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Abstract
This paper studies the pullback asymptotic behaviour of trajectories for
evolution equations. We first combine the idea of trajectory attractor and
pullback attractor to formulate a new type of attractor called pullback trajectory
attractor. Then we prove a sufficient condition for the existence of a pullback
trajectory attractor for the translation cocycle defined on the united trajectory
space of the evolution equations. Finally, we take a three-dimensional
incompressible non-Newtonian fluid as the applied example and prove its
pullback trajectory asymptotic smoothing effect.

Mathematics Subject Classification: 35B41; 35Q35; 76D03

1. Introduction

The attractor is an important concept in the study of evolution equations because it could
provide some useful information about the asymptotic behaviour of solutions. There are many
works concerning this subject, see, e.g., [3, 24, 29, 35, 43, 46, 47]. With the development of
non-autonomous and random dynamical systems, a new type of attractor, called pullback (or
cocycle) attractor, was formulated and investigated (see e.g. [25,26,31,32,36,37]). Factually,
the theory of pullback attractor has proved very useful in the understanding of the dynamics
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of non-autonomous and random systems, including those with delays (see e.g. [1, 9, 14–
16, 19, 21, 22, 44, 45]). One can refer to Boukrouche et al [9], Caraballo et al [14,15], Caraballo
and Langa [16, 17], Caraballo et al [20], Cheban et al [22], Kloeden and Schmalfuss [31, 32]
Langa and Schmalfuss [36], Langa et al [37], etc.

In many evolution equations, possible absence of uniqueness of solutions makes some
difficulties in the study of the asymptotic behaviour of solutions. For example, we all know that
the uniqueness of weak solutions to the basic boundary value problem for three-dimensional
(3D) Navier–Stokes equations still remains unproved. Hence, one cannot use the classical
methods based on the analysis of the global attractor (or kernel sections, uniform attractor)
of the corresponding semigroup (or process) to discuss the behaviour of solutions to these
systems.

There are three methods to overcome the difficulties associated with possible non-
uniqueness of solutions in the study of dynamical systems. The first one is generalized semi
flow which was formulated by Ball [2]. The second one is multi-valued dynamical systems, one
can refer to Melnik and Valero [40,41] for multi-valued semi flows, Kapustyan and Valero [33],
Caraballo et al [13, 20], Wang and Zhou [50] for multi-valued process (or semiprocess) and
Caraballo et al [10–12] for multi-valued random dynamical systems. Caraballo et al [18]
gave a detailed comparison between the theories for generalized semi flow and multi-valued
dynamical systems. The third one is trajectory attractor. The definition of trajectory attractor
was initially developed to overcome difficulties related to possible non-uniqueness of weak
solutions for the 3D Navier–Stokes equations (see e.g. [23, 24, 49]). Later, the theory of
trajectory attractor proved very useful for other models whose solution corresponding to
each initial state can be non-unique. As will be seen below, the works of Chepyzhov and
Vishik [23, 24, 49] greatly influence the presentation of this paper.

Although the above three methods use different concepts to describe the asymptotic
behaviour of the systems with possible non-uniqueness of solutions, in fact they deal with
very similar problems in which the dynamics is governed by a collection of possible solutions
through each initial condition.

The major motivation and original goal of this paper is to study the pullback asymptotic
behaviour of solutions for the following non-autonomous 3D incompressible non-Newtonian
fluid:
∂u

∂t
+ (u · ∇)u + ∇p = ∇ · τ(e(u)) + g(x, t), x = (x1, x2, x3) ∈ �, (1.1)

∇ · u = 0, (1.2)

where � is a smooth bounded domain of R
3, the unknown vector function u = u(x, t) =

(u(1), u(2), u(3)) denotes the velocity of the fluid, g(x, t) = g(t) = (g(1), g(2), g(3)) is the
time-dependent external force function, and the scalar function p represents the pressure.
Equations (1.1) and (1.2) describe the motion of an isothermal incompressible viscous fluid,
where τ(e(u)) = (τij (e(u)))3×3, which is usually called the extra stress tensor of the fluid, is
a matrix of order 3 × 3 and

τij (e(u)) = 2µ0(ε + |e|2)−α/2eij − 2µ1�eij , i, j = 1, 2, 3, (1.3)

eij = eij (u) = 1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
, |e|2 =

3∑
i,j=1

|eij |2,

and µ0, µ1, α, ε are parameters which generally depend on the temperature and pressure. Here
we assume µ0, µ1, ε and α are positive constants. In (1.3) if τij (e(u)) linearly depends on
eij (u) then we say the corresponding fluid is a Newtonian one. Generally speaking, gases,
water, motor oil, alcohols and simple hydrocarbon compounds tend to be Newtonian fluids and
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their motions can be described by Navier–Stokes equations. If the relation between τij (e(u))

and eij (u) is nonlinear, then the fluid is called non-Newtonian. For instance, molten plastics,
polymer solutions and paints tend to be non-Newtonian fluids. One can refer to [5–7, 34, 39, 42]
and the references therein for detailed physical significance. There are many works concerning
the unique existence, regularity and asymptotic behaviour of solutions to equations (1.1)–(1.3)
or its associated version (see e.g. [4, 7, 8, 27, 28, 30, 34, 39, 42] and [51–54]).

We will first combine the idea of Caraballo et al [14, 15, 19] for pullback attractor and
Chepyzhov and Vishik [23,24,49] for trajectory attractor to formulate a new type of attractor,
called pullback trajectory attractor, for evolution equations. Then we prove a sufficient
condition for the existence of a pullback trajectory attractor for the translation cocycle on
an abstract united trajectory space. The definition of pullback trajectory attractor, which is
formulated in terms of a θ -cocycle map φ on a united trajectory space driven by a group θ on
a time symbol space (	, σ ), provides a family of time-dependent compact sets that pullback
attract bounded sets in the united trajectory space and satisfy a cocycle invariance property.
This concept can be defined for evolution equations with possible non-uniqueness of solutions
as long as the existence can be ensured. The central idea of this concept originates from the
above mentioned three methods. At the same time, it contains the characteristic of pullback
attractor. It is indeed a technique combination of the trajectory attractor and pullback attractor.
Similar to the theory of pullback attractor pointed out by Caraballo et al [14], we expect that
the concept of pullback trajectory attractor enables one to treat more general non-autonomous
terms and will work under random environments as well.

To illustrate the applications of pullback trajectory attractor, we take the initial boundary
value problem associated with non-Newtonian fluid equations (1.1)–(1.3) as an example. We
first construct the united trajectory space T tr

H(g0)
and prove the existence of a compact pullback

trajectory attractor {Atr
g }g∈H(g0) = Atr

H(g0)
⊂ L∞(R+; H) ∩ Cloc(R+; H−η). Then we construct

the regular united trajectory space U tr
H(g0)

and prove the existence of a compact pullback
trajectory attractor {A tr

g }g∈H(g0) = A tr
H(g0)

⊂ L∞(R+; V ) ∩ Cloc(R+; H 2−η). Meanwhile,
we establish that Atr

g = A tr
g for each g ∈ H(g0). This regularity of the pullback trajectory

attractor reveals the pullback trajectory asymptotic smoothing effect of the 3D fluid in the
following sense: the trajectories issued from u0 ∈ H belong to L∞(R+; H) ∩ Cloc(R+; H−η),
and (under the pullback acting of the translation cocycle) eventually belong to L∞(R+; V ) ∩
Cloc(R+; H 2−η) after long enough time, which is the starting point for our interest in the
problem.

Compared with the work of [53], here we only require α > 0 because we only need the
existence of solutions and the uniqueness of solutions does not play an important role in our
discussion. While the uniqueness of solutions is a building block of the definition for the
corresponding cocycle on the state space and hence [53] takes α ∈ (0, 1).

We should point out that Chepyzhov and Vishik [24] formulated the concept of united
trajectory space and uniform trajectory attractor for non-autonomous equations, where the
natural translation semigroup {T (t)}t�0 was considered to act on the united trajectory space
and the uniform (with respect to σ ∈ 	) trajectory attractor forward attracts uniformly (with
respect to σ ∈ 	) any bounded set of the united trajectory space. Compared with the uniform
trajectory attractor for the translation semigroup {T (t)}t�0, the pullback trajectory attractor
here considers, in the pullback attracting property (see definition 2.4) of the translation cocycle
φ(t, θ−t (σ ), ·), the state of the trajectories as time t → +∞ when the initial time −t of the
symbol θ−t (σ ) goes to −∞.

It is worth emphasizing that Caraballo et al [13] studied the pullback attractor of
non-autonomous and stochastic multi-valued dynamical systems, where the definition of
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multi-valued dynamical process (MDP) generalizes the notion of process corresponding to
a non-autonomous equation whose Cauchy problem is uniquely solvable. The MDP was
defined as a two-parameter family of multi-valued maps. The attraction of any bounded set
of the phase space to the attractor is uniform with respect to the first parameter, whereas the
rate of attraction and attractor itself can depend on the second one. Moreover, the trajectories
of the MDP can be unbounded in time. We note that the pullback trajectory attractor attracts
the bounded trajectories in T tr

σ of the equation with symbol σ ∈ 	. At the same time, the
attraction manner of the pullback trajectory attractor differs from that of the pullback attractor
in [13], where the attractor attracts the solutions of the systems from −∞: the initial state of
time goes to −∞ and the final time remains fixed.

The paper is organized as follows. In section 2 we first formulate the concept of pullback
trajectory attractor and some related notation for abstract evolution equations. Then we prove
a sufficient condition for the existence of a pullback trajectory attractor. In section 3, we first
introduce some operators to put the initial boundary value problem associated with equations
(1.1)–(1.3) into an abstract Cauchy problem and then prove the existence of a compact pullback
trajectory attractor Atr

H(g0)
= {Atr

g }g∈H(g0) ⊂ L∞(R+; H) ∩ Cloc(R+; H−η). In section 4, we
first construct the regular united trajectory space and prove the existence of a compact pullback
trajectory attractor A tr

H(g0)
= {A tr

g }g∈H(g0) ⊂ L∞(R+; V )∩Cloc(R+; H 2−η). Then we establish
that Atr

g = A tr
g for each g ∈ H(g0).

2. Preliminaries

In this section, we first introduce some notation related to the concept of pullback trajectory
attractor and to the natural translation cocycle for an abstract evolution equation. Then we
establish a sufficient condition for the existence of a compact pullback trajectory attractor.

Consider the following abstract evolution equation

∂u

∂t
= Fσ(t)(u), t ∈ R+. (2.1)

For each t ∈ R+, we are given an operator Fσ(t)(·) : X �−→ Y , where X, Y are Banach spaces
such that X ⊆ Y (X = Y is also possible). Here the functional parameter σ(t) is the time
symbol of equation (2.1), which reflects the dependence on time of the equation. We assume
that the values of σ(t) belong to some Banach space 	. (σ, 	) will be called the time symbol
space of equation (2.1). We also assume that there exists a group θ = {θt }t∈R acting on (σ, 	)

and satisfying

θt+s = θtθs, θ0 = Identity operator on 	, θt	 = 	, ∀ t ∈ R. (2.2)

Proposition 2.1 (Lions–Magenes [38]). Suppose that f (·) ∈ L∞(0, T ; X) and the function
f (t) is weakly continuous in Y , i.e., for any function ψ ∈ Y ∗ (the dual space of Y ) the function
〈f (t), ψ〉 ∈ C([0, T ]). Then f (t) ∈ X for all t ∈ [0, T ] and the function f (t) is weakly
continuous in X.

