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Abstract

An interesting result from the point of view of upper variance bounds is the inequality of Chernoff [Chernoff, H., 1981. A note
on an inequality involving the normal distribution. Annals of Probability 9, 533–535]. Namely, that for every absolutely continuous

function g with derivative g′ such that Var{|g(ξ)|} < ∞, and for standard normal r.v. ξ , Var(|g(ξ)|) ≤ E{
(
g′(ξ)

)2
}. Both the

usefulness and simplicity of this inequality have generated a great deal of extensions, as well as alternative proofs. Particularly,
Olkin and Shepp [Olkin, I., Shepp, L., 2005. A matrix variance inequality. Journal of Statistical Planning and Inference 130,
351–358] obtained an inequality for the covariance matrix of k functions. However, all the previous papers have focused on
univariate function and univariate random variable. We provide here a covariance matrix inequality for multivariate function of
multivariate normal distribution.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The well-known upper variance bounds obtained by Chernoff (1981) for the standard normal r.v. ξ ∼ N (0, 1) are
formulated as follows. For every absolutely continuous function g with derivative g′ such that Var{|g(ξ)|} < ∞, then

Var(|g(ξ)|) ≤ E
{(

g′(ξ)
)2}

, (1)

with equality if and only if g is linear. Chen (1982) extended Eq. (1) to the case that ξ1, . . . , ξp are independent
N (0, 1) r.v.s and g defined on Rp. Then

Var(g(ξ)) ≤ E

{(
∂

∂ξ1
g(ξ)

)2
}

+ · · · + E

{(
∂

∂ξp
g(ξ)

)2
}

. (2)

Olkin and Shepp (2005) provided a matrix version of inequality (1) as follows. Let r.v. ξ ∼ N (0, 1) and g j

absolutely continuous functions with Var(g j (ξ)) < ∞, for j = 1, . . . , p. Write g(ξ) =
(
g1(ξ), . . . , gp(ξ)

)T . Then

E

{(
∂

∂ξ
g(ξ)

)(
∂

∂ξ
g(ξ)

)T
}

− Cov (g(ξ), g(ξ)) ≥ 0. (3)
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(i.e. nonnegative definite matrix.) Many papers deal with the inequality (1), and in all cases they relate to univariate
r.v. and univariate function. Multivariate distribution play an important role in statistics and probability. This paper
provides a version of covariance matrix bounds for multivariate function of multivariate normal distribution, which
extended the results by Olkin and Shepp (2005) and Chen (1982).

2. Main results

Proposition 1. Let η ∼ Np(µ,Σ ) be multivariate normally distributed with mean vector µ and covariance matrix Σ ,
and every g j (x) is absolutely continuous function defined on Rp with Var

(
g j (η)

)
< ∞, j = 1, . . . , p. Define g(x) =(

g1(x), . . . , gp(x)
)T , ai j = E

{(
∂gi (η)

∂η

)T
Σ
(

∂g j (η)

∂η

)}
, bi j = Cov(gi (η), g j (η)), A = (ai j )p×p, B = (bi j )p×p. Then

matrix A − B is nonnegative definite, i.e.

E

{(
∂g(η)

∂ηT

)
Σ

(
∂g(η)

∂ηT

)T
}

− Cov (g(η), g(η)) ≥ 0. (4)

Lemma 1. Suppose that ξ ∼ Np(0, Ip), where Ip is the p-dimensional identity matrix, g j (x) is the absolutely

continuous function defined on Rp with Var
(
g j (ξ)

)
< ∞, j = 1, . . . , p. Write g(x) =

(
g1(x), . . . , gp(x)

)T . Then

E

{(
∂g(ξ)

∂ξ T

)(
∂g(ξ)

∂ξ T

)T
}

− Cov (g(ξ), g(ξ)) ≥ 0. (5)

Proof. For the definition and properties of multivariate Hermite polynomials {Her(ξ ;Σ )}∞r=0, please refer to
Willink (2005), here r = (r1, . . . , rp)

