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Multiplicity of positive radial solutions for an elliptic inclusion
system on an annulus

Shihuang Hong∗, Ji Chen

Institute of Applied Mathematics and Engineering Computation, Hangzhou Dianzi University, Hangzhou, 310018, PR China

Received 22 July 2007

Abstract

In this paper, we present the sufficient conditions for existence and multiplicity of positive radial solutions for elliptic inclusion
systems. Our results are obtained by utilizing the generalization of Leggett and Williams’s fixed point theorem, established in this
paper, for the norm-type cone expansion and compression of multivalued operators.
c© 2007 Elsevier B.V. All rights reserved.

MSC: 46N10

Keywords: Multivalued operator; Cone expansion and compression fixed point theorem; Elliptic differential inclusion system

1. Introduction

We shall establish the new result of existence of positive radial solutions for elliptic systems of the form

4u ∈ λk1(|x |)F(u, v) in Ω ,

4v ∈ µk2(|x |)G(u, v) in Ω ,

a1u + b1
∂u

∂n
= 0, a2v + b2

∂v

∂n
= 0 on |x | = R1,

c1u + d1
∂u

∂n
= 0, c2v + d2

∂v

∂n
= 0 on |x | = R2,

(1)

where (u, v) ∈ C2(Ω) × C2(Ω) with Ω = {x ∈ Rn
: R1 < |x | < R2, R2 > R1 > 0} an annulus with boundary ∂Ω ,

ai , bi , ci , di ≥ 0, and ρi ≡ ci bi + ai ci + ai di > 0 for i = 1, 2.
Under the hypotheses that F, G are single-valued functions, the existence and multiplicity of positive solutions

for elliptic systems (1) subjected to different boundary conditions on a ball has been studied in [1–3]. For instance,
subject to the following boundary condition

u|∂Ω = v|∂Ω = 0,
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Peletier and van der Vorst studied the existence of positive solutions for elliptic systems on a ball in [3], Dunninger and
Wang used a fixed point theorem of cone expansion/compression type which allows to establish not only existence,
but also multiplicity in [2]. If parameters λ = µ, moreover, Dunninger and Wang proved the existence, nonexistence
and multiplicity of solutions to (1) based on the difference of the value of parameter λ in [1]. They employed upper
and lower solution methods together with fixed point index theorems. Our purpose here is to deal with more general
F and G, i.e., to allow that they are the multivalued functions. Hence we extend the results of [1]. In fact, we apply
the generalization of Leggett and Williams’s fixed point theorem, established in this paper, for the norm-type cone
expansion and compression of multivalued operators to establish the multiplicity and existence of solutions to (1) for
all positive parameters λ, µ without the assumptions of the nonlinear terms F and G being monotone.

Let (E, | · |) be a Banach space. A nonempty convex closed set P ⊂ E is called a cone of E if the following
conditions hold

x ∈ P, λ ≥ 0 implies λx ∈ P; and x ∈ P and −x ∈ P implies x = θ,

where θ stands for a zero element of E .
Let us introduce a partially ordered “≤” in E , i.e., x ≤ y if and only if y − x ∈ P for any x, y ∈ E . x < y if and

only if x ≤ y and x 6= y.
The cone P is said to be normal if there exists a positive constant N , which is called the normal constant of P ,

such that θ ≤ x ≤ y (x, y ∈ E) implies that |x | ≤ N |y|.
Given a cone P of E , denote P+

= P \ {θ}. For u0 ∈ P+, denote

P(u0) = {x ∈ P : λu0 ≤ x for some λ > 0}.

For notational purposes for η > 0 let

Ωη = {y ∈ E : |y| < η}, ∂Ωη = {y ∈ E : |y| = η}, and

Ωη = {y ∈ E : |y| ≤ η}.

