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Abstract

In this paper, a closed-form expression of the size-dependent sharp indentation loading

curve has been proposed based on dimensional analysis and the finite deformation Taylor-

based nonlocal theory (TNT) of plasticity (Int. J. Plasticity 20 (2004) 831). The key issue is to

link the results of FEM based on TNT plasticity with those obtained using conventional FEM

by taking as the effective strain gradient, Z, that presented in the work of Nix and Gao (J.
Mech. Phys. Solids 46 (1998) 411), thus avoiding large-scale finite element computations using

strain gradient plasticity theories. Two experiments carried out on 316 stainless-steel and pure

titanium have been used to verify the effectiveness of the present analytical model; the results

demonstrate that the present analytical expression of the size-dependent indentation loading

curve corresponds very well to the experimental indentation loading curve. The empirical

constant, a, in the Taylor model estimated from the experimental data has the correct order of
magnitude. Also, the results presented in this part can be further applied to establish an

analytical framework to extract the plastic properties of metallic materials with sharp

indentation on a small scale where the size effect caused by geometrically necessary

dislocations is significant. This will be discussed in detail in the second part of the paper.
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1. Introduction

Many experiments have demonstrated that metallic materials have significant size
effects when the characteristic length associated with nonuniform plastic deforma-
tion is at micron scale. Here we mainly refer to the size effects observed in nano or
micro-indentation tests (Fleck et al., 1994; Stelmashenko et al., 1993; De Guzman et
al., 1993; Ma and Clarke, 1995; Nix and Gao, 1998; Elmustafa and Stone, 2003;
Zhao et al., 2003), based on the consideration that much effort has been devoted
recently to the development of systematic methods to extract the mechanical
properties of materials with depth-sensing instrumented indentation. Without
considering size effects, much work has been presented to extract material properties
by means of micro-indentation tests. For single indenter algorithms, Giannakopou-
los and Suresh (1999) have proposed a systematic framework to obtain
elastic–plastic properties within the context of small-strain finite element analysis.
Since then, more comprehensive work has been carried out by Dao et al. (2001)
based on dimensional analysis and large deformation FEM. Although in the case of
many engineering metals, a single set of plastic properties can be extracted from
single indenter algorithms, the results were found to be sensitive to small
experimental errors. More recently, this problem has been thoroughly explored by
Capehart and Cheng (2003). Their results show that 1% noise levels preclude the
accuracy of the plastic properties identified, such as the strain hardening exponent.
Based on the fact that the plastic properties extracted from a single P–h curve are
sensitive to small experimental errors, two comprehensive studies have been carried
out recently (Bucaille et al., 2003; Chollacoop et al., 2003). Dual sharp indenter
algorithms were devised to improve the accuracy of the identified results. The
authors (Cao and Lu, 2004) have studied the stability of the dual indenter algorithms
by introducing the concept of the condition number. In that article, ill-conditioned
cases in the inverse problem are examined and corresponding regularization schemes
proposed. Since the selection of tip apex angles can change the properties of the
sensitivity matrix in the inverse problem, guidelines have been developed for optimal
combinations of tip apex angles and verified by means of numerical examples.
It should be emphasized that when using dual sharp indenter algorithms to extract

the plastic properties of materials, all that are needed are the Young’s modulus and
the indentation loading curves which are the basis of reverse algorithms. During the
loading procedure, the p–h response of a homogeneous elastic–plastic material to
sharp indentation generally obeys the following relationship which was found to be a
natural outcome of dimensional analysis (Cheng and Cheng, 1998a, b).

