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Abstract—We introduce an idea or a concept of restricted 
coexistence. By the restricted coexistence, the Ramsey number 

),( qpR  is defined equivalently as ),1( qpr − , that is, 
),1(),( qprqpR −= , 

where ),1( qpr −  is a least integer that has coexistence restricted 
to the parameters qp ,1−  with 2≥≥ pq  . From this, some 
basic properties about Ramsey numbers are obtained, for 
instance, 

)1,1(),( +−> qpRqpR , 
where qp,  are integers with 3≥≥ pq , and so on. 
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I.  INTRODUCTION  
In the end-twenties of the 20th century, Frank Ramsey, 

an English logician, laid the foundation for his well-known 
theory what is now called Ramsey theory. Its form in 2-
color case is only exhibited here. 

Ramsey's Theorem [1-4]. For each Nqp ∈, with 
2, ≥qp  , there exists a least integer ),( qpR  (the Ramsey 

number) such that, no matter how a complete graph 
),( qpRK  

is two-colored , it will contain either a red sub-graph 
pK or a 

blue sub-graph 
qK . 

We say that an integer n  has the Ramsey property for 
the parameters qp,  if  ).,( qpRn ≥  

This theory is regarded as a profound and important 
result that involves such a problem in how large scale 
discrete system there exist at least one of desired sub-
constructions. It contains the pigeonhole principle as a 
special case. But very little is known about classical Ramsey 
numbers' exact values [1-4]. 

Ramsey numbers will be applied possibly to many 
aspects [3,5,6], for example, searching data, computing the 
maximal and unambiguous code alphabet in the confusion 
graph, security in communication and so on. 
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The work gives a more explicit definition for Ramsey 
numbers. From this definition, people can obtain easily such 
relations as 

)1,1(),( +−> qpRqpR , 
where  qp ≤≤3 , 

)1,1(),( +−= pprppr ,  
where p≤2 , and so forth. 

II. A     LEMMA 
We begin with a basic fact in order to expound another 

definition about Ramsey numbers. 
Lemma. Let qp,  be integers with 2≥≥ pq .Then the 

number 1),( −qpR  is the biggest integer n  such that, under the 
restriction that there is neither a red sub-graph pK  nor a blue 
sub-graph qK , no matter how the complete graph nK  is 
two-colored , it will contain both a red sub-graph 1−pK  and a 
blue sub-graph 1−qK . 

Proof. For 2=p , the lemma is trivial (a vertex acts as a  
red 1K  or a blue 1K  ). 

For ,2>p  by Ramsey's theorem, the Ramsey number 
),( qpR exists. Then there must exist a two-colored complete 

graph
1),( −qpRK  which contains neither a red sub-graph 

pK  
nor a blue sub-graph

qK  , and for this case, we will prove 
that the two-colored complete graph 

1),( −qpRK   must contain 
both a red sub-graph 1−pK and a blue sub-graph 1−qK . 

Without loss of generality, suppose that there is no red 
sub-graph 1−pK  in the above

1),( −qpRK . Then we add a vertex 
v  into the 

1),( −qpRK  and use red color edges linking v  to all 
vertices of the 

1),( −qpRK  to construct a two-colored
),( qpRK . 

 On the one hand, since we only use the red color edges, 
obviously, the two-colored

1),( −qpRK doesn't contain a 
blue qK . 
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On the other hand, the two-colored 
1),( −qpRK  doesn't 

contain a red
pK either, because no red 1−pK in the 

1),( −qpRK  
itself and v  construct a red

pK . Thus, we get a two-colored 
complete graph 

),( qpRK  that contains neither a red sub-graph 

pK nor a blue sub-graph qK . This contradicts the definition 
of the Ramsey number ),( qpR . Namely, we have proved 
that, under the restriction that there is neither a red

pK nor a 
blue ,qK a two-colored 

1),( −qpRK contains always both a red 
sub-graph 1−pK  and a blue sub-graph 1−qK .  

Furthermore, since 1),( −qpR  plus 1 is the Ramsey 
number ),( qpR which must break the restriction condition of 
containing neither a red sub-graph 

pK  nor a blue sub-graph 

qK , the number 1),( −qpR is such the biggest integer. The 
lemma holds. # 

By the lemma, using the principle of mathematical 
induction, we immediately know that such a least integer 
that has ‘restricted coexistence’ exists.  

