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We introduce the notions of a generalised category and of an in-
ductive generalised category over a band. Our purpose is to describe
a class of semigroups which we name weakly B-orthodox. In doing
so we produce a new approach to characterising orthodox semi-
groups, by using inductive generalised groupoids. Here B denotes
a band of idempotents; we note that if B is a semilattice then
a weakly B-orthodox semigroup is exactly an Ehresmann semi-
group. Weakly B-orthodox semigroups are analogues of orthodox
semigroups, where the relations R̃B and L̃B play the role that
R and L take in the regular case. We show that the category of
weakly B-orthodox semigroups and admissible morphisms is iso-
morphic to the category of inductive generalised categories over
bands and pseudo-functors. Our approach is influenced by Nam-
booripad’s work on the connection between biordered sets and
regular semigroups. However, there are significant differences in
strategy, the first being the introduction of generalised categories
and the second being that it is more convenient to consider (gen-
eralised) categories equipped with pre-orders, rather than with
partial orders. Our work may be regarded as extending a result of
Lawson for Ehresmann semigroups.
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Introduction

Our aim in this article is to introduce generalised categories and to use these to study weakly B-
orthodox semigroups, a wide class containing all orthodox semigroups and all abundant semigroups
with a band of idempotents. Our motivation is to build on the Ehresmann–Schein–Nambooripad (ESN)
Theorem below, and its many extensions due to Armstrong [1,2], Lawson [8], Meakin [9,10] and Nam-
booripad [11–13].

Theorem A (ESN Theorem). The category of inverse semigroups and morphisms is isomorphic to the category
of inductive1 groupoids and inductive1 functors.

An inductive1 groupoid is a groupoid equipped with a partial order possessing restrictions and
co-restrictions, and the set of idempotents forming a semilattice under the partial ordering. The sub-
script is used to distinguish this meaning of the word ‘inductive’ from both Ehresmann’s use and a
generalised definition which will occur below.

Inverse semigroups are precisely regular semigroups in which the idempotents form a semilattice.
Consequently, we can regard the set of idempotents of a regular semigroup as a generalisation of a
semilattice. This idea is precisely described in the definition of a regular biordered set, introduced by
Nambooripad [11]. In that article, Nambooripad defined an inductive2 groupoid to be a functorially
ordered groupoid equipped with the structure of a regular biordered set on its identities, which is
compatible with the ordered groupoid structure. This leads to a generalisation of Theorem A from a
semilattice to a regular biordered set.

Theorem B. (See Nambooripad [11].) The category of regular semigroups and morphisms is equivalent to the
category of inductive2 groupoids and inductive2 functors.

Note that for a technical reason, ‘isomorphic’ in Theorem A has been replaced by ‘equivalent’
in Theorem B. Of course, Theorem B may be specialised to orthodox semigroups. Theorem B was
extended by Armstrong [1] from regular to concordant semigroups, replacing ordered groupoids by
more general kinds of ordered categories.

Theorem C. (See Armstrong [1].) The category of concordant semigroups and good morphisms is equivalent to
the category of inductive2 cancellative categories and inductive2 functors.

A concordant semigroup is an abundant semigroup with a regular biordered set of idempotents
and satisfying the extra condition of being idempotent-connected (IC), which is a condition of a stan-
dard type that gives some control over the position of idempotents in products of elements of a
semigroup.

Theorem A was generalised in a different direction to Ehresmann semigroups by Lawson [8]. His
use of two partial orders on an Ehresmann semigroup is an important observation for the ideas
discussed in this paper.

Theorem D. (See Lawson [8].) The category of Ehresmann semigroups and admissible morphisms is isomorphic
to the category of Ehresmann categories and strongly ordered functors.

Ehresmann semigroups have a semilattice of idempotents, need not be regular or even abundant,
need not satisfy an (IC) condition, and indeed need not be restriction semigroups. Lawson overcomes
the lack of an (IC) condition by using two partial order relations. Our aim is to extend Lawson’s re-
sult to the class of weakly B-orthodox semigroups, which extend the class of Ehresmann semigroups
by replacing semilattices by bands. To this end we could use triples such as in [1], and this is the
approach the second author takes in [15]. However, we take the opportunity to introduce generalised
categories which we believe provide a clearer framework for this problem. Briefly, from a regular (con-
cordant) semigroup one can produce a certain ordered category and then endow the category with
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a so-called pseudo-product. Unfortunately this need not produce the original semigroup: to do so
requires factoring by a congruence. Our use of generalised categories circumvents this latter inconve-
nience. A further point is that we could use partial orders on a semigroup as standard in this area,
but to do so would be rather clumsy. It turns out that without the (IC) condition and without the
idempotents forming a semilattice, pre-orders provide the most elegant approach.

The structure of the paper is as follows. In Section 1 we give some basic definitions and make
some elementary observations concerning weakly U -abundant semigroups, where U is a subset of
idempotents of a semigroup. Of particular significance to us are the relations L̃U and R̃U on a semi-
group S; if U = E(S) and S is regular, then L̃U =L and R̃U =R. In Section 2, we define generalised
categories, inductive generalised categories over bands, and pseudo-functors. We show that the class
of inductive generalised categories over bands and pseudo-functors forms a category. Section 3 con-
structs a weakly B-orthodox semigroup from an inductive generalised category over a band B .

Section 4 gives our main theorem, which is an analogue of Theorems A, B, C and D, connecting the
category of weakly B-orthodox semigroups and that of inductive generalised categories over bands.
We turn our attention to some special cases in Section 5, including orthodox semigroups, and in
particular recover Theorem D. In Section 6, we change our angle a little to discuss the trace of weakly
B-orthodox semigroups. Finally, in Section 7 we give an example of a weakly B-orthodox semigroup
built from a monoid acting on the left and right of a band B subject to some compatibility conditions.
This construction is inspired by that of the free ample monoid [3]. This paper may be regarded as the
first step in describing weakly U -abundant semigroups where U is a regular biordered set, in terms
of (generalised) ordered categories.

1. Preliminaries

In this section we list the notation and background results necessary for the rest of the paper.
Further details of the relations defined below can be found in [5].

Let S be a semigroup. We denote as usual its set of idempotents by E(S). Consider a non-empty
subset U ⊆ E(S); we will call it the set of distinguished idempotents. The relation �L̃U

on S is defined
by the rule that for all a,b ∈ S , a �L̃U

b if and only if

{e ∈ U : be = b} ⊆ {e ∈ U : ae = a}.

It is clear that �L̃U
is a pre-order. We denote the associated equivalence relation by L̃U , so that for

a,b ∈ S , a L̃U b if and only if

{e ∈ U : ae = a} = {e ∈ U : be = b}.

It is easy to see that L⊆ L∗ ⊆ L̃U and L= L∗ = L̃U if S is regular and U = E(S). Moreover, L and
L∗ are always right compatible, although the same need not be true for L̃U . The last fact is shown
by a very simple example: the null semigroup of two elements with an adjoined identity.

Notice that for e, f ∈ U , e �L̃U
f if and only if e �L f , so that e L̃U f if and only if eL f . Another

useful observation is that if a ∈ S and e ∈ U , then a L̃U e if and only if ae = a and for all f ∈ U , af = a
implies that ef = e.

The relations �R̃U
and R̃U are the left-right duals of �L̃U

and L̃U .
In a manner analogous to the definition of an abundant semigroup, S is said to be weakly U -

abundant if every L̃U -class and every R̃U -class contains an idempotent of U . If S is such a semigroup
and a ∈ S , then we follow usual practice and denote idempotents in the L̃U -class and R̃U -class of a
by a∗ and a†, respectively. Note that there need not be a unique choice for a∗ and a† unless U is a
semilattice. The L̃U -class and R̃U -class containing a will be denoted by L̃U ,a and R̃U ,a , respectively,
abbreviated as L̃a and R̃a .

We will be interested in semigroups S in which the relation L̃U is a right congruence and R̃U is a
left congruence. In this case, we say that S satisfies the Congruence Condition (C) (with respect to U ).
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It is easy to see that morphisms between semigroups preserve Green’s relations. They need not,
however, preserve L∗ and R∗ , nor L̃U and R̃U . With this in mind we define the notion of admissible
morphisms.

