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In this article, we study the dynamics of Mackey–Glass system applied a nonstandard
finite-difference scheme. For the discrete system we show that a sequence of Hopf
bifurcations occur at the positive fixed point as the delay increasing, analyze the stability of
the fixed point and calculate the direction of the Hopf bifurcations. At last, by giving some
numerical experiments, we illustrate the relation between the time of producing blood
cells and symptom.
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1. Introduction

Recently, it has been recognized that differential equations with delay describe various models of mathematical biology
more adequately than equations without delay. For example, delay differential equation

ṗ(t) = −γ p(t) + βθn p(t − τ )

θn + pn(t − τ )
, t � 0, (1.1)

characterize the regulation of hematopoiesis. Here, p(t) denotes the density of mature cells in blood circulation, τ is the
time delay between the production of immature cells in the bone marrow and their maturation for release in circulating
bloodstreams, β , θ , n and γ are all positive constants and

β

γ
> 1. (1.2)

In [1], Michael C. Mackey and Leon Glass associated the onset of disease with bifurcations in Eq. (1.1). The fluctuations in
peripheral while blood cell counts in chronic granulocytic leukemia (CGL). So studying the dynamics of Eq. (1.1) is significant
for medical research.

But considering the need of scientific computation and real-time simulation, our interest is focused on the behaviors of
discrete dynamics system corresponding to (1.1). Most of this time, it is desired that a difference equation derived from a
differential equation, preserves the dynamical features of the corresponding continuous-time model. That is, the discrete-
time model is ‘dynamically consistent’ with the continuous-time model.

In [2], Volker Wulf and Neville J. Ford show that, if applying Euler forward method to solve the delay differential equa-
tion, then the discrete scheme is ‘dynamically consistent.’ It means that for all sufficiently small step sizes the discrete
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model undergoes a Hopf bifurcation of the same type with the original model, and the bifurcation point λh of the discrete
model is O (h) close to the bifurcation point λ∗ , which corresponds to the continuous-time model.

In this paper, we use the nonstandard finite-difference [6,7] to make the discretization for system (1.1). Firstly, we
consider the autonomous delay differential equations

u̇ = f
(
u(t), u(t − 1)

)
, t � 0; u(t) = φ(t), −1 � t � 0.

The first-order derivative is approximated by modified forward Euler expression

du(t)

dt
→ uk+1 − uk

φ

with the ‘denominator function’ φ such that

φ(h) = h + O
(
h2),

where h = 1
m (m ∈ N

+) stands for stepsize, and uk denotes the approximate value to u(kh). So we get the method as
following:

uk+1 − uk = φ(h) f (uk, uk−m). (1.3)

This method can be seem as a modified forward Euler method.
With a similar analysis in [2], it is known that the discrete model is ‘dynamically consistent,’ and the bifurcation point

λh of the discrete model also is O (h) close to the bifurcation point λ∗ corresponding continuous-time model. On the other
hand, many authors [7] have shown that the nonstandard finite-difference scheme, applied to the structurally unstable
dynamical system, can obtain numerical solutions having the correct behavior.

This paper is organized as follows. In Section 2, using the Hopf bifurcation theory of discrete system [3–5], the stability
of positive fixed point and the existence of the local Hopf bifurcations at the fixed point are investigated. In Section 3,
direction and stability of the Hopf bifurcation are established. In Section 4, some numerical simulations are provided to
illustrate the results found. At last, roughly, we apply our results to explain the symptom of CGL.

2. Stability of the positive equilibrium and local Hopf bifurcations

In this section, we shall see that, when nonstandard finite-difference scheme is applied to system (1.1), it gives rise
a discrete dynamics system, and we shall study the stability of the positive fixed point and the existence of local Hopf
bifurcations of the discrete dynamical system, which inherits certain dynamics of system (1.1).

Under transformation p(t) = θx(t), Eq. (1.1) becomes

ẋ(t) = −γ x(t) + βx(t − τ )

1 + xn(t − τ )
. (2.1)

Let u(t) = x(τ t), Eq. (2.1) can be rewritten as

u̇(t) = −γ τu(t) + βτu(t − 1)

1 + un(t − 1)
. (2.2)

In view of the application of system (1.1) in practice, we only take an interest in the positive equilibrium point of (1.1).
Assume that u∗ is the positive equilibrium point of Eq. (2.2), if and only if

u∗ = n

√
β

γ
− 1.