p ¼ Ch2; ð1Þ

where C is the loading curvature, constant for given material properties and
independent of the indentation depth.
However, Eq. (1) will not be true if the size effects are significant. Here, we will

mainly discuss the size effect induced by geometrically necessary dislocations (GND)
(Stelmashenko et al., 1993; De Guzman et al., 1993; Ma and Clarke, 1995; Nix and
Gao, 1998). Dao et al. (2001) have suggested a large indentation depth to exclude
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this effect. However, in practice, the indentation depth is limited by many factors
such as the sample size and the device itself and cannot be arbitrarily large; on the
other hand, in order to exclude the size effect, the indentation depth should be much
larger than the material length scale which reflects the effect of GND, but it is
difficult to present a guideline for determining the proper indentation depth since the
material length scale is material dependent, and generally varies from hundreds of
nanometers to several micrometers (Nix and Gao, 1998). Bucaille et al. (2004)
adopted second-order polynomials to approximate the indentation loading curve in
order to take into account the effect of GND, but the relationship between the GND
and the polynomial coefficients was not clear. Further research was therefore needed
to interpret the size-dependent indentation loading curve.
Based on the above premise, in this paper, a closed-form expression of the size-

dependent indentation loading curve has been proposed in which a strain-
independent material length scale was included to express the effect of geometrically
necessary dislocations. The present paper is organized as follows. In Section 2, by
using dimensional analysis and the finite deformation Taylor-based nonlocal theory
of plasticity (Hwang et al., 2004) which is an extension of the work of Gao and
Huang (2001), we have proposed an analytical model for predicting the size-
dependent indentation loading curve by linking the results of FEM based on the
nonlocal theory of plasticity with those obtained using conventional FEM. To
achieve this, the effective strain gradient, Z, suggested in the work of Nix and Gao
(1998) has been applied here. In Section 3, a comparison of the present analytical
model with other work has been carried out to prove the effectiveness of the present
work. Section 4 contains two experiments carried out on 316 stainless-steel and pure
titanium, respectively, to further verify the present model. In Section 5, the main
contributions made by the present work have been summarized.
2. Model

Dimensional analysis is a useful tool which has been successfully used to analyze
the indentation response. The most representative work was published by Cheng and
Cheng (1998a, b): based on dimensional analysis and FEM, they have presented
several scaling relationships which provide new insight into the shape of indentation
curves. They are also helpful as a guide to the FE analysis of conical indentations.
Since then, single indenter algorithms (Dao et al., 2001) and dual indenter algorithms
(Bucaille et al., 2003; Chollacoop et al., 2003) to extract the mechanical properties of
materials have also been based on dimensional analysis and large deformation FEM.
Our discussion also begins with dimensional analysis. Unlike in the previous work
(Cheng and Cheng, 1998a,b; Dao et al., 2001), the material length scale (Nix and
Gao, 1998) has been included in the relationship to reflect the size effect observed in
micro or nano-indentation.
For conical indentation in a power-law material, in loading procedure, the

indentation load must be a function of the following independent parameters: the
Young’s modulus, E, and Poisson’s ratio, n, of the elastic–plastic solid, the Young’s
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modulus, Ei, and Poisson’s ratio, ni, of the elastic indenter, the yield strength sy;0 in
the absence of a strain gradient, the strain hardening exponent n, the indentation
depth h, the material length scale l and the tip apex angle of the indenter y.

p ¼ f ðE; n;Ei; ni;sy;0; n; y; h; lÞ: ð2Þ

Using the reduced Young’s modulus (Johnson, 1985). Eq. (2) can be reduced to

p ¼ f ðEn; sy;0; n; h; l; yÞ; ð3Þ

where the reduced Young’s modulus is

1

En
¼
1� n2

E
þ
1� n2i

Ei
: ð4Þ

Alternatively, Eq. (3) can be given by

p ¼ f ðE�;sr;0; n; h; l; yÞ; ð5Þ

where the representative stress sr;0 in the absence of strain gradient (Dao et al., 2001)
is

sr;0 ¼ sy;0 1þ
E

sy;0
er

� �n

; ð6Þ

where er is the total effective strain accumulated beyond the yield strain, see the work
of Dao et al. (2001) for its definition in detail.
The P theorem (Barenblatt, 1996) is a key theorem in dimensional analysis, which