Let S and T be semigroups with distinguished subsets of idempotents U and V , respectively, and
let φ : S → T be a morphism. Then φ is said to be (U , V )-admissible if for any a,b ∈ S ,

a L̃U b implies aφ L̃V bφ,

a R̃U b implies aφ R̃V bφ,

and Uφ ⊆ V . Briefly, we will refer to the notion of being (U , V )-admissible as admissible, where no
ambiguity can occur.

Lemma 1.1. (See [14].) Let S, T be semigroups with distinguished subsets of idempotents U , V respectively.
Suppose that S is weakly U -abundant, and let φ : S → T be a morphism. Then φ is admissible if and only
if Uφ ⊆ V and for any a ∈ S there exist idempotents f ∈ L̃a ∩ U and e ∈ R̃a ∩ U such that aφ L̃V f φ and
aφ R̃V eφ .

We recall that an orthodox semigroup is a regular semigroup S such that E(S) is a band. Conse-
quently, a weakly B-abundant semigroup is said to be weakly B-orthodox if it has (C) and B is a band.
This terminology, based on existing convention, needs to be viewed with care: if we talk of a partic-
ular weakly B-abundant semigroup, then we are referring to a particular band B; on the other hand,
if we are talking of the class of all weakly B-abundant semigroups, the B varies over all bands. We
say that a weakly B-orthodox semigroup satisfies (WIC) if for all x ∈ S , x† in B (x∗ in B) and e ∈ B
( f ∈ B) with e � x† ( f � x∗) there exists g ∈ B (h ∈ B) with ex = xg (xf = hx). It is easy to see that
if S is orthodox, then S satisfies (WIC) (with respect to E(S) = B). For, if x ∈ S and e ∈ B ( f ∈ B)

with e � x† ( f � x∗), then ex = xx′ex (xf = xf x′′x), for some inverse x′ (x′′) of x. It is clear that the
collection of weakly B-orthodox semigroups and admissible morphisms forms a category, which we
denote by WO.

For convenience we will make the convention that B will always denote a band. Green’s relations
and their associated pre-orders will always refer to B , unless stated otherwise. In particular, if S is
weakly B-orthodox and e ∈ B , then Re (Le) denote the R-class (L-class) of e in B .

Lemma 1.2. Let S be a weakly B-orthodox semigroup. For any x, y ∈ S we have (yx)∗ �L x∗ and (xy)† �R x† .

Proof. Let x, y ∈ S . Clearly (yx)∗x∗ L̃B yxx∗ = yx. Thus

(yx)∗L (yx)∗x∗ �L x∗.

Dually, we obtain that (xy)† �R x†. �
Lemma 1.3. Let S be a weakly B-orthodox semigroup. For any x ∈ S and e, f , g,h ∈ B,

(i) if e �R g or e �L g and gR x† , then ex R̃B e;
(ii) if f �L h or f �R h and hL x∗ , then xf L̃B f .

Proof. To prove (i), suppose that e �R gR x†, then ex R̃B ex† R̃B egR e, otherwise, e �L g , and so
ex R̃B eg = e. By a similar argument, we can show that (ii) holds. �

We now present pre-orderings on a weakly B-orthodox semigroup, which can be considered as an
analogue of the orderings on Ehresmann semigroups studied by Lawson [8].

Let S be a weakly B-orthodox semigroup. We define relations �r and �l by the rule that for any
x, y ∈ S ,
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x �r y if and only if x = ey for some e ∈ B,

and

x �l y if and only if x = yf for some f ∈ B.

Since B is a band, the following lemma is clear.

Lemma 1.4. On a weakly B-orthodox semigroup S, the relations �r and �l given above are pre-orderings.

The next lemma is an immediate consequence of Lemma 1.2.

Lemma 1.5. Let S be a weakly B-orthodox semigroup and x, y be elements of S.

(i) If x �r y, then x∗ �L y∗ .
(ii) If x �l y, then x† �R y† .

We remark that if B is a semilattice, then the above relations become partial orders. For if
x �r y �r x and x = ey and y = f x for some e, f ∈ B , then from ex = x we deduce that ey = ef x =
f ex = f x = y. Thus x = y.

The astute reader will point out that Armstrong uses partial orderings in [1]. Indeed a weakly
B-orthodox semigroup possesses a pair of partial orders, as we now demonstrate. However, for our
purpose, pre-orders are more convenient.

Let S be weakly B-orthodox. We define relations �′
r and �′

l on S by the rule that for x, y ∈ S ,

x �′
r y if and only if x = ey for some e ∈ B and x† �R y†;

and

x �′
l y if and only if x = yf for some f ∈ B and x∗ �L y∗.

Lemma 1.6. Let S be a weakly B-orthodox semigroup. Then �′
r and �′

l are partial orders on S. If in addition S
satisfies condition (WIC), then �′

l = �′
r .

Proof. It is clear that �′
r is reflexive and transitive. If x �′

r y �′
r x and x = ey and y = f x where

e, f ∈ B and x† �R y† �R x†, then clearly x R̃B y. Hence from ex = x we deduce that x = ey = y.
Thus �′

r is a partial order; dually for �′
l .

Suppose now that S has (WIC) and x �′
r y. Then x = ey for some e ∈ B and x† �R y†. We have

x = y†x = y†ey† y = yf for some f ∈ B , since y†ey† � y†. Clearly as x = ey we have x∗ �L y∗ . Hence
x �′

l y. Dually, �′
l ⊆ �′

r , so that the two relations coincide. �
We note that the concordant semigroups studied in [1] satisfy (WIC). We call �r and �l (�′

r
and �′

l ) the natural pre-orders (natural partial orders) of a weakly B-orthodox semigroup S .
We remark that if E is a semilattice, then a weakly E-orthodox semigroup is an Ehresmann semi-

group (with distinguished semilattice E). It is easy to see that in such a semigroup, every R̃E -class
and every L̃E -class contains a unique idempotent of E . Thus in an Ehresmann semigroup, we have
two unary operations given by a �→ a† and a �→ a∗ . We may therefore regard Ehresmann semigroups
as algebras with signature (2,1,1); as such, they form a variety E , which is generated by the quasi-
variety of adequate semigroups [6]. The corresponding result in the one-side case may be found in
[4] or [7].

Lemma 1.7. Let S be an Ehresmann semigroup with distinguished semilattice E. Then �r = �′
r and �l = �′

l ,
so that �r and �l are partial orders.
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Proof. We have already remarked that �′
r and �′

l are partial orders. Further, we notice that if x �r y,
where x = ey for some e ∈ E , then x† = (ey)† = ey† = y†e, so that x† � y† and x �′

r y; dually,
�l = �′

l . �
2. Inductive generalised categories

Let I , R , L and D be disjoint sets and let p denote a collection of four (well-defined) onto maps:

I � R, I � L, R � D and L � D,

i �→ Ri, i �→ Li, Ri �→ Di, Li �→ Di

such that

I

R L

D

commutes. We denote this configuration by (I, R, L, D, p) and refer to it as a context.
We pause to give our motivating example. Let B be a band and p denote the natural maps:

B � B/R, B � B/L, B/R� B/D and B/L� B/D.

Then (B, B/R, B/L, B/D, p) is a context. Of course, if B is a semilattice, then all of Green’s relations
are trivial and the p-maps are essentially the identity maps.

Definition 2.1. A generalised category P over a context (I, R, L, D, p) consists of

(GC1) a class ob(P ) of objects R ∪̇ L;
(GC2) a class hom(P ) of morphisms between the objects. Each morphism x has a unique domain

d(x) ∈ R and codomain r(x) ∈ L. Denote the hom-class of all morphisms from Ri ∈ R to L j ∈ L
by hom(Ri, L j);

(GC3) if Ri, Rk ∈ R and L j, Lh ∈ L with D j = Dk , then there is a binary operation

hom(Ri, L j) × hom(Rk, Lh) → hom(Ri, Lh), (x, y) �→ x · y

called composition of morphisms such that if x ∈ hom(Ri, L j), y ∈ hom(Rk, Lh), and
z ∈ hom(Rm, Ln), where D j = Dk and Dh = Dm , then (x · y) · z = x · (y · z);

(GC4) for each i ∈ I , there exists a distinguished morphism, again denoted by i, such that
i ∈ hom(Ri, Li) and if d(x) = Ri and r(y) = Li , then i · x = x and y · i = y.

Let P be a generalised category over a context (I, R, L, D, p). Following the usual convention when
building categories from semigroups, we may identify hom(P ) with P . If B is a band and P is a
generalised category over (B, B/R, B/L, B/D, p), where p denotes the natural maps, then we say
simply P is a generalised category over B .