We shall study equation (2.1) with various symbols σ ∈ 	. We suppose that for
each σ ∈ 	, equation (2.1) admits at least one solution. We next treat the solutions
u(t) ∈ C(R+; Y ) ∩ L∞(R+; X) of equation (2.1) with σ ∈ 	 as a whole. By proposition 2.1,
we see that if u(t) ∈ C(R+; Y ) ∩ L∞(R+; X), then u(t) ∈ X for all t ∈ R+.

Definition 2.1. For each σ ∈ 	, T tr
σ (the trajectory space of equation (2.1) with symbol

σ ) denotes the set of all solutions of equation (2.1) belonging to C(R+; Y ) ∩ L∞(R+; X).
T tr

	 = ⋃
σ∈	 T tr

σ is the united trajectory space of equation (2.1).
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Now it is necessary for us to introduce a topology in the space T tr
	 . We first introduce

a topology in C(R+; Y ). The sequence {fn(s)} ⊂ C(R+; Y ) converges to a function f (s) ∈
C(R+; Y ) means for any T > 0 there holds

max
s∈[0,T ]

‖fn(s) − f (s)‖Y −→ 0 as n → ∞.

We denote the topology introduced in C(R+; Y ) by Cloc(R+; Y ). One can see that Cloc(R+; Y )

is a Fréchet space. Moreover, the topological space Cloc(R+; Y ) induces a topology in T tr
	 .

We also need to define bounded sets in T tr
	 . For this purpose, we adapt the norm of the space

L∞(R+; X). The set B ⊂ T tr
	 is said to be bounded if it is bounded with respect to the norm

of L∞(R+; X), in other words, there exists a number r = r(B) such that

‖u(·)‖L∞(R+;X) = esssup
s�0

‖u(s)‖X � r, ∀ u(·) ∈ B.

Definition 2.2. A θ cocycle on R+ × 	 × T tr
	 is a family of maps φ(t, σ, ·) : T tr

σ �−→ T tr
θt (σ ),

(t, σ ) ∈ R+ × 	, satisfying

(I) φ(0, σ, u) = u for all (σ, u) ∈ 	 × T tr
σ ,

(II) φ(t + s, σ, u) = φ(t, θs(σ ), φ(s, σ, u)), ∀ t, s ∈ R+, (σ, u) ∈ 	 × T tr
σ . The θ -cocycle φ

is said to be continuous if for all (t, σ ) ∈ R+ × 	, the mapping φ(t, σ, ·) : T tr
σ �−→ T tr

θt (σ )

is continuous.

In the following, we use + to denote the restriction operator (with respect to time
variable) to the interval R+ = [0, +∞). Analogously, T stands for the restriction operator
to the interval [0, T ]. For example, if u(·) ∈ C(R+; Y ) ∩ L∞(R+; X), then T u(·) ∈
C([0, T ]; Y ) ∩ L∞(0, T ; X); T u(t) = u(t) if t ∈ [0, T ].

Definition 2.3. A family of sets {Pσ }σ∈	 ⊂ T tr
	 with Pσ ⊂ T tr

σ for each σ ∈ 	 is called
a pullback trajectory absorbing set for the cocycle φ if for each σ ∈ 	 and any family of
bounded sets {Bσ }σ∈	 ⊂ T tr

	 with Bσ ⊂ T tr
σ , there exists a time t (σ, Bθ−t (σ ), Pσ ) such that

φ(t, θ−t (σ ), Bθ−t (σ )) ⊂ Pσ for all t � t (σ, Bθ−t (σ ), Pσ ). If moreover ∪σ∈	Pσ is compact
in Cloc(R+; Y ) and for each σ ∈ 	, Pσ is bounded in L∞(R+; X), then φ is said to be pullback
trajectory compact in T tr

	 .

Definition 2.4. A family of non-empty compact sets {A tr
σ }σ∈	 ⊆ T tr

	 is called a compact
pullback trajectory attractor of the θ -cocycle φ with respect to the topology Cloc(R+; Y ) if
A tr

σ ⊂ T tr
σ for each σ ∈ 	 and

(i) compactness: for each σ ∈ 	, A tr
σ is compact in Cloc(R+; Y ) and bounded in L∞(R+; X);

(ii) φ-invariance: φ(t, σ, A tr
σ ) = A tr

θt (σ ), ∀ t ∈ R+, σ ∈ 	;
(iii) pullback attracting property: for any family of sets {Bσ }σ∈	 ⊂ T tr

	 which satisfies: for
each σ ∈ 	, the set Bσ ⊂ T tr

σ and is bounded in L∞(R+; X), there holds

lim
t→+∞ distC([0,T ];Y )

(
T φ(t, θ−t (σ ), Bθ−t (σ )), T A tr

σ

) = 0, ∀ T > 0, (2.3)

where distC([0,T ];Y )(X1, X2) = sup
y1∈X1

inf
y2∈X2

max
t∈[0,T ]

|y1(t) − y2(t)| stands for the Hausdorff

semidistance from the set X1 ⊂ C([0, T ]; Y ) to the set X2 ⊂ C([0, T ]; Y );
(iv) minimality: If {Eσ }σ∈	 ⊂ T tr

	 is a family of non-empty compact sets that satisfy (iii), then
Aσ ⊆ Eσ for each σ ∈ 	.

In definition 2.4, properties (i) and (ii) are generalizations of the compactness and
invariance properties of the kernel sections for process (see e.g. [49]). The pullback
attracting property (iii) differs from the attraction manner of the kernel sections. Indeed, the
above definition of pullback trajectory attractor combines the properties of pullback attractor
(generalization of kernel sections, see e.g. [13]) and trajectory attractor (for the equations with
possible absence of uniqueness of solutions).
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Theorem 2.1. Let φ(t, σ, ·) be a continuous cocycle and the group {θt }t∈R acting on (σ, 	)

satisfies (2.2). If φ(t, σ, ·) is pullback trajectory compact in T tr
	 , then φ(t, σ, ·) possesses a

compact pullback trajectory attractor A tr = {A tr
σ }σ∈	 ⊂ T tr

	 given by

A tr
σ = ωσ (P), σ ∈ 	,

where P = {Pσ }σ∈	 is the pullback trajectory absorbing set and

ωσ (P) =
⋂
s�0

⋃
t�s

φ(t, θ−t (σ ), Pθ−t (σ ))

(the bar means taking closure in Cloc(R+; Y )) denotes the pullback ω-limit set of P.

Remark 2.1. Since φ is pullback trajectory compact in T tr
	 , Pσ is bounded in L∞(R+; X)

and compact in Cloc(R+; Y ). Thus there is a time t (σ, Pθ−t (σ ), Pσ ) such that
φ(t, θ−t (σ ), Pθ−t (σ )) ∈ Pσ for all t � t (σ, Pθ−t (σ ), Pσ ). Hence

ωσ (P) =
⋂
s�0

⋃
t�s

φ(t, θ−t (σ ), Pθ−t (σ ))

⊆
⋂

s�t (σ,Pθ−t (σ ),Pσ )

⋃
t�s

φ(t, θ−t (σ ), Pθ−t (σ ))

⊆ Pσ = Pσ ⊂ T tr
σ .

Proof. The idea of the proof of theorem 2.1 is similar to that of Chepyzhov and Vishik [24]
and Temam [47]. For completeness, we present the detailed proof and divide it into four steps.

Step One. We prove that for each fixed t0 ∈ R, there holds

u ∈ ωθt0 (σ )(P) ⇐⇒




For any neighbourhood N (u) (with respect to the topology of
Cloc(R+; Y )) of the point u there are two sequences
{un} ⊂ Pθ−tn+t0 (σ ) and {tn} ⊂ R+ with tn → +∞
as n → ∞ such that φ(tn, θ−tn (θt0(σ )), un) ∈ N (u).

(2.4)

In fact, if u ∈ ωθt0 (σ )(P), then for any s � 0, u is a point of tangency of the set⋃
t�s φ(t, θ−t (θt0(σ )), Pθ−t+t0 (σ )). Therefore, any neighbourhood N (u) of u contains a point

from
⋃

t�s φ(t, θ−t (θt0(σ )), Pθ−t+t0 (σ )) for any s � 0. Hence, there exist two sequences {un} ⊂
Pθ−tn+t0 (σ ) and {tn} ⊂ R+ with tn → +∞ as n → ∞ such that φ(tn, θ−tn (θt0(σ )), un) ∈ N (u).
Conversely, assume that for any neighbourhood N (u) of u there exist two sequences {un} ⊂
Pθ−tn+t0 (σ ) and {tn} ⊂ R+ with tn → +∞ as n → ∞ such that φ(tn, θ−tn (θt0(σ )), un) ∈ N (u).
Since φ(tn, θ−tn (θt0(σ )), Pθ−tn+t0 (σ )) ⊆ ⋃

t�s φ(t, θ−t (θt0(σ )), Pθ−t+t0 (σ )) when s � tn, u is a
point of tangency of⋃

t�s

φ(t, θ−t (θt0(σ )), Pθ−t+t0 (σ ))

for any s � 0 and whence u ∈ ωθt0 (σ )(P).

Step Two. We prove that for each σ ∈ 	, ωσ (P) is not empty and pullback attracts any
family of bounded sets {Bσ }σ∈	 ⊂ T tr

	 with Bσ ⊂ T tr
σ .

Let {un} ⊂ Pθ−tn (σ ) and {tn} ⊂ R+ with tn → +∞ asn → ∞. Setvn = φ(tn, θ−tn (σ ), un).

If the sequence {vn} has infinite different points, we consider the set P̃ = {vn}
⋃

(∪σ∈	Pσ )

and prove that P̃ is relatively compact. Let {Vn} be any covering of P̃. Obviously, it covers
∪σ∈	Pσ . Note that ∪σ∈	Pσ is compact in Cloc(R+; Y ). Thus there is a finite subcovering
{Vn}N0

n=1 of ∪σ∈	Pσ . Let V = ⋃N0
n=1 Vn. By the pullback absorbing property of Pσ , we see
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that there exists N1 ∈ N such that vn = φ(tn, θ−tn (σ ), un) ∈ Pσ ⊂ ∪σ∈	Pσ for n � N1.
Thus V covers P̃ \ {v1, v2, · · · , vN1}. Adding the finite number of open sets that cover the
finite set {v1, v2, · · · , vN1}, we get the finite subcovering of P̃. Hence P̃ is relatively compact,
which implies that the set {vn} has a limit point. Let v be a limit point of {vn}. We now show
that v ∈ ωσ (P). Let N (v) be any neighbourhood of v, then there exists some n1 ∈ N such
that vn1 ∈ N (v), vn1 �= v. Note that Cloc(R+; Y ) is a Hausdorff space. Hence there is a
neighbourhood N1(v) ⊂ N (v) of v such that vn1 /∈ N1(v). Analogously, there exists some
n2 ∈ N such that vn2 ∈ N1(v), vn2 �= v. Also there is a neighbourhood N2(v) ⊂ N (v) of
v such that vn2 /∈ N2(v). By this procedure, we get a subsequence {vni

} ⊂ N (v), that is,
φ(tni

, θ−tni
(σ ), uni

) ∈ N (v) with {uni
} ⊂ Pθ−tni

(σ )
and tni

→ +∞ as ni → ∞. Using (2.4),
we get v ∈ ωσ (P). If {vn} is a finite set, then for some v, let vn = v infinitely many times, i.e.
φ(tni

, θ−tni
(σ ), uni

) = vni
= v for some subsequence {ni} and so v ∈ ωσ (P). By the above

facts, we see that ωσ (P) is not empty.
We next prove that {ωσ (P)}σ∈	 pullback attracts any family of bounded sets {Bσ }σ∈	 ⊂

T tr
	 with Bσ ⊂ T tr

σ for each σ ∈ 	. We use the argument of contradiction. Suppose that there
are a neighbourhood N (ωσ (P)) and a sequence {un} ⊂ Bθ−tn (σ ) ⊂ T tr

θ−tn (σ ), {tn} ⊂ R+ with
tn → +∞ as n → ∞ such that

{vn}∞n=1

⋂
N (ωσ (P)) = ∅, where vn = φ(tn, θ−tn (σ ), un). (2.5)

Since vn ∈ Pσ ⊂ ∪σ∈	Pσ for n large enough and ∪σ∈	Pσ is compact in Cloc(R+; Y ), the
sequence {vn} possesses a limit point (denoted by) v. By (2.4) we see that v ∈ ωσ (P). Thus
N (ωσ (P)) is also a neighbourhood of v, which contradicts (2.5).