III. RESTRICTED   COEXISTENCE  
Now we draw out the idea or concept of restricted 

coexistence from the above arguments. 
Definition. Let qp,  be integers and not less than 2 . If 

there exists an integer n  such that, under the restriction that 
there is neither a red sub-graph 

pK nor a  blue sub-graph qK , 
no matter how the complete graph nK  is two-colored, it 
must contain both a red sub-graph 1−pK  and a blue sub-
graph 1−qK ,  then we say that the integer n  has coexistence 
restricted to the parameters .1,1 −− qp  

The existence of the integer n  in the definition, 
including such the biggest integer and such a least integer, 
had been verified beforehand by the above lemma and the 
principle of mathematical induction. 

Such a least integer n  is denoted by )1,1( −− qpr . 
Particularly, we define 1)1,1( =r . 

Example 1.   .9)4,2(,3)3,1( == rr  

 By the definition, the above lemma can be restated as 
that 1),( −qpR  is the biggest integer such that has 
coexistence restricted to the parameters .1,1 −− qp  

In addition, we know easily that for each integer 
2≥q , .11),2()1,1( −=−=− qqRqr  

IV.   ANOTHER  DEFINITION  ON  RAMSEY  NUMBERS  
The following theorem throws light upon a deep 

relationship between a least integer with coexistence 
restricted to given parameters and a corresponding Ramsey 
number. 

Theorem 1. Let qp,  be integers with  .2≥≥ pq  Then 
the following equality holds: 

            ),1(),( qprqpR −=  .                              (1) 

Proof. We will prove this equality via mathematical 
induction. 

Firstly, for 2=p and each integer q such that 2≥q , 
))(,1(),2( qqrqR == holds obviously. 

Next, we assume that, for arbitrary given integer p  with 
2≥p  and each integer q  such that ,pq ≥ the equality 

),1(),( qprqpR −=  is true. 

Finally, using −−= ),1(),( qprqpR the inductive 
hypothesis, we will push out such a result that, for each 
integer q  such that 1+≥ pq , ),(),1( qprqpR =+  holds 
always. 

In fact, by the restricted coexistence, since ),( qpr , 
where 2≥> pq , is a least integer that has coexistence 
restricted to parameters qp, , the integer 1),( −qpr   hasn't 
coexistence restricted to the parameters qp, . This means 
that, under the restriction that there is neither a red sub-
graph 1+pK  nor a blue sub-graph 1+qK , a 2-colored complete 
graph

1),( −qprK  need not contain always both a blue qK  and a 
red

pK . Therefore, ),( qpr  is only regarded as,  in two 
possible ways, either such a least integer n  that, under the 
restriction that there is no red 1+pK  , a blue qK appears 
unavoidably in a 2-colored nK (we know easily that it is 
equivalent to a least integer n  that, under the restriction that 
there is no blue ,qK a red 1+pK appears always in a two-
colored nK )or, such a least integer n such that, under the 
restriction that there is no blue ,1+qK a red pK appears 
unavoidably in a 2-colored nK  (equivalent to a least integer 
n  that, under the restriction that there is no red pK , a 
blue 1+qK  appears unavoidably in a two-colored nK ). 

On the other hand, by Ramsey number's definition, we 
see  that, for arbitrary given integers qp,  but not less than 2, 
actually, the Ramsey number ),( qpR  is a least integer n  
that, under the restriction that there is no red pK  , a blue qK  
appears unavoidably in a 2-colored nK  (we know easily that 
it is equivalent to a least integer n that, under the restriction 
that there is no blue qK , a red pK  appears unavoidably in a 
two-colored nK  ). 

So if we understand the )2(),( ≥> pqqpr  in the first 
way, that is, )2(),( ≥> pqqpr  is regarded as such a least 
integer n  that, under the restriction that there is no red 1+pK , 
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a blue qK appears unavoidably in a 2-colored nK  
(equivalent to a least integer n  that, under the restriction 
that there is no blue qK , a red 1+pK   appears unavoidably in 
a 2-colored nK ), then we get the desired equality 

),(),1( qprqpR =+  at once and complete the induction. 
Thus the theorem is true. 

