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Abstract
We investigate quantum heat transport in a one-dimensional harmonic system with random
couplings. In the presence of randomness, phonon modes may normally be classified as
ballistic, diffusive or localized. We show that these modes can roughly be characterized by the
local nearest-neighbor level spacing distribution, similarly to their electronic counterparts. We
also show that the thermal conductance Gth through the system decays rapidly with the system
size (Gth ∼ L−α). The exponent α strongly depends on the system size and can change from
α < 1 to α > 1 with increasing system size, indicating that the system undergoes a transition
from a heat conductor to a heat insulator. This result could be useful in thermal control of
low-dimensional systems.

(Some figures may appear in colour only in the online journal)

1. Introduction

The derivation of Fourier’s law of heat conduction from
microscopic dynamics without any ad hoc statistical
assumption is one of the great challenges in nonequilibrium
statistical mechanics [1]. Even in the context of classical
dynamical systems, the issue of heat transport, in spite of
having a long history (recently reviewed in [2]), is not
completely settled. Here, a central issue is to determine
how the heat current (J) through the system depends on the
system size (L). In a one-dimensional (1D) harmonic chain,
no global thermal gradient occurs due to the lack of scattering
between modes [3]; thus, one expects J ∝ L0. However, some
classical nonlinear systems of interacting particles, especially
those with nonlinear on-site potentials [4], typically exhibit a
diffusive behavior above a critical interaction strength, which
then leads to the onset of Fourier’s law (J = −κ∇T ∝ L−1),
relating the macroscopic heat flux to the temperature gradient.
Further, a lot of studies have found that the heat transport is
abnormal with J ∝ L−α in many other 1D systems [5–7], and
the exponent α differs in a number of ways. In particular, it
has been shown that in a classical mass-disordered harmonic
chain the exponent α is 1/2 when the baths are modeled by
semi-infinite harmonic chains [8].

Even less is known about heat transport in quantum
systems, such as spin chains [9–18] and quantum harmonic
chains [19, 20], despite many studies. The main problem is
that, unlike in classical systems, the time and space computer
requirements for numerical simulations of quantum systems
exponentially increase with the system size, especially in
spin systems. As a result, investigations have been so far
mainly focused on the linear response theory [9, 10], whose
validity is questionable [21]. We recall that in integrable
systems such as 1D spin-1/2 Heisenberg chains, due to the
existence of nontrivial conservation laws, the current–current
correlation functions typically do not decay to zero, thus
implying ballistic transport [9, 22]. However, nonballistic heat
transport has also been observed in spin systems [13–16]. In
the 1D quantum harmonic chain with random couplings, it
was shown recently that a finite temperature gradient can be
created [19]. However, the dependence of the heat current on
the system size remains unclear.

In this paper we report results for heat conduction
in 1D harmonic lattices with random couplings by using
the nonequilibrium Green’s function method. We show that
the phonon states, which can normally be classified as
ballistic modes, diffusive modes, and localized modes, may
be characterized by the local nearest-neighbor level spacing
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distribution P(s). We also find that on the large length scale
most eigen-modes are probably localized except those close
to the zero frequency (due to translational invariance). Thus
the heat current decays rapidly with the system size and
the system becomes a heat insulator when the system size
is large enough. This behavior of phonons is similar to
the electron transport in 1D disordered systems, although
electrons and phonons differ in that electron transport is
dominated by electrons near the Fermi level (when the
temperature is not high) whereas in the case of phonons nearly
all frequencies participate in heat transport. The reason may
be that phonons obey Bose–Einstein statistics while electrons
obey Fermi–Dirac statistics.

2. Model and method

We consider heat conduction through a 1D disordered
harmonic chain consisting of L particles. The particles
have common mass m, while the couplings between the
nearest-neighbor particles are random. Another type of
disorder is mass disorder, and actually a mass-disordered
system can be mapped to one with random couplings by
a rescaling transformation. Thus we focus on systems with
random couplings in the following. The Hamiltonian of the
system is then

Hs =

L∑
i=1

p2
i

2m
+

L−1∑
i=1

ki

2
(xi+1 − xi)

2, (1)

where xi and pi denote the coordinate and the momentum of
the ith particle, and ki is the random coupling. At the two ends
the system is connected to two semi-infinite harmonic chains
serving as leads, whose Hamiltonians read

Hα =
∞∑

i=1

p2
α,i

2m
+

∞∑
i=1

k

2
(xα,i+1 − xα,i)

2, (2)

where α = l, r. The coupling between the leads and the system
is

Hc =
k

2
(xl,1 − x1)

2
+

k

2
(xr,1 − xL)

2. (3)

The total system is therefore H = Hs + Hl,r + Hc. In
the simulations, we keep ki = αik. Here the dimensionless
quantity αi is uniformly distributed in [1 − W/2, 1 + W/2]
with W controlling the strength of random couplings.