Since Krasnoselskii gave the original result of cone expansion and compression in [4], multifarious fixed
point theorems of the expansion and compression have been obtained (see, for example, [4–9]). For instance,
in [5] Guo and Lakshmikantham gave the result of the norm type and in [6] Anderson and Avery obtained a
generalization of Krasnoselskiis fixed point theorem of the norm type by applying conditions formulated in terms
of two functionals replacing the norm-type assumptions. It should be noted that the use of fixed point theorems of
cone expansion/compression type in the study of the existence and multiplicity of positive solutions for differential
and integral equations has recently been quite extensive (see [2,7,9–12]). However, in general, the expansion may
be easily verified for a large class of nonlinear integral operators, compression is a rather stringent condition and is
usually not easily verified. In [7] Leggett and Williams improved the compression by replacing it with the weaker
condition in which the operator is a compression on P(u0) ∩ ∂Ωη. In [8] one can find some refinements of [7]. In [9]
Zima proved the following result via replacing Leggett and Williams type ordering conditions by the conditions of the
norm type (see [9, Theorem 1]):

Proposition 1. Let P be a normal cone in E with the normal constant N . Assume that Ω1 and Ω2 are bounded open
sets in E such that θ ∈ Ω1 and Ω1 ⊂ Ω2. Let F : P ∩ (Ω2 \ Ω1) → P be a completely continuous operator and
u0 ∈ P+. If either

(1) N |x | ≤ |Fx | for x ∈ P(u0) ∩ ∂Ω1 and |Fx | ≤ |x | for x ∈ P ∩ ∂Ω2, or
(2) |Fx | ≤ |x | for x ∈ P ∩ ∂Ω1 and N |x | ≤ |Fx | for x ∈ P(u0) ∩ ∂Ω2

is satisfied, where ∂Ω denotes the boundary of Ω , then F has a fixed point in the set P ∩ (Ω2 \ Ω1).

In [13] Agarwal and O’Regan extended Krasnoselskii’s fixed point theorem of norm type to multivalued operator
problems and obtained the following fixed point theorem for k-set contractive multivalued operators (see Theorem 2.4
and Theorem 2.8 in [13]):

Proposition 2. Let E = (E, | · |) be a Banach space, P ⊂ E a cone and let | · | be increasing with respect to P. Also
r, R are constants with 0 < r < R. Suppose A : Ω R ∩ P → C K (P) be a u.s.c., k-set contractive (here 0 ≤ k < 1)
map and assume one of the following conditions holds:
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(C1) (i) |y| ≤ |x | for all y ∈ A(x) and x ∈ ∂ΩR ∩ P and
(ii) |y| > |x | for all y ∈ A(x) and x ∈ ∂Ωr ∩ P.

(C2) (i) |y| > |x | for all y ∈ A(x) and x ∈ ∂ΩR ∩ P and
(ii) |y| ≤ |x | for all y ∈ A(x) and x ∈ ∂Ωr ∩ P.

Then A has a fixed point in P ∩ {x ∈ r ≤ |x | ≤ R}.

Impelled by the advantage of usually being easier to apply, in Section 2 of this paper we will extend Leggett
and Williams fixed point theorem to k-set contractive multivalued operator problems. This is also a generalization
of Proposition 1 and an improvement of Proposition 2, moreover, is a fundamental tool to prove our main results.
In Section 3 we prove the multiplicity and existence of solutions to (1) for all positive parameters λ, µ.

2. Existence of fixed points

We begin this section with gathering together some definitions and known facts. For two subsets C, D of E , we
write C ≤ D (or D ≥ C) if

∀p ∈ D, ∃q ∈ C such that q ≤ p.

A multivalued operator A is called upper semi-continuous (u.s.c.) on E if for each x ∈ E the set A(x) is a nonempty
closed subset of E , and if for each open set B of E containing A(x), there exists an open neighborhood V of x such
that A(V ) ⊆ B.

A is called a k-set contraction if γ (A(D)) ≤ kγ (D) for all bounded sets D of E and A(D) is bounded, where γ

denotes the Kuratowskii measure of noncompactness.
Throughout this paper, we denote by C K (C) the family of nonempty compact, convex subsets of set C .
The following nonzero fixed point theorems for multivalued operator will be applied in this section.