If employ the nonstandard finite-difference scheme (1.3) to Eq. (2.2) and choose the ‘denominator function’ φ as

φ(h) = 1 − e−γ τh

γ τ
, (2.3)

it yields difference equation

uk+1 = e−γ τhuk + (1 − e−γ τh)βuk−m

γ (1 + un
k−m)

. (2.4)

Note that the u∗ also is the unique positive fixed point of (2.4). Set yk = uk − u∗ . Then there is

yk+1 = e−γ τh yk + (1 − e−γ τh)β

γ

[
yk−m + u∗

1 + (yk−m + u∗)n
− u∗

1 + un∗

]
. (2.5)

By introducing a new variable Yk = (yk, yk−1, . . . , yk−m)T , we have the map

Yk+1 = F (Yk, τ ), (2.6)
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where F = (F0, F1, . . . , Fm)T , and

Fi =
{

e−γ τh yk + (1−e−γ τh)β
γ (

yk−m+u∗
1+(yk−m+u∗)n − u∗

1+un∗
), i = 0,

yk−i+1, 1 � i � m.
(2.7)

Clearly, the origin is a fixed point of map (2.6), and the linear part of map (2.6) is

Yk+1 = AYk.

Here

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

am 0 · · · 0 0 a0
1 0 · · · 0 0 0
0 1 · · · 0 0 0
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 . . . 1 0 0
0 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

in which am = e−γ τh and a0 = (1 − e−γ τh)[n(
γ
β

− 1) + 1]. The characteristic equation of A is

λm+1 − e−γ τhλm − (
1 − e−γ τh)[n

(
γ

β
− 1

)
+ 1

]
= 0. (2.8)

In order to proof the existence of the local Hopf bifurcation at fixed point, we need some lemmata as follows.

Lemma 2.1. All roots of Eq. (2.8) have modulus less than one for sufficiently small positive τ > 0.

Proof. When τ = 0, Eq. (2.8) is equal to

λm+1 − λm = 0.

The equations have an m-fold root and a simple root λ = 1.
Consider the root λ(τ ) of Eq. (2.8) such that λ(0) = 1. This root depends continuously on τ and Eq. (2.8) is differentiable

about τ , from which we have

dλ

dτ
= γ he−γ τh[λm − n(

γ
β

− 1) − 1]
me−γ τhλm−1 − (m + 1)λm

(2.9)

and

dλ̄

dτ
= γ he−γ τh[λ̄m − n(

γ
β

− 1) − 1]
me−γ τhλ̄m−1 − (m + 1)λ̄m

. (2.10)

Since d|λ|2
dτ = λ dλ

dτ + λ dλ
dτ ,

d|λ|2
dτ

∣∣∣∣
τ=0,λ=1

= 2hnγ

(
γ

β
− 1

)
< 0.

So with the increasing of τ > 0, λ cannot cross λ = 1. Consequently, all roots of Eq. (2.8) lie in the unit circle for sufficiently
small positive τ > 0. �

A Hopf bifurcation occurs when a complex conjugate pair of eigenvalues of A cross the unit circle as τ varies. We have
to find values of τ such that there are roots on the unit circle. Denote the roots on the unit circle by eiω , ω ∈ (−π,π ].
Since we are dealing with complex roots of a real polynomial, we only need to look for ω ∈ (0,π ]. For ω ∈ (0,π ], eiω is a
root of (2.8) if and only if

eiω − e−γ τh − (
1 − e−γ τh)[

n

(
γ

β
− 1

)
+ 1

]
e−imω = 0. (2.11)

Separating the real part and imaginary part from Eq. (2.11), there are

cosω − (
1 − e−γ τh)[n

(
γ

β
− 1

)
+ 1

]
cos mω = e−γ τh (2.12)

and

sinω + (
1 − e−γ τh)[n

(
γ − 1

)
+ 1

]
sin mω = 0. (2.13)
β
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So

cosω = 1 − n(
γ
β

− 1)[n(
γ
β

− 1) + 2](1 − e−γ τh)2

2e−γ τh
.