Step Three. We prove that ωσ (P) is the minimal compact set satisfying: for any family
of bounded sets {Bσ }σ∈	 ⊂ T tr

	 with Bσ ⊂ T tr
σ there holds

lim
t→+∞ distC([0,T ];Y )

(
T φ(t, θ−t (σ ), Bθ−t (σ )), T ωσ (P)

) = 0, ∀ T > 0. (2.6)

By the definition of ω-limit set, ωσ (P) is closed. Remark 2.1 shows that ωσ (P) ⊂ Pσ ,
while the pullback trajectory compactness of the cocycle φ implies that Pσ is compact in
Cloc(R+; Y ), thus ωσ (P) is compact in Cloc(R+; Y ). We next use the argument of contradiction
to prove the minimality of ωσ (P). Let P′ be a compact set satisfying (2.6). Assume that
there exists some v ∈ ωσ (P) but v /∈ P′. Recall that Cloc(R+; Y ) is a Hausdorff space. Thus
for any u ∈ P′, there exist two neighbourhoods N (u) and Nu(v) of u and v, respectively,
such that N (u) ∩ Nu(v) = ∅. Clearly, the family of open sets {N (u) : u ∈ P′} covers
P′. Consider a finite subcovering {N (ui) : i = 1, 2, · · · , N0} of P′. Set P̌ = ⋃N0

i=1 N (ui),

P̂ = ⋂N0
i=1 Nui

(v). Then P′ ⊆ P̌, v ∈ P̂, P̌ ∩ P̂ = ∅. Recall v ∈ ωσ (P), and we see
that there is a sequence {un} ⊂ Pθ−tn (σ ) and {tn} ⊂ R+ with tn → +∞ as n → ∞ such that

φ(tn, θ−tn (σ ), un) ∈ P̂ (see (2.4)). At the same time, we follow from the absorbing property
of P′ that φ(tn, θ−tn (σ ), un) ∈ P̌ for tn large enough, which implies that P̌ ∩ P̂ �= ∅.
Therefore, we can claim that if v ∈ ωσ (P), then v ∈ P′, i.e. ωσ (P) ⊆ P′. The minimality
of ωσ (P) is proved.

Step Four. We show that for each σ ∈ 	,

φ(t, σ, ωσ (P)) = ωθt (σ )(P), ∀ t ∈ R+. (2.7)

Let v ∈ ωσ (P) and given any t0 ∈ R+. Consider any neighbourhood N (w) of the point
w = φ(t0, σ, v). Recall that the map φ(t0, σ, ·) is continuous from T tr

σ to T tr
θt0 (σ ). Hence there

exists a neighbourhood N (v) of v such that φ(t0, σ, N (v)) ⊆ N (w). For the neighbourhood
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N (v) there are {un} ⊂ Pθ−tn+t0 (σ ) and tn ⊂ [t0, +∞) with tn → +∞ as n → ∞ such that
φ(tn − t0, θ−tn+t0(σ ), un) ∈ N (v). Then

φ(tn, θ−tn (θt0(σ )), un) = φ(t0 + tn − t0, θ−tn+t0(σ ), un)

= φ(t0, σ, φ(tn − t0, θ−tn+t0(σ ), un))

⊆ φ(t0, σ, N (v))

⊆ N (w)

and again by (2.4) we get w = φ(t0, σ, v) ∈ ωθt0 (σ )(P). Thus we have

φ(t0, σ, ωσ (P)) ⊆ ωθt0 (σ )(P), ∀ t0 ∈ R+. (2.8)

For the inverse inclusion relation, we need to check two points. One is that φ(t0, σ, ωσ (P))

is compact in Cloc(R+; Y ) for each t0 ∈ R+. This point is obvious since for each t0 ∈ R+

and σ ∈ 	, the map φ(t0, σ, ·) is continuous from T tr
σ to T tr

θt0 σ and ωσ (P) is compact in
Cloc(R+; Y ). The other point is that φ(t0, σ, ωσ (P)) pullback attracts any family of bounded
sets {Bσ }σ∈	 ⊂ T tr

	 with Bσ ⊂ T tr
σ . Let V be any open set that contains φ(t0, σ, ωσ (P)). By

the pullback attracting property of ωσ (P), we have φ(t − t0, θ−t+t0(σ ), Bθ−t+t0 (σ )) ⊂ ωσ (P)

for any bounded Bθ−t+t0 (σ ) ⊂ T tr
θ−t+t0 (σ ) provided t � t (σ, Bθ−t+t0 (σ ), Pσ ) + t0. Now for each

t0 ∈ R+,

φ(t, θ−t (θt0(σ )), Bθ−t+t0 (σ )) = φ(t0 + t − t0, θ−t+t0(σ ), Bθ−t+t0 (σ ))

= φ(t0, σ, φ(t − t0, θ−t+t0(σ ), Bθ−t+t0 (σ )))

(t being large enough) ⊆ φ(t0, σ, ωσ (P)) ⊆ V,

which implies the desired pullback attracting property of φ(t0, σ, ωσ (P)). From the above
two points and the minimality proved in step three, we get

ωθt0 (σ )(P) ⊆ φ(t0, σ, ωσ (P)), ∀ t0 ∈ R+. (2.9)

(2.8) and (2.9) give (2.7). The proof of theorem 2.1 is now complete. �

Remark 2.2. From the above proof, we see that the result of theorem 2.1 does not depend on
the concrete form of equation (2.1). It is valid for general evolution equations, including those
with delays.

3. United trajectory space and pullback trajectory attractor for 3D incompressible
non-Newtonian fluid

From the viewpoint of physics, the initial boundary value problem of (1.1)–(1.3) can be
formulated as follows:
∂u

∂t
+ (u · ∇)u + ∇p = ∇ · (

2µ0(ε + |e|2)−α/2e − 2µ1�e
)

+ g(x, t), x ∈ �, (3.1)

∇ · u = 0, x ∈ �, (3.2)

u = 0, τij lκj κl = 0, x ∈ ∂�, (3.3)

u|t=0 = u0, (3.4)

where τij l = 2µ1(∂eij /∂xl) (i, j, l = 1, 2, 3) and κ = (κ1, κ2, κ3) denotes the exterior unit
normal to the boundary ∂�. The first condition in (3.3) represents the usual no-slip condition
associated with a viscous fluid, while the second one expresses the fact that the first moments
of the traction vanish on ∂�; it is a direct consequence of the principle of virtual work. We
refer to [5–8, 34, 39, 42] and the references therein for detailed physical background.
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3.1. United trajectory space

We next introduce some functional spaces and operators. Set

V = {ϕ = (ϕ1, ϕ2, ϕ3) ∈ (C∞
0 (�))3, ∇ · ϕ = 0 in �, ϕ = 0 on ∂�},

H = closure of V in (L2(�))3 with norm ‖ · ‖, H ′ = dual space of H ;
V = closure of V in (H 2(�))3 with norm ‖ · ‖V , V ′ = dual space of V.

(·, ·) denotes the inner product in H and 〈·, ·〉 stands for the dual pairing between V and V ′;
also we set Hη = (−�)

−η/2
H (η � 0 and the Laplace operator � is taken with zero boundary

condition u|∂� = 0) and use H−η to denote the dual space of Hη. In the whole paper, we take
0 < η � 2 and thus the embedding H ↪→ H−η is compact.

Write

a(u, v) =
3∑

i,j,k=1

(
∂eij (u)

∂xk

,
∂eij (v)

∂xk

)
=

3∑
i,j,k=1

∫
�

∂eij (u)

∂xk

∂eij (v)

∂xk

dx, u, v ∈ V. (3.5)

Lemma 3.1 (Bloom and Hao [7]). There exist two positive constants c1 and c2 which depend
only on � such that

c1‖u‖2
V � a(u, u) � c2‖u‖2

V , ∀ u ∈ V. (3.6)

From the definition of a(·, ·) and lemma 3.1 we see that a(·, ·) defines a positive definite
symmetric bilinear form on V . As a consequence of the Lax–Milgram lemma, we obtain an
isometric operator A ∈ L (V , V ′), via

〈Au, v〉 = a(u, v), ∀ u, v ∈ V.

Moreover, let D(A) = {u ∈ V : Au ∈ H }, then D(A) is a Hilbert space and A is also an
isometry map from D(A) to H . Indeed, A = P�2, where P is the Leray projector from
L2(�) to H . Since by lemma 3.1 there holds

c1‖u‖2
V � a(u, u) = 〈Au, u〉 = (Au, u) � ‖Au‖‖u‖V , ∀ u ∈ D(A),

we have

c1‖u‖V � ‖Au‖. (3.7)

For brevity, we use H 1
0 (�) to denote (H 1

0 (�))3 in the following. We also define a continuous
trilinear form on H 1

0 (�) × H 1
0 (�) × H 1

0 (�) as follows:

b(u, v, w) =
3∑

i,j=1

∫
�

ui

∂vj

∂xi

wj dx, u, v, w ∈ H 1
0 (�).

