fig. 1 illustrates the
querying of two SSVs, with the smallest set of CLPs and connec-
tions for this query highlighted. Each connection needs to transmit
two messages (one request and one response), thus the total num-
ber of messages is 10. The maximum number of hops is recorded as
eight (for reading SSV1 on the left); this is because messages have
to be sent sequentially (in any path) until reaching the target and
thus the latencies in other concurrent search paths are masked.
The communication cost between the ALP and its server CLP is con-
sidered negligible. The ratio of the minimal number of messages
(or hops) to the number of messages (or hops) is defined as the
accuracy of routing algorithms. For example, the ‘‘message accu-
racy” of the range-based algorithm is defined as
accuracyrange-based

messages ¼ optmessages
range-basedmessages

. Likewise, the ‘‘hop accuracy” for

ranged-based algorithm and the message and hop accuracy of

the address-based algorithm are denoted by accuracyrange-based
hops ,

accuracyaddress-based
message and accuracyaddress-based

hops , respectively.

6.1. Effect of agent’s environment (SSV value distribution)

Several non-uniform distributions of SSV values have been used
while keeping default values for all other parameters. Values have
been assigned to SSVs in a round-robin fashion by one of three nor-
mal distributions (see Fig. 11B). The mean values of normal distri-
butions are 16 2

3, 50 and 83 1
3). The deviation r is varied from 0 to 10,

so that the SSV value distribution changes from highly concen-
trated to highly scattered.

6 This is different to the aforementioned value distribution parameter. For example,
in a scenario the value ranges of SSVs in all CLPs are very close, and in another
scenario the value ranges are significantly distinct from one CLP to another.

Table 1
Summary of the default application level parameters

Name of parameters Value

Time steps 300
Events to be generated per agent per time step 8
Step size of all agents per dimension l = 2.0, r = 1.0
Target distance of all agents in steps l = 5.0, r = 2.0
Agent’s range of interest 2.0
Environment of the agents 100 � 100 Torus

Table 2
Summary of the default simulation level parameters

Name of parameters Value

Depth of the CLP tree 4
Number of client ALPs to each server CLP 4 ALPs per server CLP
Root imbalance 0
CLP fluctuation 1
Number of segments for routing algorithms 100
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The effects of value distribution on the cost and accuracy of
routing algorithms as compared to the optimal cost are reported
in Figs. 12 and 13, respectively. Evidently, with values of SSVs dis-
tributed more sparsely, routing becomes more costly. In terms of
number of hops, the range-based algorithm performs much better,
by closely approaching opthops. When SSV values are scattered en-
ough, the number of hops in both algorithms converges to opthops.
In terms of number of messages, the performance of both algo-
rithms deteriorates as the degree of dispersion of SSVs increases.
The accuracyhops of both algorithms converge to 1 while the max-
imum accuracymessages for both algorithms only approximates 0.8.
In all situations, the range-based algorithm is likely to incur less
overhead for routing range queries.

Similar experiments have also been performed to measure the
accuracy of making ID queries. The address-based algorithm al-
ways achieves optimal results (accuracy = 1) while the accuracy
of the range-based algorithm is quite low, about 0.36. This is be-
cause the range-based algorithm does not store the location of
an individual SSV and requires exhaustive range searches on SSV
IDs.

6.2. Effect of SSV value distribution pattern

A set of experiments have been performed to examine how the
distribution pattern of SSVs in the simulation infrastructure (the
CLP tree) affects the performance of routing algorithms. This sub-
section reports the effect of two simulation level factors: (a) the
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physical distribution of SSVs on the CLP tree, and (b) the distribu-
tion of SSVs’ values on each individual CLP, given the behaviour of
agents remains the same. The two relevant parameters, root imbal-
ance and CLP fluctuation, are varied between 0 and 1 as well as 0.05
and 1, respectively.