Let 1 <
β
γ < n

n−2 , then cosω > 1, which yields a contradiction. So we have the following result.

Lemma 2.2. Assume that 1 <
β
γ < n

n−2 . Then Eq. (2.8) has no root with modulus one for all τ > 0.

Since, from Eq. (2.13),

−(
1 − e−γ τh)[

n

(
γ

β
− 1

)
+ 1

]
= sinω

sin mω
(2.14)

is positive, sinω (ω ∈ [0,π ]) has the same sign as sin mω, so that if β
γ > n

n−2 , according to Lemma 2.2, there exists a
sequence of

ωk ∈
(

2kπ

m
,
(2k + 1)π

m

)
, k = 0,1,2, . . . ,

[
m − 1

2

]
, (2.15)

where [·] denotes the greatest integer function. It is clear that there exists a sequence of the time delay parameters τk
satisfying Eqs. (2.12), (2.13), according to ω = ωk .

Lemma 2.3. Let λk(τ ) = rk(τ )eiωk(τ ) be a root of (2.8) near τ = τk satisfying rk(τk) = 1 and ωk(τk) = ωk. Then

dr2
k (τ )

dτ

∣∣∣∣
τ=τk,ω=ωk

> 0.

Proof. From (2.9) and (2.10), we have

dr2
k (τ )

dτ
= λ

dλ̄

dτ
+ λ̄

dλ

dτ
= 2[m + 1 + me−γ τh](1 − cosω)γ he−γ τh

(1 − e−γ τh)|(m + 1)eiwk − me−γ τh|2 > 0.

Thus, the proof is complete. �
Lemma 2.4.

(i) If 1 <
β
γ < n

n−2 , then all roots of the characteristic equation (2.8) have modulus less than one.

(ii) If β
γ > n

n−2 , then Eq. (2.8) has a pair of simple roots e±iωk on the unit circle when τ = τk, k = 0,1,2, . . . , [m−1
2 ]. Furthermore, if

τ ∈ [0, τ0), then all the roots of Eq. (2.8) have modulus less than one; If τ = τ0 , then all roots of (2.8) except e±iω0 have modulus
less than one. But if τ ∈ (τk, τk+1], for k = 0,1,2, . . . , [m−1

2 ], Eq. (2.8) has 2(k + 1) roots have modulus more than one.

Proof. By Lemmas 2.1 and 2.2, and applying a similar result of Ruan and Wei [11, Corollary 2.4], we arrive at the conclu-
sion (i).

If β
γ > n

n−2 , let τk be as in (2.16). From (2.14), we have that Eq. (2.8) has roots e±iωk if and only if τ = τk and ω = ωk

given in (2.15) and (2.16).
By Lemmas 2.1 and 2.2 we know that if τ ∈ [0, τ0), then all the roots of Eq. (2.8) have modulus less than one; if

τ = τ0, then all roots of (2.8) except e±iω0 have modulus less than one; furthermore, by the Rouché’s theorem (Dieudonne
[8, Theorem 9.17.4]), the statement on the number of eigenvalues with modulus more than one as follows. �

Special properties in Lemma 2.4 immediately lead to stability of the zero solution of Eq. (2.5), namely, of the positive
fixed point u = u∗ of Eq. (2.4). So we have the theorem about Eq. (2.4).

Theorem 2.5.

(i) If 1 <
β
γ < n

n−2 , then u = u∗ is asymptotically stable for any τ � 0.

(ii) If β
γ > n

n−2 , then u = u∗ is asymptotically stable for τ ∈ [0, τ0), and unstable for τ > τ0 .

(iii) For β
γ > n

n−2 , Eq. (2.4) undergoes a Hopf bifurcation at u∗ when τ = τk, for k = 0,1,2, . . . , [m−1
2 ].
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3. Direction and stability of the Hopf bifurcation in discrete model

In the previous section, we obtained the conditions of Hopf bifurcation occurring when τ = τk , k = 0,1,2, . . . , [m−1
2 ].