Our notion of generalised category is motivated by that of the ‘trace product’ of a weakly B-
orthodox semigroup. We explain this in Section 6 but comment briefly here on the special case of a
band.
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We have seen that if B is a band, then (B, B/R, B/L, B/D, p) is a context. Define a generalised
category P over B by putting hom(P ) = B and for e ∈ B , put d(e) = Re and r(e) = Le . Let the partial
binary operation be given by e · f = ef , where e · f exists. Note the latter is true if and only if
De = D f . Thus the effect of our generalised category is to restrict the multiplication in B to that
within its D-classes.

We now focus on generalised categories over a band B , in general more extensive than the example
above, making use of the natural partial order on B/R and B/L. Note that if e ∈ B then by (GC4) we
have that e ∈ hom(Re, Le), so that d(e) = Re and r(e) = Le .

We build on Definition 2.1 to define an inductive generalised category over B , which is an analogue
of inductive2 groupoids [11] and inductive2 cancellative categories [1]. We will see that the elements
of our inductive generalised category may be pre-ordered or partially ordered, in two ways, reflecting
the approach of [8].

Definition 2.2. Let P be a generalised category over a band B . Then P is an inductive generalised
category if the following conditions and the duals (I1)◦ , (I2)◦ , and (I3)◦ of (I1), (I2) and (I3) hold:

(I1) if x ∈ P and e, u ∈ B with e �L u ∈ d(x), then there exists an element e|x in P , called the restric-
tion of x to e, such that e ∈ d(e|x) and r(e|x) �L r(x); in particular, if e ∈ d(x), then e|x = x;

(I2) if x ∈ P and e, f , g, u ∈ B with e �L gR f �L u ∈ d(x), then ef |x = e|( f |x);
(I3) if x, y ∈ P and e, u ∈ B with x · y defined in P and e �L u ∈ d(x), then e|(x · y) = (e|x) · ( f |y),

where f ∈ r(e|x);
(I4) if x, y ∈ P and e1, e2, f1, f2 ∈ B with e1, e2 ∈ r(x) and f1, f2 ∈ d(y), then x|e1 f1 ·e1 f1 |y =

x|e2 f2 ·e2 f2 |y;
(I5) if x ∈ P and e, f , u, v, g,h ∈ B with g ∈ r(x), h ∈ d(x), u ∈ d(x|g f ) and v ∈ r(eh|x), then eu |(x|g f ) =

(eh|x)|v f ;
(I6) if e, g,h, u, v ∈ B are such that u �R gL e and v �L hR e, then e|u = eu and v |e = ve.

We make some comments on the above definition. In (I3) let r(x) = Lv and d(y) = R w . Since
there exists x · y we know that vD w so we have r(x) = Lw v and d(y) = R w v . Hence by (I1),
f ∈ r(e|x) �L Lw v and w v ∈ d(y), so that f |y exists and d( f |y) = R f . Hence (e|x) · ( f |y) exists. To
simplify the term “x · y exists” may use the expression “∃x · y” or “x · y is defined”.

Suppose now that P is a generalised category over a band B . We remarked above that if e ∈ B ,
then d(e) = Re and r(e) = Le , so that if also f ∈ B then ∃e · f if and only if eD f . In this case, clearly
e ∈ d(e), e ∈ d(e · f ) and by (I1), e|e = e, so that e ∈ r(e|e). Using (I1), (I3), (I6) and (GC4) we have

e · f =e |(e · f ) = (e|e) · (e| f ) = e · ef = ef .

We pause to introduce a pair of pre-orderings on an inductive generalised category P over a band
B deduced from Definition 2.2. We make use of the restriction and co-restriction of P to define
relations �r and �l by the rule that for any x, y ∈ P ,

x �r y if and only if x = e|y for some e ∈ B,

and

x �l y if and only if x = y| f for some f ∈ B.

Lemma 2.3. The relations �r and �l are pre-orderings on P .

Proof. To prove that �r is a pre-ordering on P , we first observe that �r is reflexive by (I1). It is
necessary to show that �r is transitive. Assume that x, y, z ∈ P with x �r y and y �r z. Then there
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exist e, f ∈ B such that x = e|y and y = f |z. For e|y and f |z to exist we have e �L g ∈ d(y) = R f and
f �L h ∈ d(z). From (I2), x = e|( f |z) = ef |z. Hence x �r z.

By the dual argument, we show that �l is a pre-ordering on P . �
The reader might notice that previous articles have used partial orders rather than pre-orders. For

our purpose, pre-orders are easier to use, but the partial orders are still there, as we now show.
We define �′

r and �′
l on P by the rule that

x �′
r y if and only if x = e|y for some e � u ∈ d(y),

and

x �′
l y if and only if x = y| f for some f � v ∈ r(y).

Lemma 2.4. The relations �′
r and �′

l are partial orders on P .

Proof. As in Lemma 2.3, �′
r is reflexive. If x �′

r y and y �′
r z then with e, f as in Lemma 2.3, we have

e � g and f � h. Certainly, x = ef |z and ef h = ef , as f � h. Also, e � gR f � h, so hef = ef . Hence
ef � h ∈ d(z).

Finally, suppose that x �′
r y �′

r x. Then x = e|y and y = f |x for some e � u ∈ d(y) and f � v ∈ d(x).
We have e � uR f and f � vR e, so that eR f and d(x) = d(y). Now x = e|y = y, by (I1). �

We say that �r and �l are the natural pre-orders associated with P and �′
r and �′

l are the natural
partial orders associated with P .

We end this section by showing that the class of inductive generalised categories over bands forms
a category, together with certain maps referred to as pseudo-functors. They appear in the next defi-
nition.

Definition 2.5. Let P1 and P2 be inductive generalised categories over bands B1 and B2, respectively.
A pseudo-functor F from P1 to P2 is a pair of maps, both denoted F , from B1 to B2 and from P1
to P2, such that the following conditions and the dual (F2)◦ of (F2) hold:

(F1) the map F is a morphism from B1 to B2;
(F2) if e ∈ B1 and e �L u ∈ d(x) in P1, then F (e|x) = F (e)|F (x);
(F3) if ∃x · y in P1 then ∃F (x) · F (y) in P2, and F (x · y) = F (x) · F (y).

To see that (F2) makes sense, suppose that u ∈ B1, x ∈ P1 with u ∈ d(x). Then Ru = d(x) so that
∃u · x and u · x = x. By (F3), ∃F (u) · F (x) and F (u) · F (x) = F (x). Hence d(F (x)) = d(F (u)) = R F (u) , as
F (u) ∈ B2. Suppose also that e ∈ B1, with e �L u in B1. Using (F1), we have F (e) �L F (u) ∈ d(F (x))
in P2, and so ∃F (e)|F (x). Notice that we can define F on ob(P1) by putting F (Re) = R F (e) and F (Le) =
L F (e) .

From the comments above, it is easy to check that Lemma 2.6 holds.

Lemma 2.6. Let P1 , P2 and P3 be inductive generalised categories over B1 , B2 and B3 , respectively, and let
F1 : P1 → P2 and F2 : P2 → P3 be pseudo-functors. Then F2 F1 : P1 → P3 is a pseudo-functor.

The next observation follows immediately.

Lemma 2.7. The class of inductive generalised categories over bands, together with pseudo-functors, forms a
category.

We refer to the category in the above lemma as IGC .
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3. Construction

Our primary interest in this section will be a construction of a weakly B-orthodox semigroup, built
from an inductive generalised category over B .

Let P be an inductive generalised category over a band B . We define the pseudo-product ⊗ on P
by

x ⊗ y = (x|ef ) · (ef |y),

where e ∈ r(x), f ∈ d(y). It follows from (I4) that the pseudo-product is independent of the choices
of e and f and thus is well-defined. We will denote the set P , together with the pseudo-product ⊗,
by S(P ).

We pause to present our initial idea which follows Armstrong’s steps, using the notion of sandwich
set, simplifying a little here as our set of idempotents forms a band. We may define a pseudo-product
⊗′ on P by the rule that for any x, y ∈ P ,

x ⊗′ y = (x|ef e) · ( f e f |y),

where e ∈ r(x) and f ∈ d(x). In that case, condition (I5) is not enough to guarantee that ⊗′ is associa-
tive in P . To achieve this it is necessary to add a stronger condition in place of (I5), which effectively
says that e ⊗′ (x ⊗′ y) = (e ⊗′ x) ⊗′ y for any x, y ∈ P and e ∈ B . This appears to us too contrived.
Keeping this in mind we use the pseudo-product ⊗ defined as above.