describes how every physically meaningful equation involving k variables can be
equivalently rewritten as an equation of k–m dimensionless parameters, where m is
the number of fundamental units used. Furthermore, and most importantly, it
provides a method for computing these dimensionless parameters from the given
variables, even if the form of the equation is still unknown. Here, by applying the P
theorem, Eq. (5) can be expressed as

p ¼ sr;0h
2P1

En

sr;0
; n;

l

h
; y

� �
: ð7Þ

From Eq. (7), it can be found that the parameter, l=h, should be contained in the
expression of the indentation loading curve which reflects the effect of GND.
In general, to determine the closed-form expression of Eq. (7), FEM based on the

higher order theories (Begley and Hutchinson, 1998; Gao et al., 1999; Huang et al.,
2000) or other size-dependent plasticity models (Acharya and Bassani, 2000; Gao
and Huang, 2001; Evers et al., 2002) should be used. A lack of general purpose FEM
software for such theories makes it difficult to carry out corresponding large-scale
numerical simulations. Here we will propose a new method to evaluate Eq. (7),
aimed at avoiding large-scale finite element computations based on strain gradient
plasticity.
Gao and Huang (2001) have proposed a Taylor-based nonlocal theory of plasticity

to account for the size dependence of plastic deformation at micron and submicron
length scales. Their further analysis showed that for indentation problems, there are
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only negligible differences between the TNT and MSG (Gao et al., 1999; Huang et
al., 2000) theories for the prediction of experimentally measurable quantities.
However, the constitutive equations of TNT plasticity are similar to the classical
plasticity theories (Hill, 1950), which are significantly simpler than high-order
theories such as the MSG theory. As a result, in this article, in order to determine the
closed-form of Eq. (7), we invoke the Taylor-based nonlocal theory of plasticity. For
simulation of the indentation problems, large deformation FEM based on the flow
theory of TNT plasticity should be used. Unfortunately, to the authors’ knowledge,
the use of this type of method has not yet been explored. For simplicity’s sake, the
deformation theory of strain gradient plasticity has been widely applied to the
analysis of indentation problems (see Shu and Fleck (1998) and Begley and
Hutchinson (1998) using the infinitesimal strain assumption and Hwang et al. (2002)
using the finite deformation MSG theory). Also, based on numerical results, Guo et
al. (2001) have found that, in the case of micro-indentation with monotonic loading,
the difference between the results obtained using the TNT deformation theory and
those given by the flow theory of TNT plasticity is rather small. Similar conclusions
have also been drawn from results based on the MSG theory (Qiu et al., 2003).
Consequently, the deformation theory of TNT plasticity has been applied here to
evaluate the explicit expression of Eq. (7).
The deformation theory of TNT plasticity retains the same structure as the

classical plasticity theory. The constitutive equation based on the infinitesimal strain
assumption has been presented by Gao and Huang (2001). For indentation
problems, it is anticipated that strains near the indenter tip will be relatively large.
The effect of finite deformation should therefore be considered. Recently, Hwang et
al. (2004) have presented the finite deformation theory of TNT plasticity. It can be
found from their work that, except for the yield function given as follows which is
specific to TNT plasticity, all the other governing equations and boundary
conditions are identical to those of the classical plasticity theory.

teq ¼ sðe; ZÞ; ð8Þ

where teq is the effective stress in the current configuration (see Hwang et al., 2004,
for a more detailed definition) and the flow stress is given by

s ¼ sref
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðeÞ þ lZ

q
; ð9Þ

where sref is the reference stress, Z is the effective strain gradient whose detailed
definition can be found in the work of Gao and Huang (2001) or Hwang et al. (2004),
and the material length scale l is expressed according to the shear modulus m and
Burgers vector b by

l ¼ 18a2ðm=sref Þ
2b ð10Þ

a in Eq. (10) is an empirical material constant.
Unlike in the classical plasticity theory, in TNT plasticity, a representative cell

needs to be applied to evaluate the effective strain gradient. When using FEM based
on TNT plasticity to calculate the effective strain gradient, Gaussian integration
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should be carried out at the mesoscale cell level, which is specific to TNT plasticity
(Guo et al., 2001) and leads to general purpose software such as ABAQUS becoming
ineffective and requiring the development of a special FEM program. In this paper,
in order to avoid large-scale finite element computations using strain gradient
plasticity theories, we have proposed a method of directly linking the results
obtained using FEM based on TNT plasticity to those obtained using conventional
FEM, by taking as the effective strain gradient, Z, that presented in the work of Nix
and Gao (1998), i.e.

