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Abstract — An efficient extrapolation technique of

Radar cross-section (RCS) combines with Poggio-Miller-

Chang-Harrington-Wu-Tsai (PMCHWT) formulation is
presented for the fast analysis by arbitrary shaped three-

dimensional homogeneous lossy dielectric objects. The
PMCHWT formulation obtained in a well-known manner

is discretized to matrix equations using the Method of mo-

ments (MoM). For the RCS is highly angular dependent as
well as frequency, a novel rational function scheme is ex-

tended to the induced currents associated with PMCHWT,
which can provide fast and accurate radar cross-section

computation in both the frequency domain and spatial do-

main simultaneously. Numerical results are presented for
two canonical dielectric scatterers.
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I. Introduction

Much attention has been given to the analysis of scattering

properties for dielectric objects under the excitation of electro-

magnetic waves in the Computational electromagnetics (CEM)

community[1]. Among various surface integral formulations for

electromagnetic interactions with homogeneous material bod-

ies studied, PMCHWT formulation is one of the most widely

used approach[2]. For most complex case of dielectric scatter-

ing, PMCHWT formulation is known to be stable and pro-

vide accurate results. As compared with the traditional Vol-

ume integral equation (VIE) method, the PMCHWT method

generally requires smaller number of unknowns for scattering

problems involving dielectric objects[3,4]. Furthermore, it has

also been realized that once dielectric object with high per-

mittivity is involved, the convergence rate in PMCHWT will

be much faster than the VIE method. A complete comparison

has yet to be presented for the Müller formulation in litera-

ture, upon discretization, the Müller integral equation yields

numerical solutions that are far less accurate than those ob-

tained by discretizing the PMCHWT integral equation on the

same mesh[5].

The recent development and extension of the PMCHWT

formulations is overcoming its drawback. Generalization for

objects made of multiple dielectric regions and mixed metal-

lic, some hybrid formulations based on the PMCHWT formu-

lations are employed to analyze the scatterings, such as EFIE-

PMCHWT, JMCFIE[6,7] . The Calderón preconditioned PM-

CHWT integral equation is also introduced to cure the dense

discretization breakdown[8−10]. In Ref.[11], a brief discussion

on the resonance problem of the PMCHWT formulations as-

sociated with finite microstrip structures is presented.

However, to obtain the RCS in both the frequency do-

main and spatial domain simultaneously using the PMCHWT,

one has to repeat the calculation at each frequency point and

angular point. In many practical applications, the recently

progress focuses on the construction of “fast” methods to pre-

dict the monostatic RCS of a target. In Ref.[12], the author

enumerated the two-dimensional problems faced currently and

introduced several important algorithms and the applications.

Some efficient techniques, such as Asymptotic waveform eval-

uation (AWE) technique[13], the impedance matrix interpola-

tion technique and the Cauchy method have been successfully

applied to the extrapolation of the RCS alone versus frequency

or angular curves in appearing documents. Among these tech-

niques, the Maehly approximation in Ref. [14] is more easily

applicable in conjunction with PMCHWT, providing high ac-

curacy and efficiency for dielectric objects scattering problems.

In this paper, a simple and an efficient modeling scheme is

presented to deal with scattering problems involving dielectric

objects. Moreover, one promising approach combines with the

PMCHWT to speed up the impendence matrix solving. In this

optimization, the Chebyshev series is matched to be a rational

function via Maehly approximation to improve the accuracy.

As a result, we attempt to expand the Maehly approximation

to include multidimensional extrapolation technique. Finally,

several numerical results are included to illustrate the valid-

ness.
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II. Theory

1. A brief overview of SIE involving homogeneous

dielectric objects

Arbitrarily shaped homogeneous dielectric objects can be

analyzed based on the model shown in Fig. 1. The original

model is decomposed into an interior region, defined by per-

mittivity ε1 and permeability μ1, and into an exterior region,

defined by permittivity ε2 and permeability μ2. The scatterer

with an incident plane wave (Ei, H i) is located in region 2

free space medium. n1 stands for the outward pointing unit

normal vector.