But if we understand the )2(),( ≥> pqqpr  in the 
second way, that is, it is a least integer n  that, under the 
restriction that there is no blue ,1+qK  a red pK appears 
unavoidably in a 2-colored nK (equivalently, a least integer 
n that, under the restriction that there is no red pK , a 
blue 1+qK   appears unavoidably in a 2-colored nK ), then we 
will infer a  contradiction: 

Actually, by the second understanding and the above 
arguments, we know that ),,()1,( qprqpR =+ where 

2≥> pq . Again from the inductive hypothesis, it follows 
that )1,1()1,( +−=+ qprqpR , where 2≥> pq . Hence, 
we have 

).1,1()1,(),( +−=+= qprqpRqpr  

Similarly, by the second understanding once more,  
)2()1,1( ≥>+− pqqpr  can also be regarded as a least 

integer n  that, under the restriction that there is no blue 
,2+qK a red 1−pK appears unavoidably in a 2-colored nK (or 

equivalently, a least integer n  that, under the restriction that 
there is no red 1−pK  , a blue  2+qK appears unavoidably in a 
2-colored nK  ). 

Otherwise, why do we understand  always  the  ),( qpr  
with 2≥> pq   in the second way but not the first way?  That 
is , if )2()1,1( ≥>+− pqqpr  can be accepted as the above first 
understanding, then the ),( qpr  can also be understood in 
the first  way,  and the proof will be over at once. 

Thus, by the second understanding, again from the 
inductive hypothesis, we also have 

).2,2()2,1(
)1,1()1,(),(
+−=+−=

+−=+=
qprqpR

qprqpRqpr      

Going on to do as the above reasoning, we will get an equal-
sign sequence 

.1)1,1()1,2(

)2,2()2,1(
)1,1()1,(),(

−+=−+=−+=
=

+−=+−=
+−=+=

pqpqrpqR

qprqpR
qprqpRqpr

 

That is, for arbitrary given integer 2≥p  and each integer 
q  with pq > , equalities 

1)1,2()2,3(
)2,1()1,(),(

−+=−+=−+=
=+−=+=

pqpqRpqR
qpRqpRqpr  

or, equivalent to 

1)1,1()2,2(
)1,1(),(

−+=−+=−+=
=+−=

pqpqrpqr
qprqpr  

hold always. But, in fact, this is clearly impossible. This 
contradiction implies that the second understanding for 

)2(),( ≥> pqqpr  is incorrect. Therefore we accept only the 

)2(),( ≥> pqqpr  as the first way. Namely, the number 

)2(),( ≥> pqqpr  is such a least integer n that, under the 
restriction that there is no red 1+pK , a blue qK appears 
unavoidably in a 2-colored nK  , result the desired equality 

.2),(),1( ≥>=+ pqpaireachforqprqpR  

The inductive procedure has been finished. Hence, the 
theorem holds. # 

Example 2. .18)4,3(14)5,3()5,2( =≠== rRr  

 V.      WHAT  DOES  THE  EQUALITY  MEAN? 
Equality (1) demonstrates that the reason for so-called 

Ramsey phenomena – that is, no matter how each edge of 
nK  is colored with one of two colors (red or blue), either a 

red pK or a blue qK  appears always in the 2-colored nK , is 
that nK ’s order n reaches  the value ),1( qpr − of its 
minimal state under the restricted coexistence, which the 
two-colored ),1( qprK −

is under the restriction that there is 
neither a red pK  nor a blue 1+qK , where qp,  are integers 
such that .2≥≥ pq  

Additionally, its proof  implies that 
Corollary 1.1. For each Nqp ∈, with qp ≤≤3 , the 

strict inequality 
   )1,1(),( +−> qpRqpR                                   (2)  

holds.  
Proof.  By Theorem 1, we have 

)1,2()1,1(),,1(),( +−=+−−= qprqpRqprqpR  
where 3≥≥ pq , and thus we just need to prove the 
following inequality: )1,2(),1( +−>− qprqpr . 

Firstly, by Theorem 1 and the restricted coexistence, we 
get easily that  

)1,1(),( +−≥ qpRqpR  
where 3≥≥ pq . 

Secondly, again by Theorem 1's proof, we know 
that )3)(,1( ≥≥− pqqpr can not be accepted as the second 
understanding, namely, it is not a least integer n  that, under 
the restriction that there is no blue 1+qK  , a red 1−pK  appears 
unavoidably in a 2-colored .nK In other words, when 
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3≥≥ pq , a least integer n that, under the restriction that 
there is no blue 1+qK , a red 1−pK appears unavoidably in a 2-
colored nK , fails to reach such a least integer m that a 2-
colored mK  contain always a blue qK  under the restriction 
that there is no red pK , namely, a two-colored )1,2( +− qprK  
need not contain both a red complete sub-graph 1−pK  and a 
blue complete sub-graph qK under the restriction that there is 
neither a red pK nor a blue 1+qK . Hence, the strict inequality 
holds. # 

Doubtless, the result is equivalent to Theorem 1. 
Using Theorem 1, we also find another interesting 

phenomenon: 
Corollary 1. 2. For each Np ∈ with 2≥p , the equality 

   )1,1(),( +−= pprppr                                 (3)  
holds. 