Since V ⊂ H 1
0 (�), b(·, ·, ·) is continuous on V × V × V and one can check

b(u, v, w) = −b(u, w, v), b(u, v, v) = 0, ∀ u, v, w ∈ V. (3.8)

Now for any u ∈ V ,

〈B(u), w〉 = b(u, u, w), ∀ w ∈ V, (3.9)

defines a continuous functional B(u) from V × V to V ′. Finally, for u ∈ V , we set

µ(u) = 2µ0(ε + |e(u)|2)−α/2

and define N(u) as

〈N(u), v〉 =
3∑

i,j=1

∫
�

µ(u)eij (u)eij (v) dx, ∀ v ∈ V. (3.10)
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Then the functional N(u) is continuous from V to V ′. When u ∈ D(A), N(u) can be extended
to H via

〈N(u), v〉 = −
∫

�

{∇ · [µ(u)e(u)]} · v dx, ∀ v ∈ H. (3.11)

In this paper, we take in (3.1) an external force function g0(x, t) = g0(t) = g0 ∈ L2
b(R; H)

and take (σ, 	) = (g, H(g0)) as the time symbol space, where L2
b(R; H) denotes the set of

functions g ∈ L2
loc(R; H) satisfying

‖g‖2
L2

b(R;H)
= ‖g‖2

L2
b

= sup
t∈R

∫ t+1

t

‖g(ρ)‖2 dρ < +∞,

and H(g0(·)) = {g0(· + s) : s ∈ R} if g0(·) ∈ L2
loc(R; H), where the bar denotes taking closure

with the topology L2
loc(R; H). Note that we have g ∈ L2

b(R; H) and ‖g‖L2
b

� ‖g0‖L2
b

for all
g ∈ H(g0). We shall study the family of equations (3.1)–(3.4) with various external forces
g(·, t) ∈ H(g0). Excluding the pressure p, we can express the weak version of problems
(3.1)–(3.4) in the solenoidal vector fields as follows (see [7, 51]):

∂u

∂t
+ 2µ1Au + B(u) + N(u) = g(x, t), t > 0, (3.12)

u|t=0 = u0 ∈ H. (3.13)

Lemma 3.2. If u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H), then Au, B(u) and N(u) all belong to
L4/3(0, T ; V ′).

Proof. For any v ∈ L4(0, T ; V ), applying (3.8) and (3.9), Hölder inequality and Gagliardo–
Nirenberg inequality, we obtain∫ T

0
〈B(u(t)), v(t)〉 dt �

∫ T

0
‖u(t)‖2

L4(�)‖∇v(t)‖ dt

� λ

∫ T

0
‖u(t)‖1/2‖∇u(t)‖3/2‖∇v(t)‖ dt

� λ

∫ T

0
‖u(t)‖1/2‖u(t)‖3/2

V ‖v(t)‖V dt

� λ

(∫ T

0

(
‖u(t)‖1/2‖u(t)‖3/2

V

)4/3
dt

)3/4 (∫ T

0
‖v(t)‖4

V dt

)1/4

� λ‖u(t)‖1/2
L∞(0,T ;H)‖u(t)‖3/2

L2(0,T ;V )
‖v(t)‖L4(0,T ;V ), (3.14)

hereafter λ is a constant depending on �, but not on u and T . Equation (3.14) implies
B(u) ∈ L4/3(0, T ; V ′). Similarly, for any v ∈ L2(0, T ; V ), we have∫ T

0
〈N(u(t)), v(t)〉 dt =

3∑
i,j=1

∫ T

0

∫
�

µ(u(t))eij (u(t))eij (v(t)) dx dt

� 9µ0ε
−α/2

∫ T

0
‖∇u(t)‖‖∇v(t)‖ dt

� 9µ0ε
−α/2

(∫ T

0
‖u(t)‖2

V dt

)1/2 (∫ T

0
‖v(t)‖2

V dt

)1/2

= 9µ0ε
−α/2‖u(t)‖L2(0,T ;V )‖v(t)‖L2(0,T ;V ). (3.15)
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Equation (3.15) implies N(u) ∈ L2(0, T ; V ′) ⊂ L4/3(0, T ; V ′). In addition, if u ∈
L2(0, T ; V ), Au ∈ L2(0, T ; V ′) ⊂ L4/3(0, T ; V ′) is obvious. Combining the above facts, we
get the desired result. The proof is complete. �

Lemma 3.3 ([24]). Let E1 be a Banach space and E ↪→ E0 ⊆ E1. Also let the embedding
E ↪→ E0 be compact. Set

W∞,p(0, T ; E, E1) = {
φ(t), t ∈ [0, T ] : φ(t) ∈ L∞(0, T ; E), φ′(t) ∈ Lp(0, T ; E1)

}
,

where p > 1, with norm ‖φ‖W∞,p
= ess sup{‖φ(t)‖E : t ∈ [0, T ]} +

(∫ T

0
‖φ′‖p

E1

)1/p

. Then

W∞,p(0, T ; E, E1) ↪→ C([0, T ]; E0) with compact embedding.

We next specify the definition of the solution of (3.12). Given g ∈ H(g0). A function
u ∈ L∞(0, T ; H) ∩ L2(0, T ; V ) is called a weak solution of (3.12) on the interval [0, T ] if
u, together with its derivative ∂tu, satisfies (3.12) in the sense of distributions in D′(0, T ; V ′)
(see [48]). We can prove by using the Galerkin method that (3.12) has at least one solution
u(t) ∈ L∞(0, T ; H)∩L2(0, T ; V ) defined on the interval [0, T ] (∀ T > 0) and satisfying the
following energy inequality:
1

2

d

dt
(u(t), u(t)) + 2µ1〈Au(t), u(t)〉 + 〈N(u(t)), u(t)〉 � 〈g, u(t)〉, ∀ t ∈ [0, T ],

(3.16)

in the following sense:

− 1

2

∫ T

0
‖u(t)‖2ψ ′(t) dt + 2µ1

∫ T

0
〈Au(t), u(t)〉ψ(t) dt +

∫ T

0
〈N(u(t)), u(t)〉ψ(t) dt

�
∫ T

0
〈g, u(t)〉ψ(t) dt, ∀ ψ(t) ∈ C∞

0 ([0, T ]), ψ(t) � 0, ∀ T � 0. (3.17)

We would like to point out that, by lemma 3.2, the derivative ∂tu of the weak solution
belongs to L4/3(0, T ; V ′). Hence, u is almost everywhere equal to some function from
C([0, T ]; H) and the initial condition (3.13) makes sense.

Definition 3.1. The trajectory space T tr
g of equation (3.12) with symbol g consists of functions

u(x, t) ∈ L∞(R+; H) ∩ L2
loc(R+; V ) such that for ∀ T > 0 the function T u(t) is a weak

solution of (3.12) on [0, T ] and T u(t) satisfies (3.17). T tr
H(g0)

= ⋃
g∈H(g0)

T tr
g is called the

united trajectory space of equation (3.12).

Let the group {θt }t∈R acting on (g, H(g0)) be defined by

θt (g(·)) = g(t + ·), ∀ t ∈ R, ∀ g(·) ∈ H(g0).

Evidently, we have

θtH(g0) = H(g0), ∀ t ∈ R.

We can now define the natural translation θ -cocycle φ(t, g, u) on R+ × H(g0) × T tr
H(g0)

as

φ(t, g, u(·)) = uθt (g)(t + ·), (t, g, u(·)) ∈ R+ × H(g0) × T tr
g , (3.18)

where uθt (g) denotes the weak solution of (3.12) with symbol θt (g). In fact, we have

φ(0, g, u(·)) = u(·), ∀ (g, u) ∈ H(g0) × T tr
g ,

and

φ(t + s, g, u(·)) = uθt+s (g)(t + s + ·) = φ(t, θs(g), φ(s, g, u)) = φ(t, θs(g), uθs(g)(s + ·))
= φ(t, θs(g), φ(s, g, u(·))).
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Lemma 3.4. (i) For each g ∈ H(g0) and any u0 ∈ H , there exists at least one trajectory
u(t) ∈ T tr

g ⊂ T tr
H(g0)

such that u(0) = u0;

(ii) For any t ∈ R+, g ∈ H(g0) and u ∈ T tr
g ⊂ T tr

H(g0)
, there holds φ(t, g, u) ∈ T tr

H(g0)
.

Proof. The proof of (i) can be found in [7]. The assertion of (ii) is obvious because for any
u ∈ T tr

g , we have by definition that φ(t, g, u) = uθt (g)(t + ·) ∈ T tr
H(g0)

. �

Evidently, we have φ(t, g, T tr
g ) ⊆ T tr

H(g0)
for any t ∈ R+ and g ∈ H(g0).

Lemma 3.5. T tr
H(g0)

⊆ Cloc(R+; H−η) ∩ L∞(R+; H).

Proof. We need to show that for each g ∈ H(g0), T tr
g ⊆ Cloc(R+; H−η) ∩ L∞(R+; H).

Indeed, for any u(·) ∈ T tr
g , u(·) ∈ L∞(R+; H) is obvious. At the same time, since

u(·) ∈ L2
loc(R+; V ) ∩ L∞(R+; H) and g ∈ H(g0) ⊂ L2

loc(R+; H) ⊂ L2
loc(R+; V ′), we use

lemma 3.2 and equation (3.12) to get ∂tu(·) ∈ L
4/3
loc (R+; V ′). Note that H ↪→ H−η ⊆ V ′ and

the embedding H ↪→ H−η is compact, we infer from lemma 3.3 that u(·) ∈ Cloc(R+; H−η).
By the arbitrariness of g and u(·), we end the proof. �

3.2. Pullback trajectory attractor for 3D incompressible non-Newtonian fluid

In this section, we use the result developed in section 2 to prove the existence of a pullback
trajectory attractor for the incompressible non-Newtonian fluid.

Definition 3.2. A family of compact sets {Atr
g }g∈H(g0) ⊆ T tr

H(g0)
is called the compact pullback

trajectory attractor of equation (3.12) with respect to the topology Cloc(R+; H−η) if Atr
g ⊂ T tr

g

for each g ∈ H(g0) and

(1) compactness: Atr
g is compact in Cloc(R+; H−η) and bounded in L∞(R+; H);

(2) φ-invariance: φ(t, g, Atr
g ) = Atr

θt (g), ∀ t � 0;
(3) pullback attracting property: for any family of bounded (in L∞(R+; H) norm) sets

{Bg}g∈H(g0) ⊂ T tr
H(g0)

with Bg ⊂ T tr
g there holds

lim
t→+∞ distC([0,T ];H−η)

(
T φ(t, θ−t (g), Bθ−t (g)), T Atr

g

) = 0, ∀ T > 0; (3.19)

(4) minimality: If {Eσ }σ∈	 ⊂ T tr
H(g0)

is a family of non-empty compact sets that satisfy (3),
then Ag ⊆ Eg for each g ∈ H(g0).

Lemma 3.6 ([24]). Let y(s), K(s) ∈ L1
loc(0, +∞) and

−
∫ +∞

0
y(s)ψ ′(s) ds + δ

∫ +∞

0
y(s)ψ(s) ds �

∫ +∞

0
K(s)ψ(s) ds

hold for any ψ(s) ∈ C∞
0 (R+), ψ(s) � 0, where δ ∈ R. Then for any t � τ � 0 there holds

y(t)eδt − y(τ)δτ �
∫ t

τ

K(s)eδs ds.
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The following estimate plays an important role in our proof.