We now present a series of lemmas related to P , which will help us to show our main result at
the end of this section.

Lemma 3.1. If x, y ∈ P with ∃x · y, then x ⊗ y = x · y.

Proof. If ∃x · y then r(x) = Le and d(y) = R f say, where eD f . Then r(x) = L f e and d(y) = R f e , so
x ⊗ y = (x| f ef e) · ( f e f e|y) = (x| f e) · ( f e|y) = x · y by (I1). �
Lemma 3.2. If e, f ∈ B then e ⊗ f = ef .

Proof. We have

e ⊗ f = (e|ef ) · (ef | f )

= eef · ef f
(
by (I6)

)
= ef · ef = ef

(
by (GC4)

)
. �

Consequently, B forms the same band under ⊗ and the original multiplication.

Lemma 3.3. If x ∈ P and e, f , u ∈ B with uD e �L f ∈ d(x) then u · (e|x) = ue|x.

Proof. Since uD e, we deduce that

u · e|x = u ⊗ e|x (Lemma 3.1)

= (u|ue) · (ue|(e|x)
)

= ue · (ue|x)
(
by (I6), (I2)

)
= ue|x

(
by (GC4)

)
. �
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Lemma 3.4. The set S(P ) forms a semigroup under the operation ⊗.

Proof. It is sufficient to show that S(P ) is associative. Suppose that x, y, z ∈ P with x∗ ∈ r(x),
y† ∈ d(y), y∗ ∈ r(y) and z† ∈ d(z). Then

x ⊗ (y ⊗ z) = x ⊗ (
(y|y∗z†) · (y∗z† |z))

= (x|x∗u) · (x∗u|((y|y∗z†) · (y∗z† |z))) (
u ∈ d(y|y∗z†)

)
= (x|x∗u) · (x∗u|(y|y∗z†)

) · (v |(y∗z† |z)) (
v ∈ r

(
x∗u|(y|y∗z†)

)
, by (I3)

)
.

Notice, by (I1), that v �L y∗z† ∈ r(y|y∗z† ) and by (I5), that

x∗u|(y|y∗z†) = (x∗ y† |y)|gz† ,

where g ∈ r(x∗ y† |y), and so vL gz† and x∗u ∈ d((x∗ y† |y)|gz† ). Thus

x ⊗ (y ⊗ z) = (x|x∗u) · ((x∗ y† |y)|gz†

) · (v |(y∗z† |z))
= (x|x∗u) · ((x∗ y† |y)|gz†

) · (v y∗z† |z) (
v �L y∗z†, by (I2)

)
= (x|x∗u) · ((x∗ y† |y)|gz†

) · (v |z) (
v �L y∗z†)

= (x|x∗u) · ((x∗ y† |y)|gz†

) · (vgz† |z) (
v L gz†)

= (x|x∗u) · ((x∗ y† |y)|gz†

) · (v · (gz† |z)) (Lemma 3.3)

= (x|x∗u) · ((x∗ y† |y)|gz† · v
) · (gz† |z)

= (x|x∗u) · ((x∗ y† |y)|gz†

) · (gz† |z) (
v L gz†, by (GC4)

)
.

Due to the dual of (I1), u ∈ d(y|y∗z† ) �R d(y), whence x∗ y†x∗u = x∗ y†x∗ y†u = x∗ y†u = x∗u. So

x ⊗ (y ⊗ z) = (x|x∗ y†x∗u) · ((x∗ y† |y)|gz†

) · (gz† |z)
= ((x|x∗ y†)|x∗u) · ((x∗ y† |y)|gz†

) · (gz† |z) (
by (I2)◦, since x∗u �R x∗ y†)

= ((
(x|x∗ y†) · (x∗ y† |y)

)|gz†

) · (gz† |z) (
x∗u ∈ d

(
(x∗ y† |y)|gz†

))
= (

(x ⊗ y)|gz†

) · (gz† |z)
= (x ⊗ y) ⊗ z. �

The following lemma shows that S(P ) is a weakly B-abundant semigroup.

Lemma 3.5. Let x ∈ S(P ), e ∈ r(x) and g ∈ d(x). Then g R̃B x L̃B e in S(P ).

Proof. By Lemma 3.1, we obtain that x ⊗ e = x · e = x. Suppose that k ∈ B and x ⊗ k = x. Then

x ⊗ k = (x|ek) · (ek|k)

= (x|ek) · ek
(
by (I6)

)
= x|ek

(
by (GC4)

)
.
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Thus x = x|ek , which implies that ek ∈ r(x), and so eL ek. It follows that

e ⊗ k = ek (Lemma 3.2)

= eek

= e (eL ek).

Consequently, x L̃B e.
Similarly, we can show that x R̃B g . �
As an application of Lemma 3.5, we give a concrete description of relations �R̃B

and �L̃B
on S(P )

as follows.

Lemma 3.6. For any x, y ∈ S(P ),

(i) x �R̃B
y if and only if d(x) �R d(y);

(ii) x �L̃B
y if and only if r(x) �L r(y).

Proof. We prove (i). Let x, y ∈ P and let d(x) = Re and d(y) = R f . Then

x �R̃B
y in S(P ) ⇔ e �R̃B

f in S(P ) (Lemma 3.5)

⇔ e �R f in B

⇔ Re �R R f

⇔ d(x) �R d(y). �
Now let us sum up results related to S(P ) in the following theorem:

Theorem 3.7. If P is an inductive generalised category over B, then (S(P ),⊗) is a weakly B-orthodox semi-
group. Further, the natural pre-orders and partial orders in P and S(P ) coincide.

Proof. We first show that (S(P ),⊗) has (C). Suppose that x, y, z ∈ S(P ) and x R̃B y. It follows from
Lemma 3.6 that d(x) = d(y). We deduce that z ⊗ x = (z|ve) · (ve|x) and z ⊗ y = (z|ve) · (ve|y), where
v ∈ r(z) and e ∈ d(x) = d(y). Hence d(z⊗x) = d(z|ve) = d(z⊗ y). By Lemma 3.6, z⊗x R̃B z⊗ y. Dually,
we can show that L̃B is a right congruence.

Let x, y ∈ P and suppose that x �r y in P . Then x = e|y for some e �L u ∈ d(y). Hence

e ⊗ y = e|eu · eu|y = eu · eu|y = eu|y = e|y = x,

so that x �r y in S(P ).
If in addition we have e � u, so that x �′

r y in P , then from x = e|y we have d(x) = Re and
x† �R y†, by Lemma 3.6, so x �′

r y in S(P ).
Conversely, if x �r y in S(P ), then x = f ⊗ y for some f ∈ B . Hence,

x = f ⊗ y = f | f y† · f y† |y = f y† · f y† |y = f y† |y,

so that x �r y in P .
Further, if x �′

r y in S(P ), then we have x† �R y†, so that d(x) �R d(y), that is, f y† �R y†. Clearly
then f y† � y†, so that x �′

r y in P .
The dual result holds for �l and �′

l . �
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We can obtain an admissible morphism between weakly B-orthodox semigroups from a pseudo-
functor between inductive generalised categories over bands. This is made more precise in the follow-
ing lemma.

Lemma 3.8. Let F : P1 → P2 be a pseudo-functor between inductive generalised categories P1 and P2 , where
P1 and P2 are over bands B1 and B2 , respectively. Then the map S(F ) : S(P1) → S(P2) defined by the rule that
S(F )(x) = F (x), where x ∈ S(P1), is an admissible morphism; moreover, if F1 : P1 → P2 and F2 : P2 → P3
are pseudo-functors, then S(F2 F1) = S(F2)S(F1).

Proof. We claim first that S(F ) is a semigroup morphism. Suppose that x, y ∈ S(P1). Then by the
definition of S(F ),

S(F )(x ⊗ y) = F (x ⊗ y)

= F
(
(x| f u) · ( f u|y)

) (
f ∈ r(x), u ∈ d(y)

)
= F (x| f u) · F ( f u|y)

(
by (F3)

)
= (

F (x)|F ( f u)

) · (F ( f u)
|F (y)

) (
by (F2), (F2)◦

)
= (

F (x)|F ( f )F (u)

) · (F ( f )F (u)
|F (y)

) (
by (F1)

)
.