Proof. By the definition of restricted coexistence, the 
integer ),( ppr , that sets at the left end of the equality, is a 
least integer with coexistence restricted to parameters: pp, . 
The existence of the ),( ppr  can be verified by that 
of 1)1,1( −++ ppR that, by the above lemma, is the biggest 
integer with coexistence restricted to parameters: pp, . 

First, we prove the inequality )1,(),( +≥ ppRppr . 
In fact, if there is no red pK  in the two-colored ),( pprK , 

then, by the restricted coexistence, a blue color 1+pK  must 
appear in it, and if there is no blue color 1+pK  in the two-
colored ),( pprK , then, by the definition of ),( ppr , a red 
color pK  must exist in it. By the symmetry of ),( ppr ’s 
parameters, thus we have proved that the ),( ppr  has the 
Ramsey property for the parameters 1, +pp . The inequality 
follows from this. 

 Again by Theorem 1, we have 
 )1,1()1,( +−=+ pprppR , 

so that  
)1,1(),( +−≥ pprppr . 

Conversely, by ),( ppr ’s definition, the ),( ppr  is 
regarded naturally as a least integer n  such that ,under no 
blue 1+pK , a red pK  appears always in a 2-colored. nK . 

That means that a 2-colored complete graph 1),( −pprK  need 
not contain a red pK under no blue 1+pK , namely, 1),( −ppr  
doesn't have the Ramsey property for the parameters: 

1, +pp .Thus ,we have 
)1,1()1,(1),( +−=+<− pprppRppr . 

The desired equality holds from the above. # 
This corollary means that the Ramsey number 

)1,( +ppR  is regarded as the common value of two distinct 
minimal states under the restricted coexistence: one is that 
of parameters: 1,1 +− pp ; another is that of parameters 

pp, . For ),( ppr , one form of )1,( +ppR , its next Ramsey 
number is viewed as )1,1( ++ ppR  ))1,(( += ppr ;  for 

)1,1( +− ppr , another form of )1,( +ppR , its next Ramsey 
number is viewed as )2,( +ppR  ))2,1(( +−= ppr . 

Example 3.  Let 5=p  in Corollary 1.2, and we 
illustrate the meaning of Equality (3) by the following 
network: 

↓↓
→→

↓↓↓
→→→→

↓↓↓

)7,6()6,6()6,5(

)7,5()6,5()5,5(

RRR

RRR
 

Figure 1.  The local network for ),( qpR . 

By the above equalities (1) and (3), )6,5(R  is not only 
the value of the minimal state under coexistence restricted 
to 5,5  but also the value of the minimal state under 
coexistence restricted to 6,4 ；for the minimal state under 
coexistence restricted to the first parameter set, the value 
under its next minimal state is accounted as )6,6(R  
(= )6,5(r ), and for the minimal state under coexistence 
restricted to the second parameter set, the value under its 
next minimal state is accounted as ))7,4()(7,5( rR = . 

With the help of the idea of restricted coexistence and 
Theorem 1, we put forward a useful principle. 

Corollary 1.3.(The relative capacity principle)  In the 
contact  diagram of  two-color Ramsey numbers, 

↓↓
→+→→

↓↓
→+→→

↓↓

)1,(),(

)1,(),(

vuRvuR

qpRqpR
 

Figure 2.  A general  form of the local  network for ),( qpR . 

for arbitrary given integers vuqp ,,,  that meet that 
qp ≤≤2 and 1+≤< vup ,  if ),(),( vuRqpR ≤ , then  

   ),()1,(),()1,( vuRvuRqpRqpR −+≤−+ .             (4)  
Proof. Without loss effectiveness, we make an example 

instead of the proof.  
We know that 28)8,3()7,4( =≥ RR  by the known data 

([4]). That is that the absolute capacity of the Ramsey 
number for 7,4  is not less than that of Ramsey number 
for 8,3 . Again since the minimal parameter 3 of )8,3(R  is 
less than the minimal parameter 4 of )7,4(R ,  by Theorem 1 
or Inequality (2), the relative capacity of the Ramsey 
number for 7,4  is not less than that of Ramsey number 
for 8,3 ， in other words, the number of vertexes needed to 
be added into the original state )8,2(rK  under coexistence 
restricted to 8,2  in order to reach its saturated state 1)9,3( −RK  
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doesn’t exceed  that of vertexes needed to be added into the 
original state )7,3(rK  under coexistence restricted to 
parameters 7,3  in order to reach its saturated state 1)8,4( −RK . 
That is, 