Fig. 1. Geometry of a homogeneous lossy dielectric scatterer

in free space medium

According to Love’s equivalence principle, the solution can

be formulated in terms of an equivalent surface electric current

and an equivalent surface magnetic current as follow

E1 =jωA1 (J1(k, θ))+∇φ1 (J1(k, θ))+
1

ε1
∇× F 1 (M 1(k, θ))

(for r on or inside S1) (1)

H1 =jωF 1 (M 1(k, θ))+∇ϕ1 (M 1(k, θ))− 1

μ1
∇×A1 (J1(k, θ))

(for r on or inside S1) (2)

Es
2 =−jωA2 (J1(k, θ))−∇φ2 (J1(k, θ))− 1

ε2
∇×F 2 (M 1(k, θ))

(for r on or outside S1) (3)

Hs
2 =−jωF 2 (M 1(k, θ))−∇ϕ2 (M 1(k, θ))+

1

μ2
∇×A2 (J1(k, θ))

(for r on or outside S1) (4)

where the various vector potentials Ah(k, θ) and F h(k, θ) and

the scalar potentials φh(k, θ) and ϕh(k, θ), for h = 1 or h =2

are given by

Ah (X(k, θ)) = μh

Z
S

X (r′ ; k, θ) gh (r, r′ ; k) ds′ (5)

F h (X(k, θ)) = εh

Z
S

X (r′ ; k, θ) gh (r, r′ ; k) ds′ (6)

φh (X(k, θ)) =
j

ωεh

Z
S

∇′ · X (r′; k, θ)gh (r, r′ ; k) ds′ (7)

ϕh (X(k, θ)) =
j

ωμh

Z
S

∇′ · X (r′ ; k, θ)gh (r, r′ ; k) ds′ (8)

In obtaining the above expressions, S denotes the surface.

The vectors r and r′ are position vectors to observation and

source points, respectively, from a global coordinate origin.

The Green’s function defined in Eqs.(5)–(8) for h = 1, 2 is

given by

gh (r, r′ ; k) =
e−jkhR

4πR
(9)

R = |r − r′ | (10)

And the propagation constant is

kh = ω
√

μhεh (11)

On enforcing the boundary condition, the following com-

bined field integral equations are obtained in terms of the un-

known surface equivalent electric and magnetic currents:h
L1

“
J1(k, θ)

”
+ L2 (J1(k, θ)) + K1 (M 1(k, θ))

+ K2 (M 1(k, θ))
i
tan

= −Ei
˛̨̨
tan

(12)

h
− K1

“
J1(k, θ)

”
− K2 (J1(k, θ)) +

L1 (M 1(k, θ))

η2
1

+
L2 (M 1(k, θ))

η2
2

i
tan

= −H i
˛̨̨
tan

(13)

where the subscript “tan” stands for the tangential compo-

nent, the operators Lhand Kh are given by:

Lh (X(k, θ)) = −jωAh (X(k, θ)) −∇φh (X(k, θ)) (14)

Kh (X(k, θ))

=

Z
S

X (r′ ; k, θ) ×∇gh (r, r′ ; k) ds′

= n × X (r′ ; k, θ)

2
+P.V.

Z
S

X (r′; k, θ)×∇gh (r, r′ ; k) ds′

= n×X (r′ ; k, θ)

2
+ Kh (X(k, θ)) (15)

In Eq.(15), P. V. stands for the Cauchy principal value in-

tegration. To solve Eqs.(14) and (15) using MoM, two sets of

basis functions are used to discretize the surface electric cur-

rent and surface magnetic current, respectively. Let N repre-

sents the total number of edges, then

M 1(k, θ) = η0

NX
n=1

Pnfn (16)

J1(k, θ) ∼=
NX

n=1

Inf n (17)

where f n denotes Rao-Wilton-Glisson (RWG) basis function.