Z ¼
1

h tan2ðyÞ
: ð11Þ

At a given indentation depth and a given tip apex angle, Eq. (11) shows that the
effective strain gradient is constant.

Remark. It should be pointed out that, for conical indentation problems, the strain
gradient under the indenter might not be constant in general. The assumption of the
constant effective strain gradient given by Eq. (11) is in an average sense. Taking into
consideration that, same as the hardness discussed in previous work (Nix and Gao,
1998), the total force acting on the indenter and the displacement of the indenter
involved in the present work are not localized variables, e.g. stresses or strains which
are heavily dependent on the local distribution of the strain gradient, therefore, it is
possible to obtain a reasonable analytical model by using the effective strain gradient
shown as Eq. (11). Moreover, the results in the work of Nix and Gao (1998) show
that the depth dependence of hardness predicted by their model is in excellent
agreement with indentation tests. Later, many other experiments (Abu Al-Rub and
Voyiadjis, 2004; Elmustafa and Stone, 2002, 2003; Liu and Ngan, 2001; Lou et al.,
2003; Mirshams and Parakala, 2004; Rodriguez and Gutierrez, 2003; Swadener et
al., 2002; Yuan and Chen, 2001) also prove that Nix and Gao’s model (1998) is
effective in the analysis of size-dependent indentation problems for a wide range of
metal materials at a wide range of indentation depth. On the other hand, at present,
to the best of the authors’ knowledge, no rigorous proof in theory has been proposed
for the actual distribution of the effective strain gradient under the indenter; it is a
very complicated problem. Recently, Zhao et al. (2003) have presented a new strain
gradient plasticity model to characterize depth dependence of hardness; in their
work, the strain gradient is assumed to be nonconstant and explicitly dependent on
the position under the indenter. Experimental results have showed the effectiveness
of their model. As mentioned in their analysis (Zhao et al., 2003), the effective strain
gradient applied in their work makes some approximation to the real situation and
may be appropriate to very small deformation levels. However, we emphasize here
that the effective strain gradient used in their work (Zhao et al., 2003) is also an
assumption; its effectiveness is verified by experiments. Based on the consideration
above, in our present work, also for the size-dependent conical indentation
problems, we have applied the effective strain gradient (constant at a given
indentation depth) suggested by Nix and Gao (1998) to propose a new analytical
model to interpret size-dependent conical indentation. A comparison with other
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work and corresponding experiments will be carried out in the sequel to prove the
effectiveness of the application of the effective strain gradient in such a manner.

If the shear modulus, the constant parameter, a, in the Taylor relationship and the
Burgers vector are known, using Eq. (11) and for given indentation depth and tip
apex angle the yield criterion expressed by Eq. (8) can be rewritten as

teq ¼ sref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðeÞ þ

l

h tan2ðyÞ

s
¼ gðsref ; eÞ: ð12Þ

By replacing Eq. (8) in the work of Hwang et al. (2004) with Eq. (12), it can be found
that the constitutive law of the classical deformation plasticity theory has been
respected once again. When using the finite deformation theory of plasticity, the
yield function of which is given by Eq. (12) to evaluate the indentation loading curve
given by Eq. (7), the computational procedure is, for a given indentation depth (or
contact radius), to find a solution which satisfies all the relevant equations and
boundary conditions; the result is assumed to be only dependent on the final status,
and independent of the loading procedure. FEM can be used to evaluate the above
solution. Here, we have considered power-law materials for which the function, f, in
Eq. (12) is given by