Lemma 1 ([13]). Let E be an ordered Banach space and P a cone in E and let r, R be constants with R > r > 0.
Assume that A : Ω R ( C K (P) is a u.s.c., k-set contractive (here 0 ≤ k < 1) map and assume that one of the
following conditions hold:

x 6∈ λAx for all λ ∈ [0, 1) and x ∈ ∂ΩR ∩ P, and (2)

there exists a v ∈ P+ with x 6∈ Ax + δv for x ∈ ∂Ωr ∩ P and δ ≥ 0. (3)

or

x 6∈ λAx for all λ ∈ [0, 1) and x ∈ ∂Ωr ∩ P, and (4)

there exists a v ∈ P+ with x 6∈ Ax + δv for x ∈ ∂ΩR ∩ P and δ ≥ 0. (5)

Then A has at least one fixed point y ∈ P with r ≤ y ≤ R.

Lemma 2 ([14]). Let E be a Banach space, C a closed convex subset of E, and U an open subset of C with θ ∈ U.
Suppose that A : U ( C K (C) is u.s.c, k-set contractive (here 0 ≤ k < 1). Then either

(h1) there exists x ∈ U with x ∈ Ax; or
(h2) there exists u ∈ ∂U and λ ∈ (0, 1) with u ∈ λAx.

Theorem 1. Let P be a normal cone in E with the normal constant N . Assume that Ω1 and Ω2 are bounded open sets
in E such that θ ∈ Ω1 and Ω1 ⊂ Ω2. Let A : P ∩ (Ω2 \ Ω1) → C K (P) be a u.s.c, k-set contractive (here 0 ≤ k < 1)
operator and u0 ∈ P+. If there exist 0 < r < R with Ωr ⊂ Ω1,ΩR ⊂ Ω2 such that either

(H1) (i) N |x | < |y| for all y ∈ Ax and x ∈ P(u0) ∩ ∂Ωr and
(ii) |y| ≤ |x | for all y ∈ Ax and x ∈ P ∩ ∂ΩR , or

(H2) (i) |y| ≤ |x | for all y ∈ Ax and x ∈ P ∩ ∂Ωr and
(ii) N |x | < |y| for all y ∈ Ax and x ∈ P(u0) ∩ ∂ΩR

is satisfied, then A has a positive fixed point in P ∩ (Ω R \ Ωr ).
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Proof. From the hypotheses of Ω1 and Ω2 it follows that there exist positive numbers r, R with 0 < r < R such that
Ωr ⊂ Ω1, Ωr ⊂ ΩR ⊂ Ω2, and either (H1) or (H2) holds on ∂Ωr and ∂ΩR . We seek to apply Lemma 1. It is sufficient
to check that A satisfies the conditions (2) and (3) in Ωr and in ΩR , respectively, provided that the condition (H1)
holds. First, (H1)(ii) with x ∈ P ∩ ∂ΩR instead of x ∈ P ∩ Ω2 implies that (2) is true. To see this suppose there exists
x ∈ P ∩ ∂ΩR and λ ∈ [0, 1) with x ∈ λAx . Then there exists y ∈ Ax with x = λy and so

R = |x | = λ|y| < |y| ≤ |x | = R,

a contradiction. Next, we will prove that for any x ∈ P ∩ ∂Ωr and any δ ≥ 0,

x 6∈ Ax + δu0. (6)

Suppose, on the contrary, that there exist x0 ∈ P ∩ ∂Ωr and t ≥ 0 such that x0 ∈ Ax0 + tu0, that is,

x0 − tu0 ∈ Ax0. (7)

Clearly, t 6= 0 (otherwise, this proof is completed). Note that Ax0 ⊂ P , we conclude that

tu0 ≤ tu0 + y

for all y ∈ Ax0. This, combining (7), we get x0 ∈ P(u0). Also, (7) shows that there exists y0 ∈ Ax0 such that
x0 − tu0 = y0. This implies

θ ≤ y0 ≤ x0.