Lemma 3.7. For any g ∈ H(g0) and any trajectory u ∈ T tr
θ−t (g) ⊂ T tr

H(g0)
, there exist positive

constants c8, c9, R0 and δ, which are independent of g and u, such that

‖φ(t, θ−t (g), u)‖L∞(R+;H) + ‖φ(t, θ−t (g), u)‖L2(0,1;V ) + ‖∂tφ(t, θ−t (g), u)‖L4/3(0,1;V ′)

= esssup
s�0

‖u(s + t)‖ +

(∫ 1

0
‖u(s + t)‖2

V ds

)1/2

+

(∫ 1

0
‖∂tu(t + s)‖4/3

V ′ ds

)3/4

= esssup
ρ�t

‖u(ρ)‖ +

(∫ t+1

t

‖u(ρ)‖2
V dρ

)1/2

+

(∫ t+1

t

‖∂tu(ρ)‖4/3
V ′ dρ

)3/4

� c8‖u‖L∞(0,1;H)e
−δt/2 + c9‖u‖2

L∞(0,1;H)e
−δt + R0, ∀ t � 0. (3.20)

Proof. Obviously, we have

‖u‖2 � ‖u‖2
V , ∀ u ∈ V. (3.21)

Let u(·) ∈ T tr
θ−t (g). From (3.17), lemma 3.1 and the non-negativity of 〈N(u(ρ)), u(ρ)〉, we see

that

−
∫ +∞

0
‖u(ρ)‖2ψ ′(ρ) dρ + 2µ1c1

∫ +∞

0
‖u(ρ)‖2ψ(ρ) dρ

�
∫ +∞

0

[
2

µ1c1
‖g(ρ − t)‖2 − 2µ1c1(‖u(ρ)‖2

V − ‖u(ρ)‖2)

]
ψ(ρ) dρ (3.22)

holds for ∀ ψ(ρ) ∈ C∞
0 (R+), ψ(ρ) � 0. Applying lemma 3.6 to (3.22) for

δ = 2µ1c1, y(ρ) = ‖u(ρ)‖2, K(ρ) = 2

µ1c1
‖g(ρ − t)‖2 − 2µ1c1(‖u(ρ)‖2

V − ‖u(ρ)‖2),

we get

‖u(t)‖2eδt − ‖u(τ)‖2eδτ + δ

∫ t

τ

(‖u(ρ)‖2
V − ‖u(ρ)‖2

)
eδρ dρ

� 4

δ

∫ t

τ

‖g(ρ − t)‖2eδρ dρ, t � τ � 0, ∀ g ∈ H(g0), (3.23)

which, together with (3.21) gives

‖u(t)‖2 � ‖u(τ)‖2e−δ(t−τ) +
4

δ

∫ t

τ

‖g(ρ − t)‖e−δ(t−ρ) dρ, ∀ t � τ � 0, ∀ g ∈ H(g0).

(3.24)

For the second term on the right-hand side of (3.24), we have

4

δ

∫ t

τ

e−δ(t−ρ)‖g(ρ − t)‖2 dρ

� 4

δ

(∫ t

t−1
e−δ(t−ρ)‖g(ρ − t)‖2 dρ +

∫ t−1

t−2
e−δ(t−ρ)‖g(ρ − t)‖2 dρ + · · ·

)

� 4

δ

(∫ t

t−1
‖g(ρ − t)‖2 dρ + e−δ

∫ t−1

t−2
‖g(ρ − t)‖2 dρ + e−2δ

∫ t−2

t−3
‖g(ρ − t)‖2 dρ + · · ·

)

� 4

δ

(
1 + e−δ + e−2δ + · · ·) ‖g‖2

L2
b

� 4

δ

(
1 +

1

δ

)
‖g0‖2

L2
b

, ∀ t � τ � 0, ∀ g ∈ H(g0).
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Hence, from (3.24) we get

‖φ(t, θ−t (g), u)‖L∞(R+;H) � eδ/2‖u‖L∞(0,1;H)e
−δt/2 + R1, ∀ t ∈ R+, (3.25)

where R1 = 2
√

1
δ
(1 + 1

δ
)‖g0‖L2

b
is independent of g and u.

Using u to take dual pairing 〈·, ·〉 with equation (3.12) and integrating with respect to time
variable from t to t + 1, we obtain

1

2
(‖u(t + 1)‖2 − ‖u(t)‖2) + 2µ1

∫ t+1

t

〈Au(ρ), u(ρ)〉 dρ +
∫ t+1

t

〈N(u(ρ)), u(ρ)〉 dρ

=
∫ t+1

t

〈g(ρ − t), u(ρ)〉 dρ �
∫ t+1

t

‖g(ρ − t)‖‖u(ρ)‖V dρ, ∀ t � 0, ∀ g ∈ H(g0).

(3.26)

Recall that
∫ t+1
t

〈N(u(ρ)), u(ρ)〉 dρ � 0. Using Cauchy inequality, we deduce from (3.26)
and lemma 3.1 that

‖u(t + 1)‖2 + 2c1µ1

∫ t+1

t

‖u(ρ)‖2
V dρ

� 1

2c1µ1

∫ t+1

t

‖g(ρ − t)‖2 dρ + ‖u(t)‖2

� 1

2c1µ1
‖g0‖2

L2
b

+ ‖u(t)‖2, ∀ t � 0, ∀ g ∈ H(g0). (3.27)

It then follows from (3.25) and (3.27) that

‖φ(t, θ−t (g), u)‖L2(0,1;V ) =
(∫ t+1

t

‖u(ρ)‖2
V dρ

)1/2

�
(

1

2µ1c1

(‖g0‖2
L2

b

2µ1c1
+ ‖u(t)‖2

))1/2

�
‖g0‖L2

b

2µ1c1
+

eδ/2‖u‖−δt/2
L∞(0,1;H) + R1√
2µ1c1

.= c3‖u‖L∞(0,1;H)e
−δt/2 + R2, ∀ t � 0, ∀ g ∈ H(g0), (3.28)

where both c3 = eδ/2√
2µ1c1

and R2 = R1√
2µ1c1

+
‖g0‖L2

b

2µ1c1
are independent of g and u.

Now we derive from (3.14) that

(∫ t+1

t

‖B(u(ρ))‖4/3
V ′ dρ

)3/4

� λ‖u(ρ)‖1/2
L∞(t,t+1;H)‖u(ρ)‖3/2

L2(t,t+1;V )

= λ‖φ(t, θ−t (g), u)‖1/2
L∞(R+;H)‖φ(t, θ−t (g), u)‖3/2

L2(0,1;V )

� λ
(
eδ/2‖u‖L∞(0,1;H)e

−δt/2 + R1
)1/2 (

c3‖u‖L∞(0,1;H)e
−δt/2 + R2

)3/2

� λ
(
c2

4‖u‖2
L∞(0,1;H)e

−δt + 2c4R3‖u‖L∞(0,1;H)e
−δt/2 + R2

3

)
, (3.29)
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where both c4 = max{eδ/2, c3} and R3 = max{R1, R2} are independent of g and u; λ is the
same constant as appearing in (3.14). Similarly, by (3.15) we have(∫ t+1

t

‖N(u(s))‖4/3
V ′ ds

)3/4

�
(∫ t+1

t

‖N(u(s))‖2
V ′ ds

)1/2

� 9µ0ε
−α/2

(∫ t+1

t

‖u(s)‖2
V ds

)1/2

� 9µ0ε
−α/2

(
R2 + c3‖u‖L∞(0,1;H)e

−δt/2
)

.= c5‖u‖L∞(0,1;H)e
−δt/2 + R4, (3.30)

where both c5 = 9c3µ0ε
−α/2 and R4 = 9µ0ε

−α/2R2 are independent of g and u. Since A is an
isometry operator from V to V ′ and g ∈ L2

b(R; H) ⊂ L2
b(R; V ′), equation (3.12) implies that(∫ t+1

t

‖∂tu(ρ)‖4/3
V ′ dρ

)3/4

� 2µ1

(∫ t+1

t

‖Au(ρ)‖4/3
V ′ dρ

)3/4

+

(∫ t+1

t

‖B(u(ρ))‖4/3
V ′ dρ

)3/4

+

(∫ t+1

t

‖N(u(ρ))‖4/3
V ′ dρ

)3/4

+

(∫ t+1

t

‖g(ρ − t)‖4/3 dρ

)3/4

� 2µ1

(∫ t+1

t

‖Au(ρ)‖2
V ′ dρ

)1/2

+

(∫ t+1

t

‖B(u(ρ))‖4/3
V ′ dρ

)3/4

+

(∫ t+1

t

‖N(u(ρ))‖4/3
V ′ dρ

)3/4

+

(∫ t+1

t

‖g(ρ − t)‖2 dρ

)1/2

� 2µ1

(∫ t+1

t

‖u(ρ)‖2
V dρ

)1/2

+ λc2
4‖u‖2

L∞(0,1;H)e
−δt + λR2

3 + R4

+2λc4R3‖u‖L∞(0,1;H)e
−δt/2 + c5‖u‖L∞(0,1;H)e

−δt/2 + ‖g0‖L2
b

.= c6‖u‖2
L∞(0,1;H)e

−δt + c7‖u‖L∞(0,1;H)e
−δt/2 + R5, (3.31)

where both c6 = λc2
4, c7 = 2µ1c3 + 2λc4R3 + c5 and R5 = 2µ1R2 + R3 + R4 + ‖g0‖L2

b
are

independent of g and u. Using (3.25), (3.28) and (3.31), we obtain (3.20). The proof is
complete. �

Lemma 3.8. Let g0 ∈ L2
b(R; H), then the θ -cocycle φ(t, g, ·) (defined by (3.18)) possesses

a pullback trajectory absorbing set {Pg}g∈H(g0) ⊂ T tr
H(g0)

with Pg ⊂ T tr
g for each g ∈ H(g0).

Moreover, there is a set P ⊂ T tr
H(g0)

such that
⋃

g∈H(g0)
Pg ⊂ P and P is bounded in

L∞(R+; H).

Proof. Set

Pg =
{

u ∈ T tr
g : sup

t�0
{‖u‖L∞(t,t+1;H) + ‖∂tu‖L4/3(t,t+1;V ′)} � 3R0

}
,

P =
{

u ∈ T tr
H(g0)

: sup
t�0

{‖u‖L∞(t,t+1;H) + ‖∂tu‖L4/3(t,t+1;V ′)} � 3R0

}
, (3.32)

where R0 is the same positive constant as appearing in lemma 3.7. We next prove that
{Pg}g∈H(g0) is a pullback trajectory absorbing set for the translation cocycle φ(t, g, ·). Indeed,
let {Bg}g∈H(g0) be a family of bounded (in L∞(R+; H) norm) sets of T tr

H(g0)
with Bg ⊂ T tr

g .
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Then from (3.20) we see that for ∀ u ∈ Bθ−t (g) ⊂ T tr
θ−t (g), there exists a t0 such that

c8‖u‖L∞(0,1;H)e−δt/2 � R0 and c9‖u‖2
L∞(0,1;H)e

−δt � R0 provided t � t0. Hence,

‖u‖L∞(t,t+1;H) + ‖∂tu‖L4/3(t,t+1;V ′) � 3R0, ∀ t � t0, (3.33)

which implies that φ(t, θ−t (g), Bθ−t (g)) ⊆ Pg for ∀ t � t0 and thus {Pg}g∈H(g0) is a pullback
trajectory absorbing set for φ(t, g, ·) in T tr

H(g0)
. Obviously, Pg is bounded in T tr

g for each
g ∈ H(g0). Also,

⋃
g∈H(g0)

Pg ⊂ P and P is bounded (in L∞(R+; H) norm) in T tr
H(g0)

. The
proof is complete. �

Lemma 3.9. Let {u(n)} be a bounded (in the norm of L∞(R+; H)) sequence in T tr
H(g0)

and there
exists a function u∗ ∈ Cloc(R+; H−η) such that

u(n) −→ u∗ strongly in Cloc(R+; H−η) as n → ∞. (3.34)

Then u∗ ∈ T tr
H(g0)

.