f ðeÞ ¼ ðey þ erÞ
n; ð13Þ

where ey is the strain corresponding to the initial yield stress in the stress–strain curve
and n is the strain hardening exponent. Here it varies from 0 to 0.5.
Inserting Eq. (13) into (12), we obtain

teq ¼ sref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðey þ erÞ

2n
þ

l

h tan2ðyÞ

s
: ð14Þ

Fitting Eq. (14) with the power function leads to

teq ¼ sref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðey þ erÞ

2n
þ

l

h tan2ðyÞ

s
� s0ref ðe

0
y þ e0rÞ

n0 : ð15Þ

At a given indentation depth, conventional FEM for power law materials can be
used to evaluate the results produced by the finite deformation plasticity theory, with
the yield function being that given in Eq. (15) above and all the other relevant
equations being the same as those in the classical plasticity theory. Here we have
invoked the flow theory, based on the large deformation assumption included in the
general purpose commercial software, ABAQUS, to evaluate the results of the finite
deformation plasticity theory discussed above. The advantage of using conventional
FEM to analyze the problem is that the results established in the previous work can
be directly used here. In the present work, the results of FEM computations, based
on the large deformation assumption made by Chollacoop et al. (2003) for 76
different combinations of elastic–plastic properties representing common engineer-
ing metals for each tip geometry, has been applied to produce the closed-form of
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Eq. (7), which is given by

p ¼ srh
2P1 ¼ srh

2 f3ðyÞ ln
3 En

sr

� �
þ f2ðyÞ ln

2 En

sr

� ��

þ f1ðyÞ ln
En

sr

� �
þ f0ðyÞ

�
: ð16Þ

Further details on f0;f1;f2;f3 are to be found in the work of Chollacoop et al.
(2003). It can be seen that, in the present work, the parameter, l=h, in Eq. (7) which
expresses the effect of GND, has been included in the representative stress, sr, in Eq.
(16), given by

sr ¼ s0ref ðe
0
y þ e0rÞ

n0
� sref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðey þ erÞ

2n
þ

l

h tan2ðyÞ

s
; ð17Þ
I. The finite deformation theory of TNT plasticity
(Huang et al., 2004) obtained by extending the work
of Gao and Huang (2001) has been applied in order to
analyze the present indentation problem.

II. At a given indentation depth, taking as the effective 
strain gradient that proposed by Nix and Gao (1998),
the finite deformation theory of TNT plasticity (given
in step I) degenerates to the classical finite  deformation 
theory of plasticity. 

III. At a given indentation depth, FEM based on the 
classical flow theory of plasticity and the large
deformation assumption has been used to evaluate the 
results of the classical finite deformation theory of
plasticity (presented in step II).

IV. According to steps I, II and III, the computational 
results proposed by Chollacoop et al. (2003) have been
used here to present the explicit form of the size-
dependent indentation loading curve by replacing the 
representative stress with that defined in the present 
work (equat ion (17)).

Flowchart 1. Key steps in the present analytical model.
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here for simplicity’s sake, we take e0y ¼ ey. And the representative strain er is a
function of the tip apex angle (Chollacoop et al., 2003), which can be used to
normalize the indentation loading curvature independently of the material hardening
exponent for a wide range of material properties. For a Berkovich indenter with an
equivalent conical tip apex angle of y ¼ 70:3	, the representative strain is er ¼ 0:033
(see Dao et al. (2001) for further details).