We calculate the heat current by using the standard
nonequilibrium Green’s function formalism [23, 24]. The left
and the right leads are taken into account via the self-energies
Σr

L,R(ω), and the retarded Green’s function for the system is
calculated as

Gr(ω) = [Mω2
−Ks −Σr

L(ω)−Σr
R(ω)]

−1, (4)

where M is a diagonal matrix with elements corresponding to
the masses of the particles and Ks is the dynamic matrix for
the central system. The phonon transmission is then given by

T (ω) = Tr[ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)], (5)

Figure 1. Level distributions around three typical frequencies. The
random couplings are uniformly distributed in [0.9, 1.1], i.e.,
W = 0.2. The results are obtained by counting 40 levels around a
frequency and then summarized over 100 disorder realizations. The
length of the system is L = 1000. The Poisson distribution (full
line) and the Wigner distribution (dashed line) are also shown for
comparison. Here m = k = 1.

where ΓL,R = i[Σr
L,R(ω) −Σr,†

L,R(ω)] and Ga(ω) = Gr,†(ω).
The phonon thermal current can be calculated from the
phonon transmission function T as

Jph(T) =
h̄

2π

∫
∞

0
dωω T (ω) [nB(TL)− nB(TR)], (6)

where nB(TL,R) = (eh̄ω/kBTL,R − 1)−1 is the Bose–Einstein
distribution and TL,R is the left (right) bath temperature. In
the linear response regime, the phonon thermal conductance
is then

Gph(T) =
h̄2

2πkBT2

∫
∞

0
dωω2 T (ω)

eh̄ω/kBT

(eh̄ω/kBT − 1)2
. (7)

If Fourier’s law is satisfied, one would expect Gph ∝ 1/L.

3. Results

First, we consider the nearest-neighbor level spacing
distribution. Similarly to the level distribution in the 1D
tight binding Anderson model for electrons [25], we expect
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Figure 2. (a) Phonon transmission as a function of the frequency. The random couplings are uniformly distributed in [0.9, 1.1] (or
W = 0.2). The results are obtained for 100 disorder realizations. (b) 1/T̄ − 1 as a function of the system length for several frequencies.
(c) Averaged logarithm of transmission (ln T ) as a function of length for several frequencies. Here m = k = 1.

that the distribution P(s) in this harmonic system may
be used to measure the chaotic behavior of phonons. We
shall look at the local frequency spectra around some
typical frequencies. Without disorder the phonon spectrum
is ωq =

√
4k/m sin(q/2), where q is the wavevector. The

local frequency spectrum, excluding frequencies around ω ∼
√

4k/m, is quasi-equidistant, so that the eigenstates are
extended and regular and we thus expect a Delta-type
distribution, Pδ(s) = δ(s − 1). In the presence of disorder,
phonons may be scattered differently. Specifically, close to
the zero frequency (ω ∼ 0), where phonon modes have
long wavelengths and thus are less affected by the disorder,
we then expect a Delta-type distribution Pδ(s). However,
in the high frequency region, where phonon modes are
strongly affected by the disorder, the eigenstates may be
effectively localized on the scale of the sample length, thus
resulting in a Poisson distribution, PP(s) = exp(−s). In
between these regions, one may expect that the eigenstates
are delocalized and chaotic, which means that the eigenstates
are uncorrelated with the distribution close to Wigner type,
PW(s) = (πs/2) exp(−πs2/4). Figure 1 shows the level
distributions around three typical frequencies. The results are
obtained by counting 40 levels around a frequency and then
summarized over 100 disorder realizations. As expected, the
three level distributions at ω = 0.03, ω = 1, and ω = 1.75 are
very close to Pδ(s), PW(s), and PP(s), respectively. In fact,
these three distributions may be used to identify the ballistic,
diffusive, and localized transport regimes as discussed below.