In this section, we study the direction of the Hopf bifurcation and the stability of the bifurcation periodic solutions when
τ = τ0, using the similar techniques from normal form and center manifold theory (see e.g. Yuri [5]). Proving the main
result, we need some preliminary lemmata.

Set τ = τ0 + μ, μ ∈ R . Then μ = 0 is a Hopf bifurcation value for Eq. (2.5). Rewrite Eq. (2.5) as

yk+1 = e−γ τh yk + (
1 − e−γ τh)[β − n(β − γ )

β
yk−m + n(β − γ )((n − 1)β − 2nγ )

2u∗β2
y2

k−m

− n(β − γ )((n2 − 1)β2 − 6n2βγ + 6n2γ 2)

6u2∗β3
y3

k−m

]
+ O

(|yk−m|4).
So system (2.6) is turned into

Yk+1 = AYk + 1

2
B(Yk, Yk) + 1

6
C(Yk, Yk, Yk) + O

(‖Yk‖4),
where

B(Yk, Yk) = (
b0(Yk, Yk),0, . . . ,0

)
, C(Yk, Yk, Yk) = (

c0(Yk, Yk, Yk),0 . . . ,0
)
,

in which{
b0(φ,ψ) = b̃φmψm,

c0(φ,ψ,η) = c̃φmψmηm,
(3.1)

b̃ = (
1 − e−γ τh)n(β − γ )((n − 1)β − 2nγ )

2u∗β2
,

c̃ = −(
1 − e−γ τh)γ (β − γ )((n2 − 1)β2 − 6n2βγ + 6n2γ 2)

6u2∗β4
.

Let q = q(τ0) ∈ C
m+1 be an eigenvector of A corresponding to eiω0 , then

Aq = eiω0 q, Aq̄ = e−iω0 q̄.

We also introduce an adjoint eigenvector q∗ = q∗(τ ) ∈ C
m+1 having the properties

AT q∗ = e−iω0 q∗, AT q̄∗ = eiω0 q̄∗,

and satisfying the normalization 〈q∗,q〉 = 1, where 〈q∗,q〉 = ∑m
i=0 q̄∗

i qi .

Lemma 3.1. (See [9].) Define a vector valued function q : C → C
m+1 by

p(ξ) = (
ξm, ξm−1, . . . ,1

)T
.

If ξ is an eigenvalue of A, then Ap(ξ) = ξ p(ξ).

In view of Lemma 3.1, we have

q = p
(
eiω0

) = (
eimω0 , ei(m−1)ω0 , . . . , eiω0 ,1

)T
. (3.2)

Lemma 3.2. Suppose q∗ = (q∗
0,q∗

1, . . . ,q∗
m)T is the eigenvector of AT corresponding to eigenvalue e−iω0 , and 〈q∗,q〉 = 1. Then

q∗ = K̄
(
1,a0eimω0 ,a0ei(m−1)ω0 , . . . ,a0ei2ω0 ,a0eiω0

)T
(3.3)

and

K = 1

eimω0 + ma0e−iω0
. (3.4)

Proof. Assign q∗ satisfies AT q∗ = z̄q∗ with z̄ = e−iω0 , then the following identities hold⎧⎪⎨
⎪⎩

amq∗
0 + q∗

1 = e−iω0 q∗
0,

q∗
k = e−iω0 q∗

k−1, k = 2, . . . ,m,

a q∗ = e−iω0 q∗ .

(3.5)
0 0 m
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Let q∗
m = a0eiω0 K̄ , then

q∗ = K̄
(
1,a0eimω0 ,a0ei(m−1)ω0 , . . . ,a0ei2ω0 ,a0eiω0

)T
.

