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Quantum Correlations Reduce Classical Correlations with Ancillary Systems ∗

LUO Shun-Long(ã^9)∗∗, LI Nan(o�)
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190

(Received 31 May 2010)

We illustrate the dichotomy of classical/quantum correlations by virtue of monogamy. More precisely, we show

that correlations in a bipartite state are classical if and only if each party of the state can be perfectly correlated

with other ancillary systems. In particular, this means that if there are quantum correlations between two parties,

then the classical (as well as quantum) correlating capabilities of the two parties with other systems have to be

strictly reduced.

PACS: 03. 67.−a, 03. 65. Ta DOI: 10.1088/0256-307X/27/12/120304

A general observation in quantum information the-
ory is that while classical correlations can be shared
by many parties, quantum correlations usually ex-
hibit monogamy in the sense that they cannot be
shared.[1−10] In this context, the central concern is
to what extent the correlations between two parties
a and b impose limitations on their correlating capa-
bilities with other systems. The so-called monogamy
of entanglement states that if a and b are entangled,
then their entanglement capabilities with other sys-
tems are severely restricted. However, this entangle-
ment monogamy leaves open whether parties a and b
can still have classical correlations with other systems.
In this Letter, we establish that if a and b are entan-
gled, then this entanglement also puts limitations on
their classical correlating capabilities with other sys-
tems. In particular, in such a situation, a and b both
cannot have perfect correlations with any other sys-
tems. More precisely, if a and b are perfectly corre-
lated with certain other systems, then a and b cannot
have any quantum correlations (including entangle-
ment) between themselves. This may be interpreted
as a kind of monogamy of hybrid correlations (classi-
cal and quantum).

Entanglement is a particular kind of quantum cor-
relation, and the notion of quantum correlations is
more general than that of entanglement. To make
this more precise, we recall the classical/quantum di-
chotomy for bipartite correlations,[11] which is quite
different from the standard separability/entanglement
paradigm introduced by Werner.[12] A bipartite state
ρab shared by parties a and b is classical (with re-
spect to correlations) if it is left invariant by certain
local von Neumann measurement.[11] The correlations
therein are then called classical and such a quantum
state can be essentially identified with a classical bi-
variate probability distribution.[11,13] Here ρab is clas-

sical if and only if it has the following representation

ρab =
∑
ij

pij |i〉〈i| ⊗ |j〉〈j|.

Here {pij} is a classical bivariate probability distribu-
tion, {|i〉} and {|j〉} are orthonormal sets for parties
a and b, respectively. If ρab cannot be represented
as the above form, then it possesses quantum correla-
tions. Thus, here “classical” refers to the correlations
in ρab and is with respect to some particular basis.
Clearly, classical bipartite states are separable, but
the converse is not true since many separable states
still possess quantum correlations. However, classical-
ity and separability are intrinsically related to each
other.[14] Piani et al. have established a remarkable
characterization of classical correlations via the oper-
ational task of local broadcasting,[13] that is, classical
correlations are the only correlations that can be lo-
cally broadcast. The result of this study is also mo-
tivated by Refs. [15,16], and may be interpreted as a
characterization of classical bipartite states in terms
of monogamy of hybrid correlations.

Now, let us make precise the notion of perfect
correlations between two parties. Consider a bipar-
tite state ρa′a shared by parties a′ and a with the
same system dimension. By a local von Neumann
measurement Πa′

= {Πa′

i } on party a′, we mean a
family of one-dimensional orthogonal projections such
that

∑
i Πa′

i = 1a′
(identity operator). Here “local”

is used to emphasize that we will apply such a mea-
surement locally on the bipartite state ρa′a. If there
exist local von Neumann measurements Πa′

= {Πa′

i′ }
and Πa = {Πa

i } for parties a′ and a, respectively,
such that the bivariate probability distribution pa′a

i′i :=
tr(Πa′

i′ ⊗Πa
i )ρa′a(Πa′

i′ ⊗Πa
i ) satisfies pa′a

i′i = pa
i δi′i, then

we say that a can be perfectly correlated with a′. Here
pa

i :=
∑

i′ pa′a
i′i . The operational meaning for perfect
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correlations lies in that when the two parties make
their respective local measurements, they obtain the
same result. In such a case, the measurement out-
comes for party a are indeed perfectly correlated with
those for party a′ in the sense that they can only
take the same label value simultaneously, that is, if
party a′ obtains an outcome labeled by i in his sys-
tem, then party a will also obtain an outcome labeled
by i, it can never happen that the two parties obtain
different outcome labels: Their outcomes are perfectly
correlated. Note that according to this definition, if
{|i〉} is an orthonormal set for both a′ and a, and
if ρa′a = |Ψa′a〉〈Ψa′a| with |Ψa′a〉 =