Eqs.(16) and (17) can be transformed into a matrix equation

using fm as testing functions"
α1(k, θ) + α2(k, θ) β1(k, θ) + β2(k, θ)

−β1(k, θ) − β2(k, θ)
ε1r

μ1r
α1(k, θ) +

ε2r

μ2r
α2(k, θ)

#

·
"

I

P

#
=

"
V (k, θ)

U (k, θ)

#
(18)

where

αmn
h (k, θ) =< fm, Lh (fn) > (19)

βmn
h (k, θ) = η0 < f m, Kh (fn) > (20)

V m(k, θ) = < f m,−Ei > (21)

Um(k, θ) = η0 < fm,−Hi > (22)
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The expression < ·, · > stands for the inner product. The

number of unknowns in the equation is 2N .

2. Two-Dimensional extrapolation technique

For the RCS over a desired frequency and angular range,

the induced currents are expanded by the bivariate Chebyshev

series, which can be used as well as the best polynomial ap-

proximation. To represent the data in question efficiently, it is

better achieved by casting the coefficients of Chebyshev series

via the Maehly approximation into a rational function. For

the specific frequency domain k ∈ [ka, kb] and angular domain

θ ∈ [θa, θb], the coordinate transform is used as8><
>:

k =
1

2
[k̃(kb − ka) + (kb + ka)], k̃ ∈ [−1, 1]

θ =
1

2
[θ̃(θb − θa) + (θb + θa)], θ̃ ∈ [−1, 1]

(23)

In(k, θ) ≈
N1X
i=0

N2X
j=0

ci,j
n Ti(k̃)Tj(θ̃) (24)

where

ci,j
n =

didj

(N1 + 1)(N2 + 1)

N1X
p=0

N2X
q=0

In(kp, θq)Ti(k̃p)Tj(θ̃q) (25)

d0 is set to be 1 in common and di = dj = 2 for

i = 1, ..., N1, j = 1, ..., N2. k̃p and θ̃q are the Chebyshev ze-

roes for TN1+1(k̃) and TN2+1(θ̃), respectively. kp ∈ [ka, kb]

and θq ∈ [θa, θb] can be obtained use the Eq.(23). ci,j
n denotes

the Chebyshev coefficients. To improve the accuracy of the

numerical solution, the improved Maehly approximation for

each In(k, θ) is

In(k, θ)≈
PLk

p=0

PLθ
q=0 ap,q

n Tp(k̃)Tq(θ̃)PMk
k=0

PMθ
r=0 bk,r

n Tk(k̃)Tr(θ̃)

=
a0,0

n T0(k̃)T0(θ̃)+· · ·+aLk,Lθ
n TLk (k̃)TLθ(θ̃)

b0,0
n T0(k̃)T0(θ̃)+· · ·+b

Mk,Mθ
n TMk(k̃)TMθ(θ̃) (26)

where the integers (Lk, Lθ),(Mk, Mθ) are the orders of the zero

and pole expansions of the Maehly rational function respec-

tively. Substitute Eq.(26) into (24) and use the Eq.(27)

Tp(x)Tq(x) =
1

2
(Tp+q(x) + T|p−q|(x)) (27)

Tn(x) stands for the fundamental recurrence relation of

the Chebyshev polynomial with the initial conditions T0(x) =

1, T0(x) = x.

Tn+1(x) = 2xTn(x) − Tn−1(x) (28)

The coefficients ap,q
n and bk,r

n are then found from the fol-

lowing Eqs.(29) and (30). Once the coefficients of the rational

function are calculated, the induced currents distribution can

be obtained at any frequency and angle point within the whole

frequency and angular range.