Figure 2(a) shows how the averaged transmission
depends on the frequency for different sample lengths L
with disorder strength W = 0.2. For a pure harmonic chain
the transmission is unity. In the presence of disorder, the

transmission normally decreases with increasing length L.
However, the transmission at low frequencies (e.g., ω =
0.03) weakly varies with the length, which is a characteristic
of the ballistic transport regime with the level distribution
being of Delta-type as shown in figure 1(a). For slightly
higher frequencies, scattering events start to dominate the
transport as L increases and a crossover from the ballistic to
the diffusive regime occurs. In this regime, the transmission
can be described by the sum of the ballistic and diffusive
contributions, T̄ (ω) = 1/(1 + L/le(ω)), where le(ω) is the
mean free path [26]. In figure 2(b), we can clearly see that
the dependence of the transmission on the length at ω = 0.03
and 0.5 is well described by T̄ (ω) = 1/(1+ L/le). At ω = 1,
the transmission may be also described by this relation on the
length scale L ∼ 1000, where the level spacing is close to the
Wigner distribution as shown in figure 1(b). However, on a
larger length scale L > 2000, deviation appears as the mode
at ω = 1 begins to be localized.

For even higher frequencies, disorder induced scattering
effects become increasingly important as L increases. As a
result, the localization regime is established. This regime is
characterized by an exponential decrease of the transmission
with the length, i.e., ln T = −L/ξ(ω), where ξ(ω) is the
localization length [26]. From figure 2(c), we can see that the
transmission at ω = 1.75 is well described by this localization
scaling law with the level spacing being described by the
Poisson distribution.

Next, we consider the heat transport through the system.
Figure 3 shows the heat conductance as a function of length
for different disorder strengths. To be more realistic, here we
keep ωmax ≡ 2

√
k/m= 300 THz. For the strong disorder W =

1 we can clearly observe a transition from abnormal transport
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Figure 3. The phonon thermal conductance versus the sample
length for different disorder strengths W. Here we keep
ωmax ≡ 2

√
k/m = 300 THz, and Gth is thus in units of

10−10 W K−1. The temperature is T = 300 K. The inset shows ln T
as a function of length for three frequencies when the disorder
strength is W = 0.02.

(α < 1) to heat insulator (α > 1), occurring at around L =
3 × 104. As the strength of the disorder becomes less, the
transition takes place on a larger length scale. For W = 0.2
the transition takes place at around L = 105. For an even
weaker disorder strength (W = 0.02) the behavior at L > 106

is not displayed in figure 3 due to limited computation ability.
However, we may expect that the transition would happen on
a length scale of ∼106. This may also be understood from
the averaged logarithm of transmission for W = 0.02 (see the
inset). In fact, except for the phonon modes around ω = 0,
where the transmission would always be close to unity due
to the translational invariance, most phonon modes become
localized with increasing system length as shown in the inset,
thus leading to a rapid decay of thermal conductance on the
large length scale. Further, it is noteworthy that in our case
the exponent α increases with increasing sample length, in
contrast to the previously reported classical results [8], where
α converges to a constant with the length.

In figure 4, we plot the thermal conductance versus the
length at different temperatures. At low temperature, only
low frequency modes contribute to the heat conductance,
and the transmission at these frequencies changes little when
the sample length is small. Thus, the thermal conductance
changes slowly on the small length scale. At around
L = 105 the transition from abnormal transport to heat
insulator occurs and the thermal conductance begins to decay
rapidly, indicating that even the low frequency modes begin
to become localized. For high temperatures the thermal
conductances converge to almost the same value on the
large length scale. This is because at high temperatures
(kBT � h̄ω) only the transmissions at low frequencies take
appreciable values, and equation (7) thus reduces to Gth =
kB
2π

∫
∞

0 dωT (ω), implying that the thermal conductance
becomes temperature-independent. At high temperatures we
can also observe a transition from abnormal transport to heat
insulator at around L = 105.

Figure 4. The phonon thermal conductance versus the sample
length for different temperatures; W = 0.2. Here we keep
ωmax ≡ 2

√
k/m = 300 THz, and Gth is in units of 10−10 W K−1.

4. Summary

We have studied the quantum heat transport in a 1D disordered
harmonic system in the nonequilibrium Green’s function
formalism. Generally, the phonon states in such a system can
be classified as ballistic modes, diffusive modes, and localized
modes. We have shown that these three kinds of phonon
mode can be characterized by the local nearest-neighbor level
spacing distribution P(s). Further, we have found that as the
system length increases, the system undergoes a transition
from a heat conductor (α < 1) to a heat insulator (α > 1),
regardless of the temperature. In our case, the exponent α in
J ∝ L−α varies over the whole range of the sample length.
As the strength of the disorder becomes less, the length
scale on which the transition occurs becomes larger. These
results could be useful in thermal control of low-dimensional
systems. For example, by doping the system could be tuned
into a heat insulator. Indeed, a recent work shows that the
thermal conductivity of silicon nanowires can be reduced
exponentially by isotopic disorder [27].
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