∑
i

√
λi|i〉 ⊗ |i〉

(Schmidt form) is a pure state, or if ρa′a is a classical
state of the form ρa′a =

∑
i pi|i〉〈i| ⊗ |i〉〈i|, then a′

and a are perfectly correlated when both make mea-
surements along the basis {|i〉}. Consequently, perfect
correlations can occur in both classical and quantum
scenarios. Now we state the main result.

A bipartite quantum state ρab, shared by parties
a and b, is classical (with respect to correlations) if
and only if there exist two ancillary parties a′ and b′

such that a can be perfectly correlated with a′, and b
can be perfectly correlated with b′. Alternatively, if a
and b are correlated in a quantum fashion (i.e., ρab is
not classical), then a and b cannot be both perfectly
correlated with any other parties.

To establish the above result, first we suppose that
ρab is classical, and we will show that both parties a
and b can be perfectly correlated with some ancillary
parties. By the classicality of ρab, there exist local or-
thonormal sets {|i〉} and {|j〉} for parties a and b, re-
spectively, such that ρab =

∑
ij pij |i〉〈i| ⊗ |j〉〈j|. Here

{pij} is a bivariate probability distribution. Let Ha′

and Hb′ be copies of Ha and Hb, respectively, then
we can construct a four-partite state

ρa′abb′ :=
∑
ij

pij |i〉〈i| ⊗ |i〉〈i| ⊗ |j〉〈j| ⊗ |j〉〈j|,

and we have ρa′a = trbb′ρ
a′abb′ =

∑
i pi|i〉〈i| ⊗ |i〉〈i|,

ρbb′ = tra′aρa′abb′ =
∑

j qj |j〉〈j| ⊗ |j〉〈j|. Here pi :=∑
j pij , qj :=

∑
i pij . If we perform local von Neu-

mann measurements Πa′
= {|i′〉〈i′|} and Πa = {|i〉〈i|}

on parties a′ and a (Πa′
being a copy of Πa, i.e.,

|i′〉〈i′| = |i〉〈i|), respectively, we obtain the joint prob-
ability distribution pa′a

i′i = piδi′i, which means that a
can be perfectly correlated with a′. A similar state-
ment holds for party b.

Next we proceed to prove the converse. Sup-
pose that there exists a four-partite state ρa′abb′ with
marginals ρab = tra′b′ρ

a′abb′ , ρa′a = trbb′ρ
a′abb′ , ρbb′ =

tra′aρa′abb′ , such that a can be perfectly correlated
with a′, and b can be perfectly correlated with b′.
Then there are local von Neumann measurements

Πa′
= {Πa′

i′ },Πa = {Πa
i } such that

tr(Πa′

i′ ⊗ Πa
i )ρa′a(Πa′

i′ ⊗ Πa
i ) = piδi′i.

But due to the projective nature of von Neumann mea-
surements and the cyclic property of trace, we have

tr(Πa′

i′ ⊗ Πa
i )ρa′a(Πa′

i′ ⊗ Πa
i ) = tr(Πa′

i′ ⊗ Πa
i )ρa′a.

Consequently

tr(Πa′

i′ ⊗Πa
i ⊗1b⊗1b′)ρa′abb′ = tr(Πa′

i′ ⊗Πa
i )ρa′a = piδi′i.

In particular, for i′ 6= i, we have

(Πa′

i′ ⊗ Πa
i ⊗ 1b ⊗ 1b′)ρa′abb′ = 0.