1

2

MθX
r=1

b0,r
n (c0,Lθ+s+r

n +c0,Lθ+s−r
n ) +

1

2

MkX
k=1

bk,0
n ck,Lθ+s

n

+
1

4

MkX
k=1

MθX
r=1

bk,r
n (ck,Lθ+s+r

n + ck,Lθ+s−r
n ) = −c0,Lθ+s

n

1

2

MθX
r=1

b0,r
n cLk+l,r

n +
1

2

MkX
k=1

bk,0
n (cLk+l+k,0

n + cLk+l−k,0
n )

+
1

4

MkX
k=1

MθX
r=1

bk,r
n (cLk+l+k,r

n +cLk+l−k,r
n )=−cLk+l,0

n

1

2

MθX
r=1

b0,r
n (cLk+l,Lθ+s+r

n +cLk+l,Lθ+s−r
n )

+
1

2

MkX
k=1

bk,0
n (cLk+l+k,Lθ+s

n + cLk+l−k,Lθ+s
n )

+
1

4

MkX
k=1

MθX
r=1

bk,r
n (cLk+l+k,Lθ+s+r

n +cLk+l+k,Lθ+s−r
n )

+
1

4

MkX
k=1

MθX
r=1

bk,r
n (cLk+l−k,Lθ+s+r

n +cLk+l−k,Lθ+s−r
n )

= −cLk+l,Lθ+s
n (29)

where l = 1, ..., Mk, s = 1, ..., Mθ.

a0,0
n = c0,0

n +
1

2

MθX
r=1

b0,r
n (c0,r

n + c0,r
n ) +

1

2

MkX
k=1

bk,0
n ck,0

n

+
1

4

MkX
k=1

MθX
r=1

bk,r
n ck,r

n

a0,q
n = c0,q

n +
1

2

MθX
r=1

b0,r
n (c0,q+r

n + c0,|q−r|
n ) +

1

2

MkX
k=1

bk,0
n ck,q

n

+
1

4

MkX
k=1

MθX
r=1

bk,r
n (ck,q+r

n ck,|q−r|
n )

+
1

4

MkX
k=1

bk,q
n ck,q

n +
1

2
b0,q
n c0,0

n

ap,0
n = cp,0

n +
1

2

MθX
r=1

b0,r
n cp,r

n +
1

2

MkX
k=1

bk,0
n (c|p−k|,0

n + cp+k,0
n )

+
1

4

MkX
k=1

MθX
r=1

bk,r
n (c|p−k|,r

n + cp+k,r
n )

+
1

4

MθX
r=1

bp,r
n c0,r

n +
1

2
bp,o
n c0,0

n

ap,q
n =cp,q

n +
1

2

MθX
r=1

b0,r
n (cp,q+r

n cp,|q−r|
n )+

1

2

MkX
k=1

bk,0
n (c|p−k|,q

n +cp+k,q
n )

+
1

4

MkX
k=1

MθX
r=1

bk,r
n (c|p−k|,q+r

n + c|p−k|,|q−r|
n

+cp+k,q+r
n +c

p+k,|q−r|
n )+

1

4

MkX
k=1

bk,q
n (c|p−k|,0

n + cp+k,0
n )

+
1

4

MθX
r=1

bp,r
n (c0,q+r

n + c0,|q−r|
n )

+
1

2
b0,q
n cp,0

n +
1

2
bp,0
n c0,q

n +
1

4
bp,q
n c0,0

n

(30)

where p=1, ..., Lk, q=1, ..., Lθ.

III. Results

In this section, some numerical results corroborate the ac-

curacy and efficiency of the newly implemented Maehly ap-

proximation combined with PMCHWT for obtaining 3-D RCS

pattern. All the computations were carried out on a Pentium

2.99GHz PC.

The first example is a combined object located in free

space. The object consists of a cube (0.5λ×0.5λ×0.5λ) and a

sphere of radius 0.25λ with a φ-polarized plane wave incident.
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The relative dielectric constant of the model is εr= 4. The

1/4 part of the sphere is embedded in the cube. The combined

model is discretized with 468 triangular patches resulting into

702 basis functions. Fig.2(a) clearly shows the monostatic

RCS versus frequency obtained by both the directly calculated

and Maehly approximation. The proposed method can acquire

high accuracy compared with MoM. Fig.2 (b) shows the mono-

static RCS of the combined object versus θ from −90◦ to 90◦

at φ = 30◦, 45◦and 90◦. The results obtained by the direct

MoM are plotted for comparison. This comparison in order to

show Maehly approximation can produce an accurate solution

with 0.5◦ increments at a different incident angle. It is obvious

that the full line and the line with symbol are indistinguish-

able in Fig.2 (b). Fig.3 shows the 3-D RCS pattern (dependent

on both θ and f) of the combined object obtained by Maehly

approximation (Lθ = 8, Mθ = 8, Lk = 8, Mk = 8) . The

CPU time required for MoM and two dimensional Maehly ap-

proximation are 1812 and 167 min, by contrast, the proposed

method is superior in terms of the CPU time to predict 3-D

monostatic RCS pattern.