Since f ∈ r(x) and u ∈ d(y), it follows from the comments succeeding Definition 2.5 that
F ( f ) ∈ r(F (x)) and F (u) ∈ d(F (y)). Thus,

S(F )(x ⊗ y) = F (x) ⊗ F (y) = S(F )(x) ⊗ S(F )(y).

We now show that S(F ) is admissible. Clearly, by (F1), S(F )(B1) ⊆ B2. For any e ∈ r(x), we have
e L̃B1 x and F (e) ∈ r(F (x)). Thus, F (e) L̃B2 F (x), that is, S(F )(e) L̃B2 S(F )(x). By a similar argument,
we have that for any k ∈ d(x), S(F )(k) R̃B2 S(F )(x). By Lemma 1.1, S(F ) is an admissible morphism
between weakly B-orthodox semigroups S(P1) and S(P2).

The final part of the lemma is clear. �
Theorem 3.7 and Lemma 3.8 show that S : IGC →WO is a functor.

4. Correspondence

In Section 3, we start with an inductive generalised category over B and construct a weakly
B-orthodox semigroup. Our present aim is to prove a converse to this result and thus provide a cor-
respondence between the class of inductive generalised categories over bands and the class of weakly
B-orthodox semigroups.

Let S be a weakly B-orthodox semigroup. We define C(S) to be the set S equipped with the
following partial binary operation:

x · y =
{

xy if x∗D y†

undefined otherwise,

where xy is the product of x and y in S . This is known as the trace product and denoted by C(S) =
(S, ·).

It is immediate that if e, f ∈ B and x ∈ S are such that e R̃B x L̃B f then e · x = x = x · f .
We now turn to give a number of basic properties of C(S), which will be found useful in the

sequel.
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Lemma 4.1. If ∃x · y in C(S), then x R̃B xy L̃B y in S.

Proof. Suppose that x and y are in S such that x · y is defined in C(S). Then x∗D y†. We assume that
x∗LhR y†, where h ∈ B . Since R̃B is a left congruence and L̃B is a right congruence, it follows that
xy R̃B xy† R̃B xh = x and dually, xy L̃B x∗ y L̃B hy = y. So x R̃B xy L̃B y, as required. �
Lemma 4.2. If S is a weakly B-orthodox semigroup, then C(S) is a generalised category over B such that
d(x) = Rx† and r(x) = Lx∗ .

Proof. We have x ∈ hom(Re, L f ) if and only if x†R e and x∗L f in B . If in addition y ∈ hom(R g, Lh),
then ∃x · y in C(S) if and only if x∗D y†, i.e. D f = D g . Moreover, if ∃x · y, then x · y ∈ hom(Re, Lh) by
Lemma 4.1. Clearly condition (GC3) holds.

For any e ∈ B , we take the distinguished morphism e associated to e to be itself, whose domain is
Re and codomain is Le . Certainly, if e ∈ d(x) (resp. e ∈ r(x)), then e is a left (resp. right) identity of x.
Hence, (GC4) holds. �

We build on the above to show that C(S) may be equipped with restrictions and co-restrictions,
under which it becomes an inductive generalised category.

For x ∈ S and e, f ∈ B with e �L u ∈ d(x) and f �R v ∈ r(x),

e|x = ex and x| f = xf .

Lemma 4.3. Let S be a weakly B-orthodox semigroup. With the above definition of restriction and co-
restriction, C(S) becomes an inductive generalised category over B, which we denote by C(S). Further, the
natural pre-orders and partial orders on S and C(S) coincide.

Proof. In view of Lemma 4.2, it remains to show that C(S) with the restriction and co-restriction
defined above satisfies conditions (I1) to (I6) and the duals (I1)◦ , (I2)◦ and (I3)◦ of (I1), (I2) and (I3).

(I1) If x ∈ S and e, u ∈ B with e �L u ∈ d(x), then e|x = ex and so by Lemmas 1.2 and 1.3, condition
(I1) is satisfied.

(I2) Since restriction and co-restriction are given by multiplication in S , it is clear that (I2) and its
dual hold.

(I3) Suppose that x, y ∈ S and e, u ∈ B with x · y defined in C(S), let e �L u ∈ d(x) and f ∈ r(e|x) =
L(ex)∗ . Then e|(x · y) = exy = exf y = (e|x) · ( f |y).

(I4) It is routine to check that condition (I4) holds, both products being equal to xy.
(I5) As for (I4) this is again routine, with both sides of the equality we must verify being equal to

exf .
(I6) Clearly, it is satisfied by the definitions of the restriction and co-restriction, respectively.

Now, let x, y ∈ S . Then

x �r y in S ⇔ x = ey some e ∈ B

⇔ x = ey† y some e ∈ B, y† ∈ d(y)

⇔ x = ey† |y some e ∈ B, y† ∈ d(y)

⇔ x = f |y some f ∈ B with f �L u ∈ d(y)

⇔ x �r y in C(S).
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In addition, with notation as above, if x �′
r y in S we have that x† �R y†, so that x = y†ey† y = y†ey† |y

and y†ey† � y†, so that x �′
r y in C(S). Conversely, if x �′

r y in C(S), then x = g |y, where
g � y† ∈ d(y). Then x = gy in S , and x†R g �R y†, so that x �′

r y in S . �
Proposition 4.4. Let S be a weakly B-orthodox semigroup and P be an inductive generalised category over B.
Then S(C(S)) = S and C(S(P )) = P .

Proof. Let S be a weakly B-orthodox semigroup. It follows from Lemma 4.3 that C(S) is an inductive
generalised category over B with multiplication a restriction of that in S and d(x) = Rx† , r(x) = Lx∗ ,
for any x ∈ S , and if e �L u ∈ d(x) and f �r v ∈ r(x) then e|x = ex and x| f = xf .

We now construct S(C(S)), which again has underlying set S , by defining the pseudo-product

x ⊗ y = (x|vg) · (vg |y),

where v ∈ r(x) = Lx∗ and g ∈ d(y) = R y† . Observe that

x ⊗ y = (x|vg) · (vg |y) = xvgvgy = xvgy = xy,

so the operations in S and S(C(S)) are the same. Moreover, the distinguished bands of S and S(C(S))

are both B . Hence S = S(C(S)).
We now focus on the converse. Let P be an inductive generalised category over B with partial

binary operation · . We establish the weakly B-orthodox semigroup S(P ) by defining the pseudo-
product ⊗ of Theorem 3.7.

We temporarily use the notation � for the partial binary operation in C(S(P )). For any x, y ∈ P we
have

∃x � y ⇔ x∗D y† in S(P )

⇔ eD f , where r(x) = Le and d(y) = R f

⇔ ∃x · y in P .

Further, if ∃x � y, then by Lemma 3.1,

x � y = x ⊗ y = x · y.

For x ∈ P we have that d(x) = Rx† in C(S(P )), where x R̃B x† in S(P ). But, the latter holds if and
only if x† ∈ d(x) in P , i.e. d(x) = Rx† in P . Thus d in P and C(S(P )) coincide, and dually for r.

Clearly, the distinguished morphisms in P and C(S(P )) are the same.
Again as a temporary measure, we use || to denote restriction and co-restriction in C(S(P )).
Let x ∈ P and let e, u ∈ B with e �L u ∈ d(x). Then in C(S(P )),

e||x = e ⊗ x = e|eu · eu|x = eu|x = e|x

and similarly for co-restrictions. �
We now proceed to establish an isomorphism between the category IGC of inductive generalised

categories over bands and the category WO of weakly B-orthodox semigroups.
The next lemma demonstrates that an admissible morphism between two weakly B-orthodox

semigroups gives rise to a pseudo-functor.
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Lemma 4.5. Let S be a weakly B1-orthodox semigroup and T be a weakly B2-orthodox semigroup. Suppose
that θ is an admissible morphism. Then the map C(θ) : C(S) → C(T ) given by the rule that C(θ)(x) = θ(x) for
x ∈ B and x ∈ S is a pseudo-functor. Further, if θ1 : S → T and θ2 : T → Q are admissible morphisms, then
C(θ2θ1) = C(θ2)C(θ1).