Proof. The proof of this lemma is similar to that of lemma 4.1 in [54]. The difference is that we
use the united trajectory space T tr

H(g0)
to replace the trajectory space T tr . Since {u(n)} ⊂ T tr

H(g0)
,

we see that there exists a sequence {g(n)} ⊂ H(g0) such that

∂u(n)

∂t
+ 2µ1Au(n) + B(u(n)) + N(u(n)) = g(n), n = 1, 2, · · · . (3.35)

Note that g(n) ⊂ H(g0) ⊂ L2
loc(R; H) is bounded in L2(0, T ; H) and L2(0, T ; H) is a reflexive

Banach space for each T > 0. Whence, there is a g ∈ H(g0) such that

g(n) ⇀ g weakly in L2(0, T ; H) ⊂ L2(0, T ; V ′) ⊂ L4/3(0, T ; V ′) as n → ∞.

The rest of the proof is essentially the same as that of lemma 4.1 in [54] and we omit
it here. �

We now can state the main result of this section.

Theorem 3.1. Let g0 ∈ L2
b(R; H). Then equation (3.12) possesses a compact pullback

trajectory attractor in T tr
H(g0)

: Atr = {Atr
g }g∈H(g0) = {ωg(P)}g∈H(g0).

Proof. According to theorem 2.1 and lemma 3.8, we only need to prove that the set P
constructed by (3.32) is compact in Cloc(R+; H−η). Indeed, from (3.20) one sees that T P is
bounded in W∞,4/3(0, T ; H, V ′) and thus T P is relatively compact in C([0, T ]; H−η) (thanks
to lemma 3.3). Hence, we only need to show that T P is closed in C([0, T ]; H−η) for any
T > 0. Assume that {un} ⊂ P and T un −→ T u strongly in C([0, T ]; H−η) as n → ∞.
Since {un} is bounded in L∞(R+; H), applying lemma 3.9 we see u ∈ T tr

H(g0)
. Moreover, in

the detailed proof of lemma 3.9 we know ∂tT un ⇀ ∂tT u weakly in L4/3(0, T ; V ′) and
un ⇀ u weakly star in L∞(R+; H) as n → ∞. Thus we obtain

‖u‖L∞(t,t+1;H) + ‖∂tu‖L4/3(t,t+1;V ′)

� lim inf
n→∞ ‖un‖L∞(t,t+1;H) + lim inf

n→∞ ‖∂tun‖L4/3(t,t+1;V ′) � 3R0, ∀ t � 0.

Therefore u ∈ P and T u ∈ C([0, T ]; H−η). The proof is complete. �
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4. Regular pullback trajectory attractor and pullback trajectory asymptotic smoothing
effect for the incompressible non-Newtonian fluid

In this section, we first prove the existence of regular pullback trajectory attractor A tr =
{A tr

g }g∈H(g0) ⊂ L∞(R+; V ) ∩ Cloc(R+; H 2−η) for the incompressible non-Newtonian fluid.
Then we establish that Atr

g = A tr
g for each g ∈ H(g0).

4.1. Regular pullback trajectory attractor

We first specify the definition of a regular weak solution to problem (3.12). A function
u ∈ L∞(0, T ; V )∩L2(0, T ; D(A)) is called a regular weak solution of problem (3.12) on the

interval [0, T ] if u, together with its derivative
∂u

∂t
, satisfies (3.12) in the sense of distributions

in D′(0, T ; H). We can prove by the Galerkin method that (3.12) possesses at least one regular
weak solution u defined on the interval [0, T ] (∀ T > 0) and satisfying the following energy
inequality
1

2

d

dt
(u(t), Au(t)) + 2µ1‖Au(t)‖2 + 〈Bu(t), Au(t)〉 + 〈N(u(t)), Au(t)〉

� 〈g, Au(t)〉, ∀ t ∈ [0, T ], (4.1)

in the following sense:

− 1

2

∫ T

0
(u(t), Au(t))ψ ′(t) dt + 2µ1

∫ T

0
‖Au(t)‖2ψ(t) dt

+
∫ T

0
〈B(u(t)), Au(t)〉ψ(t) dt +

∫ T

0
〈N(u(t)), u(t)〉ψ(t) dt

�
∫ T

0
〈g, Au(t)〉ψ(t) dt, ∀ ψ(t) ∈ C∞

0 ([0, T ]), ψ(t) � 0, ∀ T > 0.

(4.2)

Definition 4.1. For each g ∈ H(g0), the regular trajectory space U tr
g of equation (3.12) with

symbol g consists of functions u ∈ L∞(R+; V ) ∩ L2
loc(R+; D(A)) such that for any T > 0 the

function T u(t) is a regular weak solution of (3.12) on [0, T ] and T u(t) satisfies (4.1) in the
sense of (4.2). U tr

H(g0)
= ⋃

g∈H(g0)
U tr

g is the regular united trajectory space of equation (3.12).

Similar to (3.18), the θ -cocycle φ can be defined on R+ × H(g0) × U tr
H(g0)

as

φ(t, g, u(·)) = uθt (g)(t + ·), ∀ (t, g, u(·)) ∈ R+ × H(g0) × U tr
g . (4.3)

Lemma 4.1. If u ∈ L∞(0, T ; V ) ∩ L2(0, T ; D(A)), then Au, B(u) and N(u) all belong to
L4/3(0, T ; H).

Proof. Since u ∈ L2(0, T ; D(A)), Au ∈ L2(0, T ; H) is obvious. Note that (0, T ) is a finite
interval, thus Au ∈ L2(0, T ; H) ⊂ L4/3(0, T ; H). In the following, C(·, ·, ·) denotes the
constant depending on the numbers appearing in the bracket. Now for any ψ(t) ∈ L4(0, T ; H),
we have, using Gagliardo–Nirenberg inequality,∣∣∣∣
∫ T

0
(B(u(t)), ψ(t)) dt

∣∣∣∣ �
∫ T

0
‖B(u(t))‖ ‖ψ(t)‖ dt

� λ

∫ T

0
‖u(t)‖5/8‖�u(t)‖3/8‖u(t)‖1/8‖�u(t)‖7/8‖ψ(t)‖ dt

� C(λ, T )‖u(t)‖2
L∞(0,T ;V )‖ψ(t)‖L4(0,T ;H),
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which implies that B(u(t)) ∈ L4/3(0, T ; H). Similar to the derivation of (3.11) in [53], we
have ∣∣∣∣

∫ T

0
(N(u(t)), ψ(t)) dt

∣∣∣∣ � C(µ0, ε, α)

∫ T

0
(‖∇u(t)‖ + ‖�u(t)‖)‖ψ(t)‖ dt

� C(µ0, ε, α, T )‖u(t)‖L∞(0,T ;V )‖ψ(t)‖L4(0,T ;H),

which also implies that N(u(t)) ∈ L4/3(0, T ; H). The proof is complete. �

Lemma 4.2. (i) For each g ∈ H(g0) and any u0 ∈ V , there exists at least one regular
trajectory u(t) ∈ U tr

g ⊂ U tr
H(g0)

such that u(0) = u0.
(ii) For any t ∈ R+, g ∈ H(g0) and u ∈ U tr

g , there holds φ(t, g, u) ∈ U tr
H(g0)

.

The proof of lemma 4.2 is similar to that of lemma 3.4 and we omit it here. Evidently, we
have φ(t, g, U tr

g ) ⊆ U tr
θt (g) ⊆ U tr

H(g0)
for any t ∈ R+ and g ∈ H(g0).

Lemma 4.3. U tr
H(g0)

⊆ Cloc(R+; H 2−η) ∩ L∞(R+; V ).

Proof. We only need to prove that for each g ∈ H(g0), U tr
g ⊆ Cloc(R+; H 2−η) ∩ L∞(R+; V ).

By the definition of regular trajectory space, for any u(·) ∈ U tr
g , u(·) ∈ L∞(R+; V ) is obvious.

Meanwhile, since u(·) ∈ L∞(R+; V ) ∩ Cloc(R+; D(A)) and g ∈ H(g0) ⊂ L2
loc(R+; H),

we combine lemma 4.1 and equation (3.12) to obtain that ∂tu ∈ L
3/4
loc (R+; H). Since

V ↪→ H 2−η ⊆ H and the embedding V ↪→ H 2−η is compact, we then get from lemma 3.3
that u(·) ∈ Cloc(R+; H 2−η). The proof is complete. �

Definition 4.2. A family of compact sets {A tr
g }g∈H(g0) ⊆ U tr

H(g0)
is called the pullback trajectory

attractor of equation (3.12) with respect to the topology Cloc(R+; H 2−η) if A tr
g ⊂ U tr

g for each
g ∈ H(g0) and

(1) compactness: A tr
g is compact in Cloc(R+; H 2−η) and bounded in L∞(R+; V );

(2) φ-invariance: φ(t, g, A tr
g ) = A tr

θt (g), ∀ t � 0;
(3) pullback attracting property: for any family of bounded (in L∞(R+; V ) norm) sets

{Bg}g∈H(g0) ⊂ A tr
H(g0)

with Bg ⊂ U tr
g there holds

lim
t→+∞ distC([0,T ];H 2−η)

(
T φ(t, θ−t (g), Bθ−t (g)), T A tr

g

) = 0, ∀ T > 0; (4.4)

(4) minimality: if {Eσ }σ∈	 ⊂ U tr
H(g0)

is a family of non-empty compact sets that satisfy (3),
then Ag ⊆ Eg for each g ∈ H(g0).

Lemma 4.4. For any g ∈ H(g0) and any trajectory u ∈ U tr
θ−t (g) ⊆ U tr

H(g0)
, there exists a positive

constant δ which is independent of g and u such that

‖φ(t, θ−t (g), u)‖L∞(R+;V ) + ‖φ(t, θ−t (g), u)‖L2(0,1;D(A)) + ‖∂tφ(t, θ−t (g), u)‖L4/3(0,1;H)

= esssup
s�0

‖u(s + t)‖V +

(∫ 1

0
‖Au(s + t)‖2 ds

)1/2

+

(∫ 1

0
‖∂tu(t + s)‖4/3 ds

)3/4

= esssup
ρ�t

‖u(ρ)‖V +

(∫ t+1

t

‖Au(ρ)‖2 dρ

)1/2

+

(∫ t+1

t

‖∂tu(ρ)‖4/3 dρ

)3/4

� F3(‖u‖L∞(0,1;V )e
−δt/2) +

(
1 +

1

µ1

)
‖g0‖L2

b
, ∀ t � 0, (4.5)

where F3(·) is a continuous monotone function of ‖u‖L∞(0,1;V )e−δt/2.
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Proof. Let u(t) ∈ U tr
θ−t (g) ⊆ U tr

H(g0)
, then ut ∈ L4/3(0, T ; H). Multiplying (3.12) by ut and

integrating over �, we obtain

‖ut‖2 + 2µ1a(u(t), u(t)) + b(u(t), u(t), ut ) + 〈N(u(t)), ut 〉 = (g(t), ut ). (4.6)

Set

�(|e(u)|) =
∫ |e(u)|2

0
µ0(ε + s)−α/2 ds such that

d�

dt
=

3∑
i,j=1

µ(u)eij (u)
∂eij (u)

∂t
.