Fig. 14 gives the accuracy of the range-based algorithm for ID
queries in terms of messages. The SSV value distribution in a CLP
does not affect the routing of ID queries at all. However, concentra-
tion of SSVs on fewer CLPs will dramatically improve the accuracy
of routing ID queries using range-based algorithm.

Fig. 15 illustrates the impact of the SSVs’ physical distribution
pattern on the cost of routing range queries using the two routing
algorithms. When SSVs are distributed on all CLPs uniformly (root

imbalance = 0), range-basedhops and address-basedhops are nearly
equal to opthops while range-basedmessages and address-basedmes-

sages are very close but still much greater than optmessages. With
the increase of root imbalance, the routing cost gradually de-
creases. The range-based algorithm adapts much better than the
address-based algorithm. When root imbalance = 1, all SSVs locate
at the root CLP and it makes no difference to either algorithm; this
extreme case reflects the use of a single centralised CLP.

Fig. 16 presents the cost of performing range queries against the
value distribution on each CLP. The results are similar to those ob-
tained in Fig. 12, namely the value distribution of all SSVs and the
value distribution of SSVs on each individual CLP both have signif-
icant influence on the routing cost involved in range queries.
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The accuracy of the routing algorithms against the SSVs’ physi-
cal distribution pattern is illustrated in Fig. 17. These results fur-
ther indicate that the range-based algorithm adapts better to the
SSV’s distribution pattern. The latencies (number of hops) incurred
by both algorithms are similar; however the range-based algo-
rithm generates much less communication traffic (number of mes-
sages). Furthermore, comparing to Fig. 13, the value distribution on
an individual CLP has a less significant impact than the overall va-
lue distribution.

6.3. Further analysis of the range-based approach

The complexity of the range-based approach calls for further
investigation. Three additional key parameters may affect the per-
formance of range-based routing: (a) the ratio of the number of up-

dates to number of range queries, (b) the fluctuation between the
updated value to the original value, and (c) the granularity of
segments.

6.3.1. Effect of SSV update (application level)
An agent may randomly update any SSV whose value is in its re-

gion of interest. In the meta-simulation, the SSV’s value is updated
using an absolute offset (to the old value), which is randomly set
conforming to uniform distribution with lower bound 0 and upper
bound varied between 0.01 and 5. Furthermore, the probability
that an agent generates an update query is set between 0.01 and
0.5.

Fig. 18 gives an overall picture of the correlation between off-
sets of updated SSV values and the ratio of update queries to the
messages (updates) needed for accomplishing update queries.
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Three specific ratios of update queries are highlighted. The results
indicate that the increase of both the offset and the ratio of update
queries lead to the generation of more update messages. Compared
to the number of overall messages obtained in the previous exper-
iments (see Figs. 12,15,16), the number of update messages is very
small. Although this number depends on the specific configuration
of the experiments, it still suggests that the overhead incurred by
update queries tends to be negligible in an environment with hea-
vy load and traffic.

Fig. 19 illustrates the effect of the ratio of update queries
to the routing cost and the breakdown of routing cost involved

in update queries and range queries. This ratio has a signifi-
cant impact to the number of messages and hops required
by both query types. Additionally, Fig. 19A shows that basi-
cally the address-based algorithm outperforms the range-based
one in situations with frequent update queries. Although the
address-based approach generates more messages for range
queries, it still incurs fewer messages in total due to the ben-
efit in update queries. Fig. 19B indicates that the number of
hops is linear to the ratio of update queries and the candidate
routing algorithms do not make considerable difference in this
aspect.
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6.3.2. Effect of granularity of segments (simulation level)
A set of experiments have investigated the role of the granular-

ity of attribute value range segmentation for the range-based algo-
rithm. The number of segments used to describe an attribute value
range varies between 1 and 200, with a larger number implying a
more precise attribute value range description.