Proof. (F1) Since θ is an admissible morphism, it follows that θ is a morphism from B1 to B2.
(F2) Suppose that x ∈ S and e, f ∈ B1 with e �L f ∈ d(x). Then e|x is defined and e|x = ex. Since

θ is admissible, it follows that θ(e) �L θ( f ) and θ( f ) R̃B2 θ(x), that is, θ( f ) ∈ d(θ(x)), which implies
that θ(e)|θ(x) is defined. Then C(θ)(e|x) = C(θ)(ex) = θ(ex) = θ(e)θ(x) = θ(e)|θ(x) = C(θ)(e)|C(θ)(x).

(F3) If ∃x · y in C(S), then x∗D y†. Hence there is an h ∈ B with x L̃B1 h R̃B1 y. Since θ is admissible,
θ(x) L̃B2 θ(h) R̃B2 θ(y) and θ(h) ∈ B2. Thus ∃θ(x) ·θ(y) in C(T ). Clearly, if x · y exists, θ(x · y) = θ(xy) =
θ(x)θ(y) = θ(x) · θ(y), since θ is a morphism.

It is routine to see that C(θ2θ1) = C(θ2)C(θ1). �
The following result is easy to see, given Lemmas 4.5 and 3.8.

Lemma 4.6. Let θ : S → T be an admissible morphism of weakly B-orthodox semigroups, and F : P1 → P2
be a pseudo-functor of inductive generalised categories over bands. Then S(C(θ)) = θ and C(S(F )) = F .

Lemmas 4.3 and 4.5 show that C : WO → IGC is a functor and Proposition 4.4 and Lemma 4.6
give that S and C are mutually inverse. Hence we deduce our main result.

Theorem 4.7. The category WO of weakly B-orthodox semigroups and admissible morphisms is isomorphic
to the category IGC of inductive generalised categories over bands and pseudo-functors.

5. Special cases

In this section, we concentrate on some special kinds of weakly B-orthodox semigroups. We now
present a lemma which will be used in our first two cases.

Lemma 5.1. Let S be a weakly B-orthodox semigroup. Suppose that for any x ∈ E(S) and e, f ∈ B with
e R̃B x L̃B f we have eR∗ xL∗ f . Then B = E(S).

Proof. Let x ∈ E(S) and choose x†, x∗ ∈ B . Then x†R∗ xL∗ x∗ by assumption. From x2 = x we have
x∗x = x∗ and so x∗R x∗x† (in B). Dually, x∗x†L x†. Thus, x†D x∗ and so xH∗ x†x∗ , giving x = x†x∗ as
any H∗-class contains at most one idempotent. �

Note that Lemma 5.1 can be translated into a corresponding statement concerning inductive gen-
eralised categories over bands.

An (inductive) generalised category P is an (inductive) generalised groupoid if for all x ∈ P with
d(x) = Re and r(x) = L f , there exists y ∈ P with d(y) = R f and r(y) = Le such that e = x · y and
y · x = f .

Corollary 5.2. The category of orthodox semigroups and morphisms is isomorphic to the category of inductive
generalised groupoids over bands and pseudo-functors.

Proof. Let S be an orthodox semigroup with B = E(S). Suppose that x ∈ C(S) with d(x) = Re and
r(x) = L f . Since R = R̃B and L = L̃B , we have that eR xL f . It follows from the fact that S is
regular that there exists y ∈ S with e = xy and yx = f . We have that eL yR f and so d(y) = R f and
r(y) = Le and the products x · y, y · x exist in C(S). Moreover, x · y = xy = e and y · x = yx = f .

Conversely, let P be an inductive generalised groupoid over B . Suppose that x ∈ P and d(x) = Re ,
r(x) = L f . Then there exists y ∈ P with d(y) = R f and r(y) = Le such that f = y · x and e = x · y. It
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follows that x ⊗ y ⊗ x = (x · y) ⊗ x = e ⊗ x = e · x = x. Thus, S(P ) is regular. In addition, as e = x · y =
x ⊗ y and x = e ⊗ x, we have that eR x in S(P ). Dually, f L x in S(P ). By Lemma 5.1, we have that
E(S(P )) = B . Hence, S(P ) is an orthodox semigroup. �

Now, we focus on the class of abundant semigroups. We replace the distinguished set of idempo-
tents B by the whole set of idempotents and use relations R∗ and L∗ instead of R̃B and L̃B in the
definition of weakly B-orthodox semigroups. We thus obtain the class of abundant semigroups whose
set of idempotents forms a band. An admissible morphism in this context is more usually referred to
as a good morphism. We define an inductive generalised category P over a band B to be abundant if
it satisfies the following condition and its dual (I7)◦:

(I7) if e, f , g ∈ B and x, y, z ∈ P are such that e, f �L g ∈ d(x), e ∈ r(y), f ∈ r(z) and y · e|x = z · f |x,
then y = z.

Corollary 5.3. The category of abundant semigroups whose set of idempotents forms a band and good mor-
phisms is isomorphic to the category of abundant inductive generalised categories over bands and pseudo-
functors.

Proof. Let P be an abundant inductive generalised category over a band B . Suppose that x ∈ P , e ∈
d(x) and f ∈ r(x). We know that e R̃B x in S(P ), so that e ⊗ x = x. Assume that y, z ∈ P with y ⊗ x =
z ⊗ x, giving that (y|y∗e) · (y∗e|x) = (z|z∗e) · (z∗e|x), where y∗ ∈ r(y) and z∗ ∈ r(z). By (I7), we obtain
that y|y∗e = z|z∗e . Thus, y∗eL z∗e in B . We have

y ⊗ e = y|y∗e · y∗e|e
= z|z∗e · y∗e

(
by (I6)

)
= z|z∗e

(
y∗eL z∗e

)
= z|z∗e · z∗e|e
= z ⊗ e.

This is enough to show that eR∗ x. Dually, we have that f L∗ x.
In view of Lemma 5.1, we have that E(S(P )) = B .
Conversely, let S be an abundant semigroup with E(S) = B . It follows that R∗ = R̃B and L∗ = L̃B .

In view of Lemma 4.3, it is sufficient to claim that C(S) satisfies conditions (I7), and dually, (I7)◦ .
Assume that e, f , g ∈ B and x, y, z ∈ P are such that e, f �L g ∈ d(x), e ∈ r(y), f ∈ r(z) and y · e|x =
z · f |x. It follows that yex = zf x. Since g ∈ d(x), that is, gR∗ x in S , we have that yeg = zf g , that is,
ye = zf , as e, f �L g . Hence, y = z, as required. Dually, (I7)◦ holds. �

We now discuss Ehresmann semigroups. Let S be an Ehresmann semigroup with distinguished
semilattice E . We mentioned in Lemma 1.7 that �r = �′

r and �l = �′
l .

Let P be an inductive generalised category over E . The context

(E, E/R, E/L, E/D, p)

is essentially four copies of E equipped with the identity map. We therefore identify E with E/R,
E/L and E/D and note that P becomes a category in the usual sense. Notice that as P = C(S(P )), we
have that �r = �′

r , �l = �′
l and �r and �l are partial orders on P .

For easy reference, we say that a category C with a partial ordering � is ordered if it satisfies the
following conditions:
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(OC1) if x, y ∈ C with x � y, then r(x) � r(y) and d(x) � d(y);
(OC2) if r(x) = r(y), d(x) = d(y) and x � y, then x = y;
(OC3) if x′ � x, y′ � y and both x′ · y′ and x · y exist, then x′ · y′ � x · y.

Further, an ordered category C with set of identities E has restrictions if for any x ∈ C and e ∈ E
with e � d(x), there exists a unique element e|x such that e|x � x and d(e|x) = e. To possess co-
restrictions has the dual definition.

Lemma 5.4. An inductive generalised category P over a semilattice E with �r forms an ordered category with
restriction.

Proof. From comments above P is a category (with the appropriate identifications) and (P ,�r) is a
poset.

(OC1) Suppose that x, y ∈ P with x �r y. Then there exists e ∈ E such that e � d(y) and x = e|y.
Thus, d(x) = e � d(y) and r(x) � r(y) by (I1).

(OC2) Suppose that x, y ∈ P with r(x) = r(y), d(x) = d(y) and x �r y. Then there exists e ∈ E such
that e � d(y) and x = e|y. Certainly, d(x) = e and so e = d(y), whence from (I1), x = y.

(OC3) If x′ �r x and y′ �r y, and both x′ · y′ and x · y exist, then there exist e, f ∈ E such that
e � d(x), f � d(y), x′ = e|x and y′ = f |y. Thus, we have that r(e|x) = r(x′) = d(y′) = d( f |y) = f and
so x′ · y′ = (e|x) · ( f |y) = e|(x · y) by (I3). Hence, x′ · y′ �r x · y.