From this we have

(1a′
⊗ Πa

i ⊗ 1b ⊗ 1b′)ρa′abb′

=
(( ∑

i′

Πa′

i′

)
⊗ Πa

i ⊗ 1b ⊗ 1b′
)

ρa′abb′

=(Πa′

i ⊗ Πa
i ⊗ 1b ⊗ 1b′)ρa′abb′ . (1)

On the other hand, we have

(Πa′

i ⊗ 1a ⊗ 1b ⊗ 1b′)ρa′abb′

=
(

Πa′

i ⊗
( ∑

j

Πa
j

)
⊗ 1b ⊗ 1b′

)
ρa′abb′

=(Πa′

i ⊗ Πa
i ⊗ 1b ⊗ 1b′)ρa′abb′ . (2)

Comparing Eqs. (1) and (2), we have

(1a′
⊗ Πa

i ⊗ 1b ⊗ 1b′)ρa′abb′

=(Πa′

i ⊗ 1a ⊗ 1b ⊗ 1b′)ρa′abb′ . (3)

Taking adjoint of the above equation, we obtain

ρa′abb′(1a′
⊗ Πa

i ⊗ 1b ⊗ 1b′)

= ρa′abb′(Πa′

i ⊗ 1a ⊗ 1b ⊗ 1b′). (4)

Similarly, we also have

(1a′
⊗ 1a ⊗ Πb

j ⊗ 1b′)ρa′abb′

=(1a′
⊗ 1a ⊗ 1b ⊗ Πb′

j )ρa′abb′ , (5)

ρa′abb′(1a′
⊗ 1a ⊗ Πb

j ⊗ 1b′)

= ρa′abb′(1a′
⊗ 1a ⊗ 1b ⊗ Πb′

j ). (6)

From Eqs. (3)–(6), we obtain

(1a′
⊗ Πa

i ⊗ Πb
j ⊗ 1b′)ρa′abb′

=(1a′
⊗ Πa

i ⊗ 1b ⊗ 1b′)(1a′
⊗ 1a ⊗ Πb

j ⊗ 1b′)ρa′abb′

=(1a′
⊗ Πa

i ⊗ 1b ⊗ 1b′)(1a′
⊗ 1a ⊗ 1b ⊗ Πb′

j )ρa′abb′

=(1a′
⊗ 1a ⊗ 1b ⊗ Πb′

j )(1a′
⊗ Πa

i ⊗ 1b ⊗ 1b′)ρa′abb′

=(1a′
⊗ 1a ⊗ 1b ⊗ Πb′

j )(Πa′

i ⊗ 1a ⊗ 1b ⊗ 1b′)ρa′abb′

=(Πa′

i ⊗ 1a ⊗ 1b ⊗ Πb′

j )ρa′abb′ .

120304-2

http://cpl.iphy.ac.cn


CHIN. PHYS. LETT. Vol. 27,No. 12 (2010) 120304

Consequently, we have proved that

(1a′
⊗Πa

i ⊗Πb
j⊗1b′)ρa′abb′ = (Πa′

i ⊗1a⊗1b⊗Πb′

j )ρa′abb′ ,
(7)

and by taking the adjoint, we have

ρa′abb′(1a′
⊗Πa

i ⊗Πb
j⊗1b′) = ρa′abb′(Πa′

i ⊗1a⊗1b⊗Πb′

j ).
(8)

For any observables A and B for parties a and b, re-
spectively, putting

X = 1a′
⊗ A ⊗ B ⊗ 1b′

and noting that X commutes with Πa′

i ⊗1a⊗1b⊗Πb′

j ,
we have

tr(A ⊗ B)ρab = trXρa′abb′

=trX
(( ∑

i

Πa′

i

)
⊗ 1a ⊗ 1b ⊗

( ∑
j

Πb′

j

))
ρa′abb′

=
∑
ij

trX(Πa′

i ⊗ 1a ⊗ 1b ⊗ Πb′

j

)
ρa′abb′

=
∑
ij

trX
(
Πa′

i ⊗ 1a ⊗ 1b ⊗ Πb′

j

)2

ρa′abb′

=
∑
ij

tr
(
Πa′

i ⊗ 1a ⊗ 1b ⊗ Πb′

j

)
× X

(
Πa′

i ⊗ 1a ⊗ 1b ⊗ Πb′

j

)
ρa′abb′

=
∑
ij

tr
(
Πa′

i ⊗ 1a ⊗ 1b ⊗ Πb′

j

)
× X

(
1a′

⊗ Πa
i ⊗ Πb

j ⊗ 1b′
)
ρa′abb′

=
∑
ij

trX
(
1a′

⊗ Πa
i ⊗ Πb

j ⊗ 1b′
)