From normalization 〈q∗,q〉 = 1 and computation, Eq. (3.4) is hold. �
Let a(λ) be characteristic polynomial of A and λ0 = eiω0 . Following the algorithms in [5] and using a computation process

similar to that in [9], we can compute an expression for the critical coefficient c1(τ0),

c1(τ0) = g20 g11(1 − 2λ0)

2(λ2
0 − λ0)

+ |g11|2
1 − λ̄0

+ |g02|2
2(λ2

0 − λ̄0)
+ g21

2
, (3.6)

where

g20 = 〈
q∗, B(q,q)

〉
, g11 = 〈

q∗, B(q, q̄)
〉
, g02 = 〈

q∗, B(q̄, q̄)
〉
,

g21 = 〈
q∗, B(q̄,ω20)

〉 + 2
〈
q∗, B(q,ω11)

〉 + 〈
q∗, C(q,q, q̄)

〉
,

and

ω20 = b0(q,q)

a(λ2
0)

p
(
λ2

0

) − 〈q∗, B(q,q)〉
λ2

0 − λ0
q − 〈q̄∗, B(q,q)〉

λ2
0 − λ̄0

q̄,

ω11 = b0(q, q̄)

a(1)
p(1) − 〈q∗, B(q, q̄)〉

1 − λ0
q − 〈q̄∗, B(q, q̄)〉

1 − λ̄0
q̄.

By (3.1), (3.2) and Lemma 3.2, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0
(
q̄, p

(
ei2ω0

)) = b̃,

b0(q,q) = b̃,

b0(q, q̄) = b̃,

c0(q,q, q̄) = c̃,

a
(
ei2ω0

) = ei2(m+1)ω0 − amei2mω0 − a0,

a(1) = 1 − am − a0,

b0
(
q, p(1)

) = b̃.

(3.7)

Substituting these into (3.6) we have

c1(τ0) = K

2

(
b̃2

a(ei2ω0)
+ 2b̃2

a(1)
+ c̃

)
. (3.8)

Lemma 3.3. (See [10].) Given the map (2.6) and assume

(1) λ(τ ) = r(τ )eiω(τ) , where r(τ ∗) = 1, r′(τ ∗) 	= 0 and ω(τ ∗) = ω∗;
(2) eikω∗ 	= 1 for k = 1,2,3,4;
(3) Re[e−iω∗

c1(τ
∗)] 	= 0.

Then an invariant closed curve, topologically equivalent to a circle, for map (2.6) exists for τ in a one side neighborhood of τ ∗ . The
radius of the invariant curve grows like O (

√|τ − τ ∗| ). One of the four cases below applies:

(1) r′(τ ∗) > 0, Re[e−iω∗
c1(τ

∗)] < 0. The origin is asymptotically stable for τ < τ ∗ and unstable for τ > τ ∗ . An attracting invariant
closed curve exists for τ > τ ∗ .

(2) r′(τ ∗) > 0, Re[e−iω∗
c1(τ

∗)] > 0. The origin is asymptotically stable for τ < τ ∗ and unstable for τ > τ ∗ . A repelling invariant
closed curve exists for τ < τ ∗ .

(3) r′(τ ∗) < 0, Re[e−iω∗
c1(τ

∗)] < 0. The origin is asymptotically stable for τ > τ ∗ and unstable for τ < τ ∗ . An attracting invariant
closed curve exists for τ < τ ∗ .

(4) r′(τ ∗) < 0, Re[e−iω∗
c1(τ

∗)] > 0. The origin is asymptotically stable for τ > τ ∗ and unstable for τ < τ ∗ . A repelling invariant
closed curve exists for τ > τ ∗ .

From the discussion in Section 2, we know that r′(τ ∗) > 0, therefore, by Lemma 3.3 we have the following result.

Theorem 3.4. If β
γ > n

n−2 , then u = u∗ is asymptotically stable for τ ∈ [0, τ0), and unstable for τ > τ0 . An attracting (repelling)

invariant closed curve exists for τ > τ0 if Re[e−iω0 c1(τ0)] < 0 (> 0).



938 H. Su, X. Ding / J. Math. Anal. Appl. 344 (2008) 932–941
Table 1
The bifurcation points and directions of bifurcation at μ∗ for different step sizes

h τ0 τ1 τ2 τ3 τ4 τ5 Re[e−iω0 c1(τ0)]
1/2 3.64642 −0.0374223
1/22 4.14285 15.9481 −0.0210292
1/23 4.41861 18.8566 30.6152 38.235 −0.0110845
1/24 4.56206 20.0616 34.7746 48.1599 59.7469 · · · −0.00567481

Fig. 1. The numerical solution of Eq. (1.1) with nonstandard finite-difference scheme corresponding to step size h = 1/2.