The results are reported in Fig. 20. The total (for both range que-
ries and updates) number of messages required by the address-
based algorithm is larger in most cases. As the number of segments
increases the address-based algorithm latency stabilises, as queries
have to be sent only to neighbours. When the number of segments
becomes large enough, the range-based algorithm tends to update
CLPs in a rather wide extent, an action that deteriorates its perfor-
mance. Fig. 20B illustrates the relationship of routing range queries
to the granularity of segmentation. As the segment size decreases,
the number of messages required to satisfy the range query is dra-
matically reduced, because the accurate description of the value
ranges results in a more precise routing.

Fig. 21 presents the overall difference (range-based � address-
based) of the two algorithms in terms of (total) number of mes-
sages. Negative values denote the space for achieving better perfor-
mance for adopting the range-based approach, and vice versa for
adopting the address-based one.

6.3.3. Effect of agent’s behaviour
In the experiments presented in the previous sections, the envi-

ronment is heavily populated (64 agents randomly situated in a
100 � 100 surface and 12,400 SSVs distributed either sparsely or
concentrated in nine central points as shown in Fig. 11), a feature
that renders the investigation of the effect of agents’ behaviour a
difficult task as, irrespective of how far agents move (regionally
or globally), there are always plenty of SSVs for them to access in
their region of interest. For this investigation, a thinly populated
environment with four agents and 1550 SSVs7 of two types has
been used; the size of CLP tree has been reduced accordingly
(depth = 2). In this set of experiments, an agent’s behaviour pattern
can be characterised by its activity scope and the speed at which it
moves. For each agent, its range of interest is 5.0 and its step size
is varied between 0.1 (agent moves regionally) to 5.0 (agent moves
globally). Two different target distances, (1, 0) and (5, 2), are tested
to mimic different movement speeds. The rest of the parameters
have been set to the default values.

Fig. 22 reports the effect of the size of an agent’s activity terri-
tory in terms of number of hops and messages. Fig. 22A and B re-
ports results for ‘‘fast” agents and C and D for ‘‘slow” agents.
Evidently, the address-based approach incurs more latency while
its overall cost is almost neural to the agent’s moving pattern.
When an agent moves more globally and faster, the range-based
algorithm becomes more costly as the agent generates queries that
differ very much from each other, so that many updates occur.

7. Related work

The distributed simulation of agent-based systems has been the
focus of several recent papers including (Anderson, 2000; Lees
et al., 2007; Minson and Theodoropoulos, 2004; Minson and The-
odoropoulos, 2008; Wang et al., 2003; Himmelspach et al., 2007;
Riley, 2003; Riley and Riley, 2003), but none of this work has con-
sidered the efficient distribution and access of the simulation’s
shared state space.

Routing has been heavily studied in the area of computer net-
works (Tanenbaum, 2003), however the issue of range queries does
not arise in this context. Steen et al. (1998) proposed a scalable
location service mechanism for locating mobile objects in distrib-
uted environments. Their approach is address-based, which binds
an object’s name to one or more addresses where the object can
be contacted. The location service is designed to handle objects
with arbitrary migration patterns. Using a hierarchical search tree,
where each new object is registered, the leaf nodes store the ad-
dresses. By registering the contact address in the smallest region
in which the object is moving, the approach only requires search-
ing an extremely short path to locate randomly migrating objects.

The issue of range queries has received considerable attention
in the area of distributed spatial databases (e.g., An et al., 2003;
Faloutsos and Kamel, 1994; He et al., 2003; Ioannidis, 1996; Ndiaye
et al., 2003; Pagel et al., 1993; Samet, 1990) although the work in
this area tends to focus on the optimisation of matching algo-
rithms. In the area of context-aware computing, location depen-
dent information services (LDIS) address the problem of mobile
query sources, however, typically they do not have to cope with
highly dynamic data distributions, because the data can be distrib-
uted according to its geographical validity in a static fashion (Lee
et al., 2002).

The problem of coordinated access to shared data has also been
studied in the context of cache consistency protocols for distrib-
uted and multiprocessor systems (e.g., Morin and Puaut, 1997;
Nagaraj, 2004; Stenström, 1990), but such systems are based on
data replication and therefore the solutions devised are not di-
rectly applicable to the PDES-MAS architecture.