In virtue of the normality of P we have

|y0| ≤ N |x0|. (8)

Since x0 ∈ P ∩ ∂Ωr , (8) contradicts (H2)(i). Hence, (6) is true. This implies that (3) is true. The result of Theorem 1
now follows from Lemma 1.

Similarly, we can prove that the result of Theorem 1 follows if (H2) holds. This proof is completed. �

Remark 1. Under the conditions of Theorem 1 if Ω1 = Ωr and Ω2 = ΩR with 0 < r < R, then A has a positive fixed
point in the set P ∩ (Ω R \ Ωr ).

In what follows, we combine Lemma 2 and Theorem 1 to establish existence of multiple fixed points.

Theorem 2. Assume that the conditions of Theorem 1 hold and

x 6∈ Ax for all x ∈ ∂Ωr ∩ P, (9)

where Ωr ⊂ Ω1. Then, there exists a constant R with R > r such that A has at least two fixed points x1 and x2 with
x1 ∈ Ωr ∩ P and x2 ∈ P ∩ (Ω R \ Ωr ).

Proof. Theorem 1 implies that A has at least one fixed point x2 with x2 ∈ P ∩ (Ω R \Ωr ), where R > r and ΩR ⊂ Ω2
(see the proof of Theorem 1). In addition, we obtain in the proof of Theorem 1 that x 6∈ λAx for all λ ∈ [0, 1) and
x ∈ ∂Ωr ∩ P . Hence, we combine (9) and Lemma 2 to conclude that A has a fixed point x1 ∈ Ωr ∩ P . This completes
the proof of Theorem 2. �

For constants L , r, R with 0 < r < L < R, let us suppose

(H3) x 6∈ Ax for all x ∈ ∂ΩL ∩ P .
(H4) (i) N |x | < |y| for all y ∈ Ax and x ∈ P(u0) ∩ ∂Ωr ,

(ii) |y| ≤ |x | for all y ∈ Ax and x ∈ P ∩ ∂ΩL ,
(iii) N |x | < |y| for all y ∈ Ax and x ∈ P(u0) ∩ ∂ΩR .

(H5) (i) |y| ≤ |x | for all y ∈ Ax and x ∈ P ∩ ∂Ωr ,
(ii) N |x | < |y| for all y ∈ Ax and x ∈ P(u0) ∩ ∂ΩL ,

(iii) |y| ≤ |x | for all y ∈ Ax and x ∈ P ∩ ∂ΩR .
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Theorem 3. Let P be a normal cone in E with the normal constant N , A : Ω R ∩ P → C K (P) be a u.s.c., k-set
contractive (here 0 ≤ k < 1) operator. If either the conditions (H3) and (H4) or the conditions (H3) and (H5) hold,
then A has at least two fixed points x1 and x2 with x1 ∈ P ∩ (ΩL \ Ωr ) and x2 ∈ P ∩ (Ω R \ Ω L).

Proof. Remark 1 implies that A has a fixed point x1 ∈ P ∩ (Ω L \ Ωr ). (H3) shows that x1 6∈ ∂ΩL . Hence,
x1 ∈ P ∩ (ΩL \ Ωr ). Again, Remark 1 guarantees the existence of x2. This proof is completed. �

3. Positive radial solutions for elliptic systems

In this section, we prove the multiplicity and existence of solutions to (1) for all positive parameters λ, µ by
applying the result involving Section 2.

Let C[0, 1] be a set consisting of all continuous functions from [0, 1] into R and endowed the norm with
‖x‖ = supt∈[0,1] |x(t)|. We define, for u, v ∈ C[0, 1], u ≤ v if and only if u(t) ≤ v(t) for every t ∈ [0, 1]. By
a positive solution of (1) we understand that a component (u, v) with u(t) ≥ 0, v(t) ≥ 0 for all t ∈ [0, 1] satisfies (1)
and either u 6≡ 0 or v 6≡ 0. By the maximum principle, each nontrivial component of (u, v) is thus positive in Ω .
Throughout this section we assume that the following conditions hold:

F, G : [0, ∞) × [0, ∞) → C K ([0, ∞)) and (u, v) → F(u, v) and (u, v) → G(u, v) are u.s.c.