4. Numerical test

One of the purposes of this section is to test the results in Sections 2 and 3 by some examples; the second one is to
explain the main theorem more clearly; the third one is to show that nonstandard scheme is better than Euler method in
some aspects. Such as for certain step size, the Euler discrete model cannot get the bifurcation solution, but the nonstandard
discrete can get it, which is the same as the analysis solution of Eq. (1.1).

From [1] we get some indexes of a person, that is β = 0.2 per day, γ = 0.1 per day, n = 10, θ = 1.6 × 1010 cells per
kilogram, initial condition p(t) = 1.5 (−τ < t < 0) cells per kilogram per day, and steady-state granulocyte turnover rate of
1.63 × 1010 cells per kilogram per day.

We compute the bifurcation points and direction of bifurcation at fixed point of numerical solutions of Eq. (1.1) with
nonstandard finite-difference scheme Eq. (2.4) for some step sizes. The figures refer to Table 1 and Figs. 1–4.

From Theorem 3.4 and Table 1, we conclude that all these numerical solution should be asymptotically stable for τ ∈
[0, τ0), unstable for τ > τ0 and an attracting invariant closed curve exists for τ > τ0. This is just what can see from Figs. 1–4.

Secondly, using Euler method we draw the numerical solutions of Eq. (1.1) with the same coefficients. From Fig. 5 we
can see that for h = 1

2 , when τ � τ0 the fixed point is not asymptotically stable and with the increasing of τ , it is unstable;
Fig. 6 (h = 1

8 ) is similar with Fig. 2 (h = 1
4 ). And then, by comparing with the figures in [1], Figs. 1–4 correctly describe

the condition of circulating white blood cells. So we could argue that nonstandard finite-difference scheme is superior
to Euler method under the means of describing approximately the dynamics of the original system with the same step
size.

5. Conclusions

In this section, we apply the results to analyze the symptom of CGL. In normal healthy adults, circulating levels of
granulocytes are either constant or show a mild oscillation with a period of 14 to 24 days. Cyclical neutropenia is a disease
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Fig. 2. The numerical solution of Eq. (1.1) with nonstandard finite-difference scheme corresponding to step size h = 1/4.

Fig. 3. The numerical solution of Eq. (1.1) with nonstandard finite-difference scheme corresponding to step size h = 1/8.

characterized by spontaneous oscillations in granulocyte numbers from normal to subnormal levels with a period of about
21 days. In some patients suffering from CGL circulation granulocyte numbers display large-amplitude oscillations with
periodicities ranging from 30 to 70 days, depending on the patient [1].

From Sections 2 and 3, we could see that for an adult when the time delay τ (between the production of immature
cells in the bone marrow and their maturation for release in circulating bloodstreams) is less than τ0, his or her circulating



940 H. Su, X. Ding / J. Math. Anal. Appl. 344 (2008) 932–941
Fig. 4. The numerical solution of Eq. (1.1) with nonstandard finite-difference scheme corresponding to step size h = 1/16.

Fig. 5. The numerical solution of Eq. (1.1) with Euler method corresponding to step size h = 1/2.

levels are constant which is normal. Once τ crosses τ0, there will be spontaneous oscillations of circulating levels which is
a symptom of CGL. So people should try to control the delay time no more than the critical value. However, this article just
provide a method to compute the critical time for different persons.

Using the method, we get Figs. 1–4, so diagnosis that if the level of the circulating of some people is the same as (a)
which is constant, or (b) whose periodic is about is 16 days, then the people is healthy. If it is the same as (c), whose period
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Fig. 6. The numerical solution of Eq. (1.1) with Euler method corresponding to step size h = 1/8.

is about 22 days, then he (or she) owns subnormal level. If it likes (d) whose period is 33 days then he (or she) is suffering
from CGL.
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