× ρa′abb′
(
Πa′

i ⊗ 1a ⊗ 1b ⊗ Πb′

j

)
=

∑
ij

trX
(
1a′

⊗ Πa
i ⊗ Πb

j ⊗ 1b′
)

× ρa′abb′
(
1a′

⊗ Πa
i ⊗ Πb

j ⊗ 1b′
)

=
∑
ij

tr
(
1a′

⊗ Πa
i ⊗ Πb

j ⊗ 1b′
)

× X
(
1a′

⊗ Πa
i ⊗ Πb

j ⊗ 1b′
)
ρa′abb′

=
∑
ij

tr
(
1a′

⊗ (Πa
i AΠa

i ) ⊗ (Πb
jBΠb

j) ⊗ 1b′
)
ρa′abb′

=
∑
ij

tr
(
(Πa

i AΠa
i ) ⊗ (Πb

jBΠb
j)

)
ρab

=
∑
ij

tr(Πa
i ⊗ Πb

j)(A ⊗ B)(Πa
i ⊗ Πb

j)ρ
ab

=
∑
ij

tr(A ⊗ B)(Πa
i ⊗ Πb

j)ρ
ab(Πa

i ⊗ Πb
j)

= tr(A ⊗ B)
∑
ij

(Πa
i ⊗ Πb

j)ρ
ab(Πa

i ⊗ Πb
j).

Since the above equations hold for any A and B, we
conclude that

ρab =
∑
ij

(Πa
i ⊗ Πb

j)ρ
ab(Πa

i ⊗ Πb
j),

which implies that ρab is a classical state.
The main result qualifies classical correlations be-

tween two parties in terms of their correlating capa-
bilities with ancillary systems. In this context, it will
be desirable to extend the result in a more quantita-
tive way: How can we quantify the tradeoff relations
for the correlations between different parties? Here
we recall some relevant measures of correlations and
leave the quantitative characterization issue open. Re-
call that total correlations in ρab are quantified by
the quantum mutual information I(ρab) := S(ρa) +
S(ρb)− S(ρab), where S(ρa) := −trρalogρa is the von
Neumann entropy, and an intuitive measure for clas-
sical correlations is the observable correlations,[17]

C(ρab) = sup I(Π(ρab)),

where Π(ρab) :=
∑

ij(Π
a
i ⊗ Πb

j)ρ
ab(Πa

i ⊗ Πb
j), and

the sup is over all local von Neumann measurements
Πa = {Πa

i } and Πb = {Πb
j}. By the monotonicity of

quantum mutual information under local operations
(measurements), we know that I(ρab) ≥ C(ρab), and a
measure of quantum correlations can be defined as[17]

Q(ρab) := I(ρab) − C(ρab).

Apparently, if ρab is a classical state, then I(ρab) =
C(ρab) and Q(ρab) = 0, thus here all correlations are
classical and there are no quantum correlations. On
the other hand, if ρab is a pure state, then I(ρab) =
2S(ρa) and C(ρab) = Q(ρab) = S(ρab), and the to-
tal correlations are equally distributed as classical and
quantum parts. See Refs. [17,18] for some detailed ac-
counts of the relations between classical and quantum
correlations. Now, in terms of the observable corre-
lations C(ρab) and quantum correlations Q(ρab), the
main result may be phrased as that if Q(ρab) > 0,
then a and b cannot be both perfectly correlated with
other parties. The relations for correlations between
different parties are worth further investigation.

In summary, we have provided a characterization
of classical correlations (and thus also quantum corre-
lations) in bipartite states via monogamy, which states
that if both of the two parties can be perfectly corre-
lated with other ancillary systems, then there cannot
exist any quantum correlations between them. Put
it alternatively, if there are quantum correlations be-
tween the two parties, then these quantum correla-
tions will reduce the classical correlating capabilities
of both parties with other systems. This stands in
sharp contrast to the situation of classical correla-
tions, which can be shared by any number of parties,
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as well as to the situation of monogamy of entangle-
ment, which involves only quantum correlations.
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