In the modelling and simulation community, the majority of ap-
proaches focus on the use of multicast rather than unicast peer-to-
peer (P2P) overlays as described here. Notable contributions by Rak
et al. (1997), Boukerche et al. (2000) and Berrached et al. (1998) all
used variations on the theme of mapping a set of multicast groups
on to the cells of an n-dimensional grid. Range queries here are
mapped to some subset of the cells (groups) to which the querying
node subscribes. Alternative mappings such as that proposed by
Morse et al. (1999) reduce redundant traffic, but increase the com-
putational complexity.

The problem of how to optimally distribute and retrieve both
data (publications) and queries over the data (subscriptions) in a
P2P overlay has been studied extensively in the field of content
addressable networks (CANs) such as the distributed hash table
(DHT) (Ratnasamy et al., 2001). Approaches concentrating on
serving contiguous range queries in several dimensions with min-
imum latency have been presented by both Barambe et al. (2004,
2006) and Ganesan et al. (2004). These systems are designed for

Fig. 21. Difference in message numbers using different routing algorithms.

7 This number represents 1/16th of the number of SSVs (12,400) in the original
experiments, to reflect the number of agents used (4 = 64/16).
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real time applications, such as P2P network multiplayer games,
rather than asynchronous logical time systems like parallel
simulations.

8. Conclusions and further work

This paper has identified the efficient data accessing as a key is-
sue to optimising the execution of distributed simulations of com-
plex agent-based systems. It has presented two different
approaches to address this problem, namely an address-based ap-
proach, which locates data according to their address information,
and a range-based approach, whose operation is based on looking
up attribute value range information along the paths to the
destinations.

To facilitate the analysis of the proposed approaches, the paper
adopted a meta-simulation framework to analyse query perfor-

mance on distributed and dynamic data whose location and prop-
erties are changing constantly and unpredictably. This is an open
challenging problem and particularly difficult to tackle using pure
deterministic or analytic approaches. Although the proposed algo-
rithms were analysed in the context of the PDES-MAS framework,
the results obtained are valid for any system with similar charac-
teristics, such as distributed systems based on peer servers. The
main conclusions that can be drawn from the experimental results
obtained can be summarised as follows:

� The data value distribution has a vast impact on the perfor-
mance of both approaches. When the data values are distributed
sparsely enough, both algorithms can minimize the latency of
routing to the optimal case, whereas they tend to generate a
large number of messages otherwise (�20% more than the opti-
mal case).
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Fig. 22. Effect of agent’s access pattern.
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� The data distribution pattern is also a decisive factor to the per-
formance of routing. The more evenly data is distributed, the
closer both approaches approximate the optimal case. The smal-
ler the fluctuation of data values maintained in a particular
node, the more accurate the routing.

� Granularity of segmentation can considerably affect the routing
of update queries. The address-based approach is superior to the
range-based one when segments are very precise. In range-
based routing, the routing accuracy is adapted. However, a pre-
cise segmentation leads to large overhead in dealing with
update queries.

The meta-simulation analysis approach described in this paper
has proved to be a powerful tool to analyse the impact of the mod-
el’s abstract characteristics to the efficiency of the proposed algo-
rithms. However, as in every simulation exercise, the problem of
verification and validation of the simulation and the reliability of
the results remains. Most importantly, as any meta-simulation ap-
proach, it provides only an idealistic performance projection of the
algorithms and does not take into account the specific characteris-
tics of any particular implementation or agent-based model. A
more realistic performance evaluation of the proposed routing
algorithms and an analysis of their scalability and their computa-
tional complexity requires their implementation and integration
in the PDES-MAS kernel and experimentation with more realistic
benchmarks. Work in this direction has already commenced.

Another challenging issue to be addressed in the future is the
relationship between the proposed routing algorithms and the load
management (data migration) and synchronization mechanisms of
the PDES-MAS kernel (described in Oguara et al. (2005) and Lees
et al. (2003, 2005), respectively).
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