Then,

〈N(u), ut 〉 =
3∑

i,j=1

∫
�

µ(u)eij (u)eij (ut ) dx = d

dt

(∫
�

�(|e(u)|) dx

)
. (4.7)

Substituting (4.7) into (4.6), we have

‖ut‖2 +
d

dt

(
2µ1a(u(t), u(t)) +

∫
�

�(|e(u)|) dx

)
= −b(u, u, ut ) + (g(t), ut )

�

∣∣∣∣∣∣
3∑

i,j=1

∫
�

uj

∂ui

∂xj

∂ui

∂t
dx

∣∣∣∣∣∣ + 4‖g(t)‖2 +
1

4
‖ut‖2

� ‖u‖L4(�)‖∇u‖L4(�)‖ut‖ + 4‖g(t)‖2 +
1

4
‖ut‖2. (4.8)

By the Gagliardo–Nirenberg and Cauchy inequalities,

‖u‖L4(�)‖∇u‖L4(�)‖ut‖ � λ‖�u‖2‖ut‖ � λ2‖u‖4
V + 1

4‖ut‖2.

Thus, from (4.8) and lemma 3.1, we obtain

dy(t)

dt
� f (t)y(t) + h(t), (4.9)

where

y(t) = 2µ1a(u(t), u(t)) +
∫

�

�(|e(u)|) dx,

f (t) = λ2

2µ1c1
‖u‖2

V and h(t) = 4‖g(t)‖2.

By (3.28),∫ t+1

t

f (τ ) dτ = λ2

2µ1c1

∫ t+1

t

‖u(τ)‖2
V dτ � λ2

2µ1c1
F1(‖u‖L∞(0,T ;V )e

−δt/2), (4.10)

where

F1(‖u‖L∞(0,T ;V )e
−δt/2) = (

c3‖u‖L∞(0,T ;V )e
−δt/2 + R2

)2
.

Obviously, ∫ t+1

t

h(τ ) dτ = 4
∫ t+1

t

‖g(τ)‖2 dτ � 4‖g0‖2
L2

b

. (4.11)

Now from (3.6) and (3.28) we get∫ t+1

t

∫
�

2µ1a(u(t), u(t)) dx dt � 2c2µ1

∫ t+1

t

‖u(τ)‖2
V dτ

� 2c2µ1F1(‖u‖L∞(0,1;V )e
−δt/2). (4.12)
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Since 0 < (ε + s)−α/2 � ε−α/2 when s � 0 and α > 0, thus

�(|e(u)|) =
∫ |e(u)|2

0
µ0(ε + s)−α/2 ds � µ0ε

−α/2|e(u)|2,

and ∫ t+1

t

∫
�

�(|e(u)|) dx ds � µ0ε
−α/2

∫ t+1

t

∫
�

|e(u)|2 dx ds

� 9µ0ε
−α/2

∫ t+1

t

‖u(s)‖2
V ds

� 9µ0ε
−α/2F1(‖u‖L∞(0,1;V )e

−δt/2), (4.13)

where the fact that
∫
�

|e(u)|2 dx � 9‖u‖2
V has been used. From (4.12) and (4.13), we get∫ t+1

t

y(ρ) dρ � 9(c2µ1 + µ0ε
−α/2)F1(‖u‖L∞(0,1;V )e

−δt/2). (4.14)

Now let t � ρ � t + 1. Multiplying (4.9) by exp(− ∫ ρ

t
f (τ ) dτ), we get

d

dρ

(
y(ρ) exp

(
−

∫ ρ

t

f (τ ) dτ

))
� h(ρ) exp

(
−

∫ ρ

t

f (τ ) dτ

)
� h(ρ). (4.15)

Letting t1 ∈ [t, t + 1] and integrating (4.15) over [t1, t + 1], we obtain

y(t + 1) exp

(
−

∫ t+1

t

f (τ ) dτ

)
� y(t1) exp

(
−

∫ t+1

t

h(τ ) dτ

)
+

∫ t+1

t

h(τ ) dτ.

Therefore, we have for any t ∈ R+ and t1 ∈ [t, t + 1] that

y(t + 1) � y(t1) +
∫ t+1

t

h(τ ) dτ exp

(∫ t+1

t

f (τ ) dτ

)

� y(t1) + 4‖g0‖2
L2

b

exp

{
λ2

2µ1c1
F1(‖u‖L∞(0,1;V )e

−δt/2)

}
. (4.16)

Integrating (4.16) (with respect to t1) over [t, t + 1], we get

y(t + 1) �
∫ t+1

t

y(t1) dt1 + 4‖g0‖2
L2

b

exp

{
λ2

2µ1c1
(c3‖u‖L∞(0,1;V )e

−δt/2 + R2)
2

}
� 9(c2µ1 + µ0ε

−α/2)F1(‖u‖L∞(0,1;V )e
−δt/2)

+ 4‖g0‖2
L2

b

exp

{
λ2

2µ1c1
F1(‖u‖L∞(0,1;V )e

−δt/2)

}
, ∀ t ∈ R+. (4.17)

It then follows from (4.17) and lemma 3.1 that

‖u(t + 1)‖2
V � 1

c1
a(u(t + 1), u(t + 1))

� 1

2c1µ1

{
(9(c2µ1 + µ0ε

−α/2)F1(‖u‖L∞(0,1;V )e
−δt/2)

+4‖g0‖2
L2

b

exp

(
λ2

2µ1c1
F1(‖u‖L∞(0,1;V )e

−δt/2)

) }
.= F2(‖u‖L∞(0,1;V )e

−δt/2), ∀ t ∈ R+, (4.18)

and thus for any t ∈ [1, +∞) there holds

‖φ(t, θ−t (g), u)‖L∞(R+;V ) � F1/2
2 (‖u‖L∞(0,1;V )e

−δt/2). (4.19)
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Now multiplying (3.12) by Au, we get

(ut , Au) + 2µ1‖Au‖2 + 〈B(u), Au〉 + 〈N(u), Au〉 = (g(t), Au). (4.20)

We next estimate the terms in (4.20).

(ut , Au(t)) = 1

2

d

dt
(u(t), Au(t)), (4.21)

〈B(u(t)), Au(t)〉 = (B(u(t)), Au(t)) � µ1

2
‖Au(t)‖2 +

1

2µ1
‖B(u(t))‖2, (4.22)

〈Bu(t), Au(t)〉 = (N(u(t)), Au(t)) � µ1

2
‖Au(t)‖2 +

1

2µ1
‖N(u(t))‖2, (4.23)

(g(t), Au(t)) = (g(t), Au(t)) � µ1

2
‖Au(t)‖2 +

1

2µ1
‖g‖2. (4.24)

Combining (4.20)–(4.24), we get

d

dt
(u(t), Au(t)) + µ1‖Au‖2 � 1

µ1
(‖B(u(t))‖2 + ‖N(u(t))‖2 + ‖g(t)‖2). (4.25)

Integrating (4.25) over [t, t + 1], we get

(u(t + 1), Au(t + 1)) + µ1

∫ t+1

t

‖Au(τ)‖2 dτ

� 1

µ1

∫ t+1

t

‖B(u(τ))‖2 dτ +
1

µ1

∫ t+1

t

‖N(u(τ))‖2 dτ

+
1

µ1

∫ t+1

t

‖g(τ)‖2 dτ + (u(t), Au(t)). (4.26)

Now from the proof of lemma 4.1 we can see that∫ t+1

t

‖B(u(τ))‖2 dτ � λ‖u‖4
L∞(R+;V ), (4.27)

∫ t+1

t

‖N(u(τ))‖2 dτ � C(µ0, ε, α)‖u‖2
L∞(R+;V ), (4.28)

and thus∫ t+1

t

‖Au(τ)‖2 dτ � c2 + C(µ0, ε, α)

µ2
1

F2(‖u‖L∞(0,1;V )e
−δt/2)

+
λ

µ2
1

F2
2 (‖u‖L∞(0,1;V )e

−δt/2) +
1

µ2
1

‖g0‖2
L2

b

. (4.29)

Hence

‖∂tu(τ )‖L4/3(t,t+1;H) � ‖Au(τ)‖L4/3(t,t+1;H) + ‖B(u(τ))‖L4/3(t,t+1;H)

+‖N(u(τ))‖L4/3(t,t+1;H) + ‖g(t)‖L4/3(t,t+1;H)

�
(√

c2 + C(µ0, ε, α)

µ1
+ C(µ0, ε, α)

)
F1/2

2 (‖u‖L∞(0,1;V )e
−δt/2)

+

√
λ

µ1
F2(‖u‖L∞(0,1;V )e

−δt/2) +

(
1 +

1

µ1

)
‖g0‖L2

b
. (4.30)

The proof of this lemma is complete. �
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Lemma 4.5. Let g0 ∈ L2
b(R; H), then the θ -cocycle φ(t, g, ·) (defined by (4.3)) possesses a

pullback trajectory absorbing set {�g}g∈H(g0) ⊂ U tr
H(g0)

with �g ⊂ U tr
g for each g ∈ H(g0).

Moreover, there is a set � ⊂ U tr
H(g0)

such that
⋃

g∈H(g0)
�g ⊂ � and � is bounded in

L∞(R+; V ).

Proof. Set

�g =
{

u ∈ U tr
g : sup

t∈R+

{‖u‖L∞(t,t+1;V ) + ‖∂tu‖L4/3(t,t+1;H)} � F3(Ĉ) +

(
1 +

1

µ0

)
‖g0‖L2

b

}
,

� =
{

u ∈ U tr
H(g0)

: sup
t∈R+

{‖u‖L∞(t,t+1;V ) + ‖∂tu‖L4/3(t,t+1;H)} � F3(Ĉ) +

(
1 +

1

µ0

)
‖g0‖L2

b

}
,

(4.31)

where F3 is the continuous monotone function from lemma 4.4 and Ĉ is a positive constant
depending on µ0, µ1, ε, α, c1, c2, c3, δ, ‖g0‖L2

b
and R2, but not on u. We next prove that � is

the bounded pullback trajectory absorbing set for the translation cocycle φ(t, g, ·). Indeed,
for any family of bounded (in L∞(R+; V ) norm) sets {Bg}g∈H(g0) of U tr

H(g0)
with Bg ⊂ U tr

g ,
we see from lemma 4.4 that for ∀ u ∈ Bθ−t (g) ⊂ U tr

θ−t (g), there exists a t∗ > 1 such that

‖u‖L∞(t,t+1;V ) + ‖∂tu‖L4/3(t,t+1;H) � F3(Ĉ) +

(
1 +

1

µ0

)
‖g0‖L2

b
, ∀ t � t∗, (4.32)

which implies that φ(t, θ−t (g), Bθ−t (g)) ⊆ �g for ∀ t � t∗ and thus {�g}g∈H(g0) is a pullback
trajectory absorbing set for φ(t, g, ·) in U tr

H(g0)
. Obviously, �g is bounded (in L∞(R+; V )

norm) in U tr
g for each g ∈ H(g0). Also,

⋃
g∈H(g0)

�g ⊂ � and � is bounded in L∞(R+; V ).
The proof of lemma 4.5 is complete. �

Lemma 4.6. Let {un} be a bounded (in the norm of L∞(R+; V )) sequence in U tr
H(g0)

and there

exists a function u∗ ∈ Cloc(R+; H 2−η) such that

un −→ u∗ strongly in Cloc(R+; H 2−η) as n → ∞. (4.33)

Then u∗ ∈ U tr
H(g0)

.