T
∈ Np. Expand g j (ξ) in multivariate orthogonal Hermite polynomials{

Her(ξ ; Ip)
}∞

r=0,

g j (ξ) =

∞∑
r=0

a j,r Her(ξ ; Ip), j = 1, . . . , p,

with probability 1. We know that

Her(ξ ; Ip) = Her1(ξ1) · · · Herp (ξp),

E{
(
Her1(ξ1)

)2
} =

1
√

2π

∫
∞

−∞

He2
r1

(x) exp(−x2/2)dx = r1!,

E
{

Her(ξ ; Ip) Hes(ξ ; Ip)
}

= δr1s1 · · · δrpsp r!,

where δmn is the Kronecker delta function, r! denotes r1! · · · rp!. Additionally,

∂

∂x
Her(x; Ip) =

∂

∂x

(
p∏

j=1

Her j (x j )

)

=

r1
. . .

rp


Her−e1(x; Ip)

...

Her−ep (x; Ip)

 .

Here ek = (0, . . . , 1, . . . , 0)T denotes a p-dimensional unit column vector with kth is 1, for k = 1, . . . , p.
Consequently,

∂g j (x)

∂x
=

∞∑
r6=0

a j,r

r1
. . .

rp


Her−e1(x; Ip)

...

Her−ep (x; Ip)

 .
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On the one hand,

Cov
(
gi (ξ), g j (ξ)

)
=

∞∑
r6=0

ai,ra j,rr!. (6)

On the other hand,

E

{(
∂

∂ξ T gi (ξ)

)(
∂

∂ξ T g j (ξ)

)T
}

=

∞∑
r6=0

ai,ra j,r

(
p∑

k=1

r2
k (r − ek)!

)

=

∞∑
r6=0

ai,ra j,rr!

(
p∑

k=1

rk

)
. (7)

From Eqs. (6) and (7), it follows that

E

{(
∂

∂ξ T gi (ξ)

)(
∂

∂ξ T g j (ξ)

)T
}

− Cov
(
gi (ξ), g j (ξ)

)
=

∞∑
r6=0

ai,ra j,rr!

(
p∑

k=1

rk − 1

)
.

Evidently,
∑p

k=1 rk − 1 ≥ 0, for every r 6= 0, r ∈ Np. Let λ j,r =

√
r!
(∑p

k=1 rk − 1
)
a j,r, λ j = (λ j,r1 , λ j,r2 , . . .),

for j = 1, . . . , p, {r1, r2, . . .} ⊂ Np
\ {0}, and write

Λ =

λ1
...

λp

 ,

obviously, the previous identity equals to λi (λ j )
T . Then

E

{(
∂g(ξ)

∂ξ T

)(
∂g(ξ)

∂ξ T

)T
}

− Cov (g(ξ), g(ξ)) = ΛΛT
≥ 0.

which completes Lemma 1. �

Proof of Proposition 1. For p-dimensional random vector η ∼ Np(µ,Σ ), we express η = µ + Σ1/2ξ and let
G(ξ) = g(η) = g(µ + Σ1/2ξ), where ξ ∼ Np(0, Ip). Hence

∂g(µ + Σ1/2ξ)

∂ξ T =
∂g(η)

∂ηT Σ1/2
=

∂G(ξ)

∂ξ T .

Applying Lemma 1, it follows immediately that

E

{(
∂g(η)

∂ηT

)
Σ

(
∂g(η)

∂ηT

)T
}

− Cov (g(η), g(η)) = E

{(
∂G(ξ)

∂ξ T

)(
∂G(ξ)

∂ξ T

)T
}

− Cov (G(ξ), G(ξ)) ≥ 0. �

Remark 1. We provided an alternative proof for Eq. (2) in the course of proving Lemma 1. Additionally, we can
obtain an extension of Eq. (2) by using differential method directly. Namely, suppose that η ∼ Np(µ,Σ ), then

Var(g(η)) ≤ E
{(

∂

∂ηT g(η)

)
Σ

(
∂

∂η
g(η)

)}
. (8)
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