Remark. A closed-form expression of the indentation loading curve with a size effect
induced by GND has been proposed in this section. The key notion is that the
representative stress defined in the work of Chollacoop et al. (2003) has been
replaced with that given in Eq. (17) in which the material length scale has been
included. Below is a flowchart (Flowchart 1) to explain the key idea behind the
present method. From the flowchart, it can be seen that the advantages of the present
method are twofold; first, finite element computations using strain gradient plasticity
theories have been avoided and second, the previous analytical results (Dao et al.,
2001; Chollacoop et al., 2003) can be directly used to present the closed-form
expression of the size-dependent indentation loading curve.
3. Comparison with other work

Taking into consideration that our work has been heavily based on the model of
Nix and Gao (1998) and the finite deformation TNT plasticity (Hwang et al., 2004),
it will be very useful to compare the results of the present model with that of their
work. In order to verify the effectiveness of the finite element formulations based on
finite deformation TNT plasticity, Hwang et al. (2004) have presented a numerical
example, simulating a micro-indentation hardness experiment. Their results showed
that the square of the relative indentation hardness (H=H0) is linearly dependent on
the inverse of the indentation depth, 1=h, fitting the experimental result very well,
and the empirical constant, a, in the Taylor model has the correct order of
magnitude. At this point, the performance of their method is consistent with that of
Nix and Gao’s model (1998). Therefore, in our work we directly compared the
present model with the model of Nix and Gao (1998) in a general sense.
Dao et al. (2001) have argued that for most engineering metals the hardness based

on large deformation FEM using a standard Berkovich indenter has the following
relationship with the representative stress, s0:082 (evaluated by means of the
representative strain, er ¼ 0:082):

H ¼ 2:70s0:082: ð18Þ

Therefore, using Eq. (18) and the representative stress defined in Eq. (17), the
hardness predicted with the present model (Flowchart 1, i.e. at a given depth,
conventional FEM is used to replace that based on TNT plasticity by taking Eq. (15)
to be the yield criterion) will also be depth-dependent and consistent with that
predicted using the model of Nix and Gao (1998), which is a natural outcome since
the effective strain gradient described in their work has been used here.
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4. Experimental verification

The present computational model is based on the finite deformation plasticity
theory, while for the analysis of indentation problems, FEM based on the flow
theory of plasticity and the large deformation assumption is the most appropriate
selection. Although the hardness predicted using the present model is expected to be
consistent with that produced by the model of Nix and Gao (1998), further
indentation experiments need to be carried out to verify the effectiveness of the
application of the effective strain gradient given by Eq. (11) and the explicit form of
the indentation loading curve given in Eq. (16). First, tension tests using a UTS
machine were performed on 316 stainless-steel and pure titanium to obtain the
stress–strain relationships of the two materials. The diagram of the specimen is given
by Fig. 1. For each material, experiments were carried out on five samples. The true
stress–logarithmic strain curves based on the average tension curves for the two
materials have been plotted in Figs. 2 and 3. By approximating the stress–strain
relationship with a power law description, the reference stresses and strain hardening
exponents for the two materials can be obtained. Nanoindentation tests were then
carried out on an MTS XP nano-indenter. A standard diamond Berkovich indenter
with an equivalent tip apex angel of y ¼ 70:3	 was used. A loading rate such that
e


� p



=p ¼ 0:05 s�1 was selected to approximate a constant strain rate. The

indentation depth was large enough compared with the tip defect for the geometrical
sensitivity to be eliminated. Bucaille et al. (2003) have demonstrated that, for a
Berkovich indenter with an equivalent tip apex angle of y ¼ 70:3	, the effect of
friction on the indentation loading curve can be ignored. This conclusion can also be
drawn from Table 1 in the work of Mata and Alcala (2004). The surface was ground
with SiC paper until the grain size was about 15mm. Then the samples were polished
with 6 and 3 mm diamond suspension for 5 min and 0:05 mm alumina suspension for
20 s. Although the effects of a deformation layer due to mechanical polishing still
exist, compared with results based on further chemically polished sample, the effects
of surface layer are limited to the indentation depth lower than 200 nm for the two
materials studied here. Therefore, in the present work, the indentation data at the
indentation depths lower than 200 nm have been eliminated. Based on the above
considerations, we have attributed the indentation size-effect to the presence of the
GND. For each material, six measurements were made. Figs. 4 and 5 give the
indentation loading curves for 316 stainless-steel and pure titanium, respectively.
The values of sref and ey and n in Eq. (17) can be determined from Figs. 2 and 3; they
x

46 mm

5mm
z

x

1mm y

Fig. 1. Schematic of the tension sample.