Finally, we assume that x ∈ P and e ∈ E with e � d(x). Then e|x is defined and d(e|x) = e. Also,
e|x �r x by (I1). Further, e|x is unique since if z �r x and e = d(z), then there exists h ∈ E with h � d(x)
and z = h|x, which gives that h = d(z). Thus, e = h. Hence, z = e|x. �

As a dual result of Lemma 5.4, we have the following lemma.

Lemma 5.5. An inductive generalised category P over a semilattice E with �l forms an ordered category with
co-restriction.

Next we show that an inductive generalised category P over a semilattice E is an Ehresmann
category as defined in [8].

We recall from [8] that an Ehresmann category C = (C, · ,�r,�l) is a category (C, ·) with set of
identities E , equipped with two relations �l and �r such that the following conditions, and the duals
(E1)◦ and (E5)◦ of (E1) and (E5) hold:

(E1) (C, · ,�r) is an ordered category with restriction;
(E2) if e, f ∈ E , then e �r f ⇔ e �l f ;
(E3) E is a meet semilattice under �r (or �l);
(E4) �r ◦ �l = �l ◦ �r ;
(E5) if x �r y and f ∈ E , then x|r(x) f �r y|r(y) f .

We note that [8] interchanges the symbols r and d and the notions of restriction and co-restriction,
from the conventions of this paper.

Lemma 5.6. An inductive generalised category P over a semilattice E with the pair of natural partial orderings
(�r,�l) forms an Ehresmann category.

Conversely, an Ehresmann category (C, · ,�r,�l) with semilattice of identities E, may be regarded as an
inductive generalised category over E with natural partial orderings (�r,�l).

Proof. Let P be inductive generalised category over a semilattice E . In view of the above discussion,
we have claimed that P is a category with set of identities E . By Lemmas 5.4 and 5.5, conditions (E1)
and (E1)◦ are satisfied.
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(E2) If e, f ∈ E and e �r f , then e = e| f = ef so that we must have e � f . Then f |e is defined and
f |e = f e = e so that e �l f . Together with the dual, we have that for e, f ∈ E ,

e �r f ⇔ e �l f ⇔ e � f ,

so that in particular, (E2) holds.
(E3) Clearly, E is a semilattice under �r = �l = �.
(E4) To show that �r ◦ �l ⊆ �l ◦ �r , we assume that x �r ◦ �l y. Then there exists z ∈ P such that

x �r z �l y. And so there exist e, f ∈ E with d(x) = e � d(z) = u and r(z) = f � r(y) = v , such that
x = e|z and z = y| f . Thus, x = e|(y| f ) = eu|(y|v f ). By (I4), we get that x = (eh|y)|g f , where h = d(y)

and g = r(eh|y). Set z′ = eh|y. Then x �l z′ and z′ �r y. Consequently, x �l ◦ �r y. With the dual, we
obtain (E4).

(E5) Suppose that x, y ∈ P and f ∈ E with x �r y. Then there exists k ∈ E with k � d(y) and x =
k|y. So x|r(x) f = (k|y)|r(x) f = (kd(y)|y)|r(x) f . Let h = d(y|r(y) f ). By (I4), we obtain that (kd(y)|y)|r(x) f =
kh|(y|r(y) f ), so that x|r(x) f �r y|r(y) f .

Conversely, let C = (C, · ,�r,�l) be an Ehresmann category with semilattice of identities E . Then
C = (C, ·) may also be regarded as a generalised category over E .

We let � denote the restriction of �r (�l) to E . It is clear that the first part of (I1) holds, moreover,
by uniqueness of restriction, e|x = x if e = d(x).

For (I2), if x ∈ C and e, f , g, u ∈ E , with e �L gR f �L u ∈ d(x), then this simplifies to
e � f � d(x). Now ef |x = e|x �r x and d(e|x) = e; also, e|( f |x) �r f |x �r x and d(e|( f |x)) = e. By
uniqueness of restriction, ef |x = e|( f |x).

(I3) If x, y ∈ C with ∃x · y, then r(x) = d(y). If e � d(x), then we have

e|(x · y) �r x · y and d(e|x · y) = e

and also

(e|x) · ( f |y) �r x · y and d
(
(e|x) · ( f |y)

) = e,

where f = r(e|x). Hence, e|(x · y) = (e|x) · ( f |y).
(I4) This is clear.
(I5) Let x ∈ C and e, f , u, v, g,h ∈ E with g = r(x), h = d(x), u = d(x|g f ) and v = r(eh|x). Then

(e ⊗ x) ⊗ f = e ⊗ (x ⊗ f ), where ⊗ is defined [8], by x ⊗ y = (x|k) · (k|y), where k = r(x)d(y). As
shown in [8], ⊗ is associative, hence,

(e ⊗ x) ⊗ f = (
(e|eh) · (eh|x)

)|v f · (v f | f )

= (
eh · (eh|x)

)|v f · v f

= (eh|x)|v f

and similarly, e ⊗ (x ⊗ f ) = eu |(x|g f ), so we obtain that (eh|x)|v f = eu |(x|g f ).
(I6) Suppose that e, g,h, u, v ∈ E are such that u �R gL e and v �L hR e, which simplifies to

u � e and v � e. Clearly, e|u = u = eu and v |e = v = ve. �
Let C = (C, · ,�r,�l) and D = (D, · ,�r,�l) be Ehresmann categories with semilattices EC and E D

of identities, respectively. A strongly ordered functor [8] F : C → D is a functor which preserves �r ,
�l and the binary operation of the semilattices. Hence F is a morphism EC → E D . As shown in [8],
F preserves restrictions and co-restrictions. Thus F is a pseudo-functor in the sense of Definition 2.5.

On the other hand, if G : C → D is a pseudo-functor, then from the comments following Defini-
tion 2.5, G is a functor, which by (F1) preserves ∧. Suppose now that x, y ∈ C with x �r y. Then
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x = e|y for some e ∈ E , so that by (F2), G(x) = G(e)|G(y) so that G(x) �r G(y). Dually, G preserves �l ,
so that G is a strongly ordered functor. Theorem 4.7, Lemma 4.3 and the comments above now give
us Lawson’s result from [8], Theorem D.

Corollary 5.7. (See [6, Theorem 4.24].) The category of Ehresmann semigroups and admissible morphisms is
isomorphic to the category of Ehresmann categories and strongly ordered functors.

We now turn to weakly B-superorthodox semigroups, which are weakly B-orthodox semigroups such
that each H̃B -class contains a distinguished idempotent in B . We say that a generalised category P
over a band B is a super-generalised category if it is an inductive generalised category and satisfies the
following condition:

(I8) if x ∈ P , e ∈ d(x) and f ∈ r(x), then eD f .

Corollary 5.8. The category of weakly B-superorthodox semigroups and admissible morphisms is isomorphic
to the category of super-generalised categories over B and pseudo-functors.

Proof. Let S be a weakly B-superorthodox semigroup. It follows from Lemma 4.3 that it is only
necessary to show that C(S) satisfies condition (I8). Suppose that x ∈ S , e ∈ d(x) and f ∈ r(x). Then
e R̃B x L̃B f in S . As S is a weakly B-superorthodox semigroup, it follows that there exists h ∈ B such
that h H̃B x. Thus, eRhL f , which implies that eD f .

Conversely, let P be a super-generalised category over B . It is sufficient to show that S(P ) is weakly
B-superorthodox. Suppose that x ∈ P , e ∈ d(x) and f ∈ r(x). Then by (I8), eD f , that is, eR ef L f . As
e R̃B x L̃B f in S(P ), we get that x H̃B ef . Hence S(P ) is a weakly B-superorthodox semigroup. �

Next, we discuss the class of weakly B-orthodox semigroups which have condition (WIC) men-
tioned in Section 1. We define an inductive generalised category P over a band B to be connected if
it satisfies the following condition and its dual (I9)◦:

(I9) if x ∈ P and e � u ∈ d(x) then there exists f � v ∈ r(x) such that e|x = x| f .

Corollary 5.9. The category of weakly B-orthodox semigroups with (WIC) and admissible morphisms is iso-
morphic to the category of connected inductive generalised categories over bands and pseudo-functors.