Fig. 2. Monostatic RCS of the first model. (a) RCS versus
frequency. (b) RCS versus angle

Fig. 3. 3-D RCS pattern of the first model simultaneous ver-
sus frequency and angle

The second example considered in this paper consists of a

cone (Rb=1m, h=2m) and a parabolic body (radius =1m, focal

depth=0.5m). The combined object excited by a φ-polarized

plane wave at φ=0 . Meanwhile, the AWE technique with the

Padé approximation based on the PMCHWT is introduced to

these comparisons. The relative dielectric constant of the case

is εr= 4. There are 834 flat triangles used to discretize the

object resulting into 1251 unknowns. Fig.4 shows the monos-

tatic RCS of the combined object versus angle (f0=300MHz)

obtained by MoM, AWE technique and Maehly approxima-

tion, respectively. In this comparison, the MoM results agree

well with the Maehly results. On the other hand, although

AWE can usually achieve efficient wide response analysis, the

large number of unknowns in the algorithm causes more mem-

ory requirements than Maehly. The 3-D RCS pattern of the

combined object simultaneous versus angle and frequency ob-

tained by Maehly approximation is shown in Fig.5. According

to the experienced formula, it can be also noted that the ra-

tional function has the smallest error in the whole frequency

domains and angular domains when L = M or L = |M − 1|,
and the curves representing the Maehly approximation and

MoM almost coincide. For the calculation time, the proposed

method took 194min CPU time for calculation of the RCS fre-

quency and angular responses with 10MHz frequency and 3◦

angular increments, approximately 1/6 of the CPU time used

by the MoM.

Fig. 4. Monostatic RCS of the combined object versus θ

Fig. 5. 3-D RCS pattern of the combined object simultaneous
versus frequency and angle

IV. Error Discussion

For the application of the proposed method to a specific

problem, it is apparently critical to choose the appropriate

number of Chebyshev nodes via Maehly approximation to

cover the entire band. A simplified error function is reformed

from Ref.[14]. The relative root mean square (RMS) RCS error

of a specific object is calculated by

ErrRMS =

(
1

N × M

N×MX
j=1

˛̨̨
˛10 log10

„
σ̃(k, θ)j

σ(k, θ)j

«˛̨̨
˛
2
)1/2

(31)

Where sampling point (k, θ)j (j = 1, 2, . . . , N × M) is se-

lected from the relevant N frequency points and M angular

points, while σ̃(k, θ)j and σ(k, θ)j are the RCS obtained by the

proposed method and the direct solution method, respectively.

Fig.6 is demonstrated the relative RMS RCS error of the above

models vary with the respective value of ordern(L = M = n).

V. Conclusion

In this paper, the monostatic RCS pattern in both a broad

frequency domain and spatial domain simultaneously calcula-

tion by the 2-D extrapolation technique combined with PMC-
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Fig. 6. The relative RMS RCS error of the two models vary
with the respective value of n

HWT is generated. It was observed that the proposed method

is especially appropriate for the fast and accurate 3-D monos-

tatic RCS pattern. Although only simple dielectric scatterers

are taken into account in this paper, the present numerical

results show that the newly method is accurate and efficient.

The accuracy of the proposed two-dimensional approximation

approach and its relation to the order of the best polynomial

series is preliminary in overall consideration.
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[5] P. Ylä-Oijala and M. Taskinen, “Well-conditioned Muller for-

mulation for electromagnetic scattering by dielectric objects”,

IEEE Trans. Antennas Propagat., Vol.53, No.10, pp.3316–3323,
2005.
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