ARTICLE IN PRESS

0.02 0.04 0.06 0.08

0

100

200

300

400

 experimental result
 fitted stress-strain curve

σ 
(M

P
a)

εr

Fig. 3. Plot of the stress–strain relationship of pure titanium.
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Fig. 2. Plot of the stress–strain relationship of 316 stainless-steel.
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are ssteelref ¼ 813:9MPa, esteely ¼ 0:00147, nsteel ¼ 0:2 and sTiref ¼ 603:5MPa, e
Ti
y ¼ 0:002,

nTi ¼ 0:15. The Young’s modulus was determined from the tension experiments as
being Esteel ¼ 200GPa and ETi ¼ 120GPa, respectively. The empirical constant, a,
in the Taylor model was determined for 316 stainless-steel and pure titanium,
respectively (see Figs. 4 and 5) by fitting the experimental indentation loading curves
with Eq. (16) using the least-square method and taking a Burgers vector of
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Fig. 4. Plot of the experimental p–h response and corresponding fitted results with the present closed-form

expression of indentation loading curves and other equations (316 stainless-steel).
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b ¼ 0:25 nm. The average values of parameter a for the two types of materials
studied here are asteel ¼ 0:228 and aTi ¼ 0:363, which have the correct order of
magnitude (between 0.1 and 0.5). Moreover, Figs. 4 and 5 also show that the
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Fig. 5. Plot of the experimental p–h response and corresponding fitted results with the present closed-form

expression of indentation loading curves and other equations (pure titanium).
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proposed closed-form expression of the indentation loading curves correspond very
well to the experimental curves. The results obtained by fitting the experimental
indentation curve with a function in the form of Eq. (1) and the results predicted
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using Eq. (B1) in the work of Dao et al. (2001) are also given in Figs. 4 and 5. It can
be seen that the deviation of the size-dependent indentation loading curve from the
assumption made in Eq. (1) is significant. At the same time, the results predicted
using the work of Dao et al. (2001) show that taking the size effect into consideration
is both necessary and important for the maximum indentation depths discussed here.
5. Conclusions

Recently, there has been a mounting interest in the measurement of the
mechanical properties of materials on small scales with depth-sensing instrumented
indentation. In this work, we have proposed a new method to interpret the conical
indentation loading curve including size effects induced by GND, which can be
further used to establish an analytical framework to extract the plastic properties of
materials from size-dependent indentation loading curves. Below is a summary of the
contributions made in this part of the article:
(1) A closed-form expression of the size-dependent indentation loading curve has

been proposed based on dimensional analysis and the finite deformation theory of
strain gradient plasticity presented by Hwang et al. (2004) which is an extension of
the work of Gao and Huang (2001). The key idea of the present work is to link the
computational results of FEM based on TNT plasticity with that established using
conventional FEM by taking as the effective strain gradient, Z, that presented in the
work of Nix and Gao (1998). Large-scale finite element computations using strain
gradient plasticity theories have been avoided. Based on the present scheme, it is
possible to work out another model by using the effective strain gradient presented in
the work of Zhao et al. (2003), which will be discussed in our further research.
(2) A comparison with other work has been carried out. Further analysis reveals

that hardness evaluated by the present computational model is consistent with the
model of Nix and Gao (1998).
(3) Experiments carried out on 316 stainless-steel and pure titanium have been

used to verify the effectiveness of the proposed analytical result. The results show
that the present analytical expression of the size-dependent indentation loading
curve corresponds very well to the experimental indentation loading curve. The
empirical constant, a, in the Taylor model estimated from the experimental data has
the correct order of magnitude.
(4) As a direct follow-up to the present work, an analytical framework can be

established to extract the plastic properties of engineering metals from size-
dependent indentation loading curves, which will be presented in Part II of this
paper.
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