Proof. Let S be a weakly B-orthodox semigroup with (WIC). In view of Lemma 4.3, it remains to
show that C(S) satisfies conditions (I9) and (I9)◦ . We will show that (I9) holds, dually, (I9)◦ holds.
Suppose that x ∈ S and e � u ∈ d(x). Then e|x = ex. Since S has (WIC), it follows that there exists
f ∈ B such that ex = xf . Then ex = xv f v , where v ∈ r(x). Thus, ex = xv f v = x|v f v .

Conversely, let P be a connected inductive generalised category over a band B . Suppose that x ∈ P
and e � u ∈ d(x). Then it follows from (I9) that there exists f � v ∈ r(x) such that e|x = x| f . Thus
e ⊗ x = e|x = x| f = x ⊗ f . Together with the dual argument, we have shown that S(P ) has (WIC). �
6. Trace of weakly B-orthodox semigroups

First, we define the trace of a weakly B-orthodox semigroup to be C(S) = (S, ·), as in Section 4.
Remark that C(S) contains C(B) = (B, ·) as a substructure, where C(B) is the band B with multipli-
cation restricted to D-classes.

Now let P be any generalised category over B . Define � on P 0 = P ∪̇ {0} by the rule that

x � y =
{

x · y if ∃x · y in P
0 otherwise.



Author's personal copy

228 V. Gould, Y. Wang / Journal of Algebra 368 (2012) 209–230

Lemma 6.1. The set (P 0,�) is a semigroup containing a band (B0,�) as a subsemigroup, where (B0,�)

is the 0-direct union of the D-classes of B. Further, P 0 is primitive weakly B0-orthodox, in the sense that
distinguished idempotents are all primitive in B0 .

Proof. Let x, y, z ∈ P 0. If any of x, y, z is 0, then clearly x � (y � z) = (x � y) � z = 0. Suppose that
x, y, z ∈ P . Then

x � (y � z) =
{

x � (y · z) if ∃y · z
0 otherwise

=
{

x · (y · z) if ∃y · z and ∃x · (y · z)
0 otherwise

=
{

x · (y · z) if ∃y · z and ∃x · y
0 otherwise

= (x � y) � z

for reasons of symmetry. Clearly B0 is a subsemigroup of P 0.
Let x ∈ P 0. If x = 0, then x R̃ B0 0. If x ∈ P , then choosing e ∈ d(x) we have ∃e · x and e · x = x, so that

e � x = x. If f ∈ B0 and f � x = x, then clearly f ∈ B and ∃ f · x with f · x = x. Hence R f = d(x) = Re

so that eR f and f � e = e. Hence x R̃B0 e and it follows that P 0 is weakly B0-abundant.
Notice that x R̃B0 f where f ∈ B if and only if d(x) = R f . If follows that x R̃B0 y if and only if

d(x) = d(y). Thus for any z ∈ P , z � x = 0 if and only if z � y = 0, and if z � x �= 0, then d(z � x) =
d(z) = d(z � y). It is clear that (C) holds and P 0 is weakly B0-orthodox. It is immediate that P 0 is
B0-primitive. �

Let S be weakly B-orthodox. From Lemma 4.2, C(S) = (S, ·) is an inductive generalised category
over B . Then C(S)0 is a primitive weakly B0-abundant semigroup; C(S)0 is also sometimes called the
trace of S . From Lemma 4.3, C(S), and with a little adjustment, C(S) ∪ {0}, can be endowed with an
inductive structure from which we can recover S .

The natural partial orders in any primitive weakly B-orthodox semigroup with 0 are trivial, in the
following sense:

Lemma 6.2. Let S be a primitive weakly B-orthodox semigroup with 0, where 0 ∈ B. Then B is a 0-disjoint
union of D-classes. If x, y ∈ S, then x �′

r y if and only if x = 0 or x = y, and dually for �′
l .

Proof. We know that B is a semilattice Y of D-classes Dα , α ∈ Y . We must have that Y contains
a zero τ and Dτ = {0}. If τ < α < β , let e ∈ Dα and f ∈ Dβ . Then f ef ∈ Dα and 0 < f ef < f ,
a contradiction. It follows that B is a 0-disjoint union of its D-classes.

If x �= 0 and x �′
r y, then x = ey for some e ∈ B and x† �R y†. Thus x† y† � y† so that x† y† = y†.

Also, x† �R e so that similarly, x†e = x†. Now x = ey = x†ey = x† y = x† y† y = y† y = y. �
7. Example

This section is concerned with the promised example. We show how a weakly B-orthodox semi-
group may be naturally obtained from a monoid acting via morphisms on the left and right of a
band with identity. This construction is reminiscent of that underlying the free ample monoid, and
we believe will be of subsequent use.

Let B be a band with 1 and let T be a monoid acting on the left and right of B by · and ◦ via
morphisms such that

(t · g) ◦ t = (1 ◦ t)g and t · (g ◦ t) = g(t · 1),

for all g ∈ B and t ∈ T .
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We note that as T acts by morphisms, if e, f ∈ B with e �L f , then for any t ∈ T , t · e = t · ef =
(t · e)(t · f ) �L t · f , so that · preserves �L . Dually, ◦ preserves �R .

Let S = B ∗1 T = {(e, t): e �L t · 1} ⊆ B × T with semidirect product multiplication, i.e.

(e, t)( f , s) = (
e(t · f ), ts

)
.

Now if e �L t · 1 and f �L s · 1, then t · f �L t · (s · 1) = ts · 1, and so e(t · f ) �L ts · 1. Thus S is closed,
and consequently, it is a semigroup.

We now obtain a series of lemmas to verify that S constructed above is a weakly B-orthodox
semigroup, where B = {(e,1): e ∈ B}.

Lemma 7.1. The set B = {(e,1): e ∈ B} is isomorphic to B.

Proof. Let e, f ∈ B . Then e �L 1B = 1T · 1B and (e,1)( f ,1) = (e(1 · f ),1) = (ef ,1), whence it follows
that B is a band isomorphic to B . �
Lemma 7.2. For any (e, t) ∈ S, (e, t) R̃B (e,1).

Proof. Let (e, t) ∈ S . Then (e,1)(e, t) = (e(1 · e), t) = (e, t) and if ( f ,1)(e, t) = (e, t), then ( f e, t) =
(e, t), so f e = e and ( f ,1)(e,1) = (e,1). Thus, (e, t) R̃B (e,1). �

Let (e, t), ( f , s) ∈ S . By Lemmas 7.1 and 7.2,

(e, t) R̃B ( f , s) ⇔ eR f .

Lemma 7.3. For any (e, t) ∈ S, (e, t) L̃B (e ◦ t,1).

Proof. Let (e, t) ∈ S . Then

(e, t)(e ◦ t,1) = (
e
(
t · (e ◦ t)

)
, t

)
= (

e
(
e(t · 1)

)
, t

)
= (e, t) (e �L t · 1).

Further, if (e, t)( f ,1) = (e, t), then e(t · f ) = e. Now

e ◦ t = (
e(t · f )

) ◦ t = (e ◦ t)
(
(t · f ) ◦ t

)
= (e ◦ t)(1 ◦ t) f = (

(e1) ◦ t
)

f

= (e ◦ t) f ,

so (e ◦ t,1)( f ,1) = (e ◦ t,1). Thus (e, t) L̃B (e ◦ t,1). �
Again by Lemma 7.1,

(e, t) L̃B ( f , s) ⇔ e ◦ tL f ◦ s in B.

Lemma 7.4. The semigroup S is weakly B-orthodox, where B = {(e,1): e ∈ B}.
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Proof. In view of Lemmas 7.1, 7.2 and 7.3, it is sufficient to show that S has (C). Suppose that
(e, t) R̃B ( f , s) and (g, u) ∈ S . Then (g, u)(e, t) = (g(u · e), ut) and (g, u)( f , s) = (g(u · f ), us). As eR f
we have u · eRu · f and then g(u · e)R g(u · f ), so that R̃B is a left congruence.

Now let (e, t) L̃B ( f , s) and (g, u) ∈ S . Then (e, t)(g, u) = (e(t · g), tu) and ( f , s)(g, u) =
( f (s · g), su). We have

(
e(t · g)

) ◦ t = (e ◦ t)
(
(t · g) ◦ t

)
= (e ◦ t)(1 ◦ t)g

= (e ◦ t)gL ( f ◦ s)g

= (
f (s · g) ◦ s

)
,

so that (e(t · g))◦ tuL ( f (s · g))◦ su. Thus L̃B is a right congruence. Hence S is weakly B-orthodox. �
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