Proof. We need to prove that u∗ ∈ L∞(R+; V ) ∩ Cloc(R+; D(A)) and for any T > 0, T u∗ is
a regular weak solution of (3.12) on the interval [0, T ] satisfying the energy inequality (4.1).
Indeed, since {un} ⊂ U tr

H(g0)
and is bounded in L∞(R+; V ), by (4.5) we conclude that {un} is

bounded in L2
loc(R+; D(A)) and { ∂un

∂t
} is bounded in L

4/3
loc (R+; H). By the diagonal procedure,

we find that there exists a function u ∈ L∞(R+; V ) ∩ Cloc(R+; D(A)) and a subsequence (still
denoted by {un}) of {un} such that

T un ⇀ T u weakly in L2(0, T ; D(A)) as n → ∞, (4.34)

un ⇀ u weakly star in L∞(R+; V ) as n → ∞, (4.35)

∂tT un ⇀ ∂tT u weakly in L4/3(0, T ; H) as n → ∞. (4.36)

Obviously, ∂tu ∈ L
4/3
loc (R+; H). By lemma 3.3 we obtain T u ∈ C([0, T ]; H 2−η) since the

embedding V ↪→ H 2−η is compact. From (4.33) and the uniqueness of limit we have u = u∗.
Next we verify that T u∗ is a regular weak solution of (3.12) on the interval [0, T ] satisfying
(4.1). To this end, we prove the following relations.

AT un ⇀ AT u∗ weakly in L4/3(0, T ; H) as n → ∞, (4.37)

B(T un) ⇀ B(T u∗) weakly in L4/3(0, T ; H) as n → ∞, (4.38)

N(T un) ⇀ N(T u∗) weakly in L4/3(0, T ; H) as n → ∞. (4.39)
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Obviously, (4.37) can be deduced directly from (4.34). Also from (4.34) and the compact
embedding V ↪→ H 1

0 (�) ↪→ H , we obtain

T un −→ T u∗ strongly in L4/3(0, T ; H 1
0 (�)) as n → ∞, (4.40)

T un −→ T u∗ strongly in L4/3(0, T ; H) as n → ∞. (4.41)

Now for any ψ(t) ∈ L4(0, T ; H), we have∣∣∣∣ lim
n→∞

∫ T

0
(B(T un) − B(T u∗), ψ(t)) dt

∣∣∣∣
� lim

n→∞

∫ T

0
|b(T (un − u∗), T un, ψ)| dt + lim

n→∞

∫ T

0
|b(T u∗, T (un − u∗), ψ)| dt

.= I1 + I2. (4.42)

By Hölder inequality and Gagliardo–Nirenberg inequality, we get

I1 = lim
n→∞

∫ T

0
|b(T (un − u∗), T un, ψ)| dt

� lim
n→∞

∫ T

0
‖T (un − u∗)‖1/4 ‖T (un − u∗)‖3/4

H 1
0 (�)

‖T un‖1/8‖T un‖7/8
V ‖ψ(t)‖ dt

� lim
n→∞ C

∫ T

0
‖T (un − u∗)‖H 1

0 (�)‖ψ(t)‖ dt

� C lim
n→∞ ‖T (un − u∗)‖L4/3(0,T ;H 1

0 (�))‖ψ(t)‖L4(0,T ;H) = 0, (4.43)

where C is a constant depending on the L∞(R+; V ) bound of the sequence {un} and T , but
not on n. Analogously,

I2 = lim
n→∞

∫ T

0
|b(T u∗, T (un − u∗), ψ)| dt

� lim
n→∞

∫ T

0
‖T u∗‖∞‖∇T (un − u∗)‖ ‖ψ(t)‖ dt

� lim
n→∞

∫ T

0
‖T u∗‖V ‖T (un − u∗)‖H 1

0 (�)‖ψ(t)‖ dt

� C lim
n→∞ ‖T (un − u∗)‖L4/3(0,T ;H 1

0 (�))‖ψ(t)‖L4(0,T ;H) = 0. (4.44)

It then follows from (4.42)–(4.44) that (4.38) holds. Now from (4.34) we see that ‖AT (un −
u∗)‖L2(0,T ;H) is bounded. Similar to the derivation of (3.27) in [51], we get from (4.41) that

lim
n→∞

∫ T

0
|N(T un) − N(T u∗), ψ)| dt

=
∣∣∣∣ lim
n→∞

∫ T

0

∫
�

{∇ · [µ(e(T un))e(T un) − µ(e(T un))e(T un)]} · ψ(t) dx dt

∣∣∣∣
� C(µ0, ε, α) lim

n→∞

∫ T

0
‖T (un − u∗)‖1/2‖AT (un − u∗)‖1/2‖ψ(t)‖ dt

� C(µ0, ε, α) lim
n→∞ ‖T (un − u∗)‖1/2

L2(0,T ;H)
‖AT (un − u∗)‖1/2

L2(0,T ;H)
‖ψ(t)‖L2(0,T ;H)

= 0. (4.45)

Equation (4.45) gives (4.39). The proof is complete. �
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Theorem 4.1. Let g0 ∈ L2
b(R; H). Then equation (3.12) possesses a compact pullback

trajectory attractor A tr = {A tr
g }g∈H(g0) = {ωg(�)}g∈H(g0) in U tr

H(g0)
.

Proof. According to theorem 2.1 and lemma 4.5, we only need to prove that the set � ⊆ U tr
H(g0)

constructed in (4.31) is compact in Cloc(R+; H 2−η). Actually, from (4.6) one can see that T �

is bounded in W∞,4/3(0, T ; V, H) and thus T � is relatively compact in C([0, T ]; H 2−η)

(thanks to lemma 3.3). Hence, it suffices to show that T � is closed in C([0, T ]; H 2−η) for
any T > 0. Assume {un} ⊂ � and T un −→ T u strongly in the norm of C([0, T ]; H 2−η)

as n → ∞. Since {un} is bounded in L∞(R+; V ), applying lemma 4.6 we see u ∈ U tr
H(g0)

.
Moreover, in the proof of lemma 4.6 we know ∂tT un ⇀ ∂tT u weakly in L4/3(0, T ; H)

and un ⇀ u weakly star in L∞(R+; V ) as n → ∞. Thus we obtain

‖u‖L∞(t,t+1;V ) + ‖∂tu‖L4/3(t,t+1;H)

� lim inf
n→∞ ‖un‖L∞(t,t+1;V ) + lim inf

n→∞ ‖∂tun‖L4/3(t,t+1;H) � F(Ĉ)

+

(
1 +

1

µ0

)
‖g0‖L2

b
, t � 0.

Therefore u ∈ � and T u ∈ C([0, T ]; H 2−η). The proof is complete. �

4.2. Pullback trajectory asymptotic smoothing effect

In this section, we prove the regularity of the pullback trajectory attractors by showing
A tr

g = Atr
g for each g ∈ H(g0). This regularity implies the pullback trajectory smoothing

effect of the incompressible non-Newtonian fluid in the following sense: the trajectories issued
from u0 ∈ H belong to Cloc(R+; H−η) ∩ L∞(R+; H), and (under the pullback acting of the
translation cocycle) eventually belong to C([0, T ]; H 2−η) ∩ L∞(R+; V ) after large enough
time.

Lemma 4.7. Let g0 ∈ L2
b(R; H), g ∈ H(g0) and BH ⊂ T tr

θ−t (g) be arbitrary. Let u(·) =
φ(t, θ−t (g), u0(·)) with u0(·) ∈ BH . Then there exist a time T0(BH ) and a positive constant
K such that

‖φ(t, θ−t (g), u0(·))‖L∞(R+;V ) � K, ∀ t � T0(BH ). (4.46)

Proof. The assertion of this lemma can be deduced from lemma 4.2 of [53] and we omit the
detailed proof here. �

Theorem 4.2. Let g0 ∈ L2
b(R; H), then

Atr = {Atr
g }g∈H(g0) = {A tr

g }g∈H(g0) = A tr. (4.47)

Proof. We only need to show

Atr
g = A tr

g , ∀ g ∈ H(g0). (4.48)

On the one hand, A tr
g is bounded in L∞(R+; V ) for any g ∈ H(g0). Thus A tr

θ−t (g) is bounded
in L∞(R+; H) for any t ∈ R. By the φ-invariance property and pullback attracting property
of the pullback trajectory attractor, we have for any T > 0 that

distC([0,T ];H−η)(T A tr
g , T Atr

g )

= distC([0,T ];H−η)

(
T φ

(
t, θ−t (g), A tr

θ−t (g)

)
, T Atr

g

)
(∀ t ∈ R+)

= lim
t→+∞ distC([0,T ];H−η)

(
T φ

(
t, θ−t (g), A tr

θ−t (g)

)
, T Atr

g

)
= 0, ∀ g ∈ H(g0),
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which implies

A tr
g ⊆ Atr

g , ∀ g ∈ H(g0). (4.49)

On the other hand, lemma 4.7 tells us that

Atr
θ−t (g) = ωθ−t (g)(P) =

⋂
s�0

⋃
τ�s

φ(τ, θ−τ θ−t (g), Pθ−τ θ−t (g))

is bounded in L∞(R+; V ) for any t ∈ R+. Also by the φ-invariance property and pullback
attracting property of the pullback trajectory attractor, we obtain for any T > 0 that

distC([0,T ];H−η)(T Atr
g , T A tr

g )

= distC([0,T ];H−η)

(
T φ

(
t, θ−t (g), Atr

θ−t (g)

)
, T A tr

)
(∀ t ∈ R+)

� distC([0,T ];H 2−η)

(
T φ

(
t, θ−t (g), Atr

θ−t (g)

)
, T A tr

)
(∀ t ∈ R+)

= lim
t→+∞ distC([0,T ];H 2−η)

(
T φ

(
t, θ−t (g), Atr

θ−t (g)

)
, T A tr

)
= 0, ∀ g ∈ H(g0),

which implies

Atr
g ⊆ A tr

g , ∀ g ∈ H(g0). (4.50)

We readily get (4.48) from (4.49) and (4.50). The proof is complete. �

5. Conclusions and a remark

The starting point for our interest in this paper is the asymptotic smoothing effect of the weak
solutions to 3D non-Newtonian fluid. Our ideas originate from Caraballo et al [14,15,19] for
pullback attractor and Chepyzhov and Vishik [23,24,49] for trajectory attractor. The definition
of pullback trajectory attractor is indeed a combination of the definitions of pullback attractor
and trajectory attractor. It contains not only the characteristic of pullback attractor but also
the characteristic of trajectory attractor. We have constructed the pullback trajectory attractors
for the 3D incompressible non-Newtonian fluid and proved its pullback trajectory asymptotic
smoothing effect.

Remark. The idea of this paper could be applied to 3D Navier–Stokes equations. One can
construct the pullback trajectory attractors in different spaces and then establish the regularity.
This regularity also reveals the pullback trajectory asymptotic smoothing effect of the weak
solutions to 3D Navier–Stokes equations. This will be the topic of some other papers.
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