)8,3()9,3()7,4()8,4( RRRR −≥−   
unless Theorem 1 is false .# 

Example 4. By the principle and known data ([4]), we 
can rise up the Ramsey number )8,4(R ’s lower bound to 57 
from the present 56, namely .57)8,4( ≥R  

VI.    EXTENSION  
In similar ways to the above definition, lemma, theorem 

as well as their corollaries, it's not difficult to get the 
corresponding results for multi-color graphs and hyper-
graphs. We outline them without their proofs as follows. 

Theorem 2. Let kpppt ,,,, 21  be any monotone 
increasing sequence with integer value and 2, ≥tk . Then 
there exists a positive integer n  such that, under the 
restriction that there is not a 1c color ,,

1

t
pK a 

1−kc color t
pk

K
1−
or a kc color t

pk
K 1+

([2,3]), no matter how each 
t -element subset of a n -element set is colored with any one 
of  k colors, there must coexist a subset of size 11 −p  such 
that all of its t -element subsets are 1c color (that is, a 1c  
color t

pK 11−
), … , a subset of size 11−−kp   such that all of its t -

element subsets are 1−kc color (that is, a 1−kc color t
pk

K 11 −−
) 

and a subset of size 
kp  such that all of its t -element subsets 

are kc color (that is, a kc color t
pk

K ). Such a least integer n  is 
denoted by 

   ),1,,1,1( 121 kkt ppppr −−− − .                    (5) 
Further, 
     ),1,,1,1(),,( 12121 kktkt pppprpppR −−−= − ,    (6)  

),1,...)(1,...,1(...,),,,( 21 +≥+−> tpppRpppR ijitkt (7)

).,1)(1,,,,1(),,,(
11

tpspppprpppr
s

t

s

t ≥≥+−=
−+

  (8) 

 The theorem is an extension of the two-parameter and 
2=t  forms of the conclusions in Sections II-V respectively. 

Techniques or ideas of the proof are also the same as them. 
Example 5. ([2-4])    ,36)9,3()9,2()9,2(2 === Rrr  

9)9,3,3()9,2,2( 33 == Rr ;   )6,6,3()6,5,4( 33 RR > ; 
).5,5,5,4()4,4,4,4()5,4,4,3( 333 Rrr ==  

 

VII.    CONCLUSION 
By the existence of the minimal coexisting-states under 

the restriction, we understand fairly the reason for the 
phenomena described by Ramsey's theorem, namely 
Ramsey phenomena. The above properties or relations can't 
be directly obtained from Ramsey's theorem, so the 
technique or idea of restricted coexistence will be helpful in 
research on Ramsey theory. 

Let us end our arguments by enjoying with everybody 
two conjectures: 

For each Np ∈ with 3≥p , the equalities 
)3,()1,1( +=++ ppRppR  

and  
1)1,1,1(),,( −++−= pppRpppR   

are true, as known instances in case of taking 3=p , 
1)4,4,2()3,3,3(,18)6,3()4,4( −=== RRRR ([3,4]). 

Further discussion will be arranged in the future. 
 

VIII.     ACKNOWLEDGMENT 
The accomplishment of this work benefited from the 

enlightenment from the works of the references' authors 
below and other related scholars. My real thanks also go to 
my graduate students:  QI Lin and DUAN Guangwen for 
their help. Finally, I would also like to extend my sincere 
gratitude to this work's referees in ISCSCT&ISISE2008, 
IEEE for their penetrating and insightful comments.  

 

IX.    REFERENCES 
[1] Ramsey F..P, On a problem of formal logic, Proceedings of the 

London Mathematical Society, 1930,30,pp.264-286. 
[2] Richard A. Brualdi, Introductory Combinatorics, fourth  edition , 

Prentice-Hell, 2004. 
[3] Ronald L.Graham, Bruce L.Rothschild,& Joel L.Spencer, Ramsey 

Theory , second edition, New York: Wiley, 1990. 
[4] S.P.Radziszowski, Small Ramsey Numbers, Electronic Jounal 

Combinatorics,  Dynamic Survey 1, 2006. 
[5] Lovasz L., On the Shannon Capacity of a Graph, IEEE Trans. Inform. 

Theory, 17-25(1979),pp1-7. 
[6] Biggs N., Algebraic Graph Theory, London: Cambridge University 

Press, 1993. 

409