The following characterization is due to [1]. We seek the criteria for the existence of positive radial solutions
u = u(r), v = v(r) of (1) which then satisfy

u′′(r) ∈
n − 1

r
u′(r) + λk1(r)F(u(r), v(r)), (R1 < r < R2),

v′′(r) ∈
n − 1

r
v′(r) + µk2(r)G(u(r), v(r)), (R1 < r < R2),

a1u(R1) − b1u′(R1) = 0, a2v(R1) − b2v
′(R1) = 0,

c1u(R2) + d1u′(R2) = 0, c2v(R2) + d2v
′(R2) = 0.

(10)

By applying the change of variables s = −
∫ R2

r (1/tn−1)dt , followed by the change of variables t = (m − s)/m, with

m = −
∫ R2

R1
(1/tn−1)dt , (10) can be brought into the form

u′′(t) ∈ λh1(t)F(u(t), v(t)), (0 < t < 1),

v′′(t) ∈ µh2(t)G(u(t), v(t)), (0 < t < 1),

a1u(0) − b1u′(0) = 0, a2v(0) − b2v
′(0) = 0,

c1u(1) + d1u′(1) = 0, c2v(1) + d2v
′(1) = 0,

(11)

where

h1(t) = m2r2(n−1)(m(1 − t))k1(r(m(1 − t))),

h2(t) = m2r2(n−1)(m(1 − t))k2(r(m(1 − t))),

and bi , di are relabels of −bi R1−n
1 /m, −di R1−n

2 /m, respectively. The system (11), in turn, is equivalent to the system
of integral inclusions

u(t) ∈ λ

∫ 1

0
K1(t, s)h1(s)F(u(s), v(s))ds,

v(t) ∈ µ

∫ 1

0
K2(t, s)h2(s)G(u(s), v(s))ds

(12)

with Ki (t, s), i = 1, 2, being the Green’s function

Ki (t, s) =
1
ρi

{
(ci + di − ci t)(bi + ai s), s ≤ t,
(bi + ai t)(ci + di − ci s), t ≤ s.
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It is easy to see that for i = 1, 2

Ki (t, s) ≥ 0, (t, s) ∈ [0, 1] × [0, 1]

and there exists a constant 0 < ρ < 1 such that

Ki (t, s) ≥ ρ(ci + di − ci t)(bi + ai t)Ki (s, s), t, s ∈ [0, 1].

Let σi (t) = ρ(ci + di − ci t)(bi + ai t). Clearly, σi (t) ≥ 0. Denote

M1 =

∫ 1

0
K1(s, s)h1(s)σ (s)ds, M2 =

∫ 1

0
K2(s, s)h2(s)σ (s)ds

with σ(t) = min{σ1(t), σ2(t)}. Then it is clear that M1, M2 > 0. Define multivalued operators as follows

Aλ(u, v)(t) = λ

∫ 1

0
K1(t, s)h1(s)F(u(s), v(s))ds,

Bµ(u, v)(t) = µ

∫ 1

0
K2(t, s)h2(s)G(u(s), v(s))ds,

Tλµ(u, v)(t) = (Aλ(u, v)(t), Bµ(u, v)(t)).

Then (12) is equivalent to fixed point problem

(u, v) ∈ Tλµ(u, v)

in usual Banach space E =: C[0, 1] × C[0, 1] with the norm ‖(u, v)‖ = max{‖u‖, ‖v‖}. Let E be introduced as
partially ordered by (u1, v1) ≤ (u2, v2) if and only if u1 ≤ u2 and v1 ≤ v2 and a set P ⊂ E be defined by

P = {(u, v) ∈ E : u(t) ≥ 0, v(t) ≥ 0, t ∈ [0, 1]} .

Clearly, P is a normal cone of E with the normal constant N = 1. Fix U0(t) = (u0(t), v0(t)) ≡ (1, 1), define

P(U0) = {(u, v) ∈ P : u(t) > σ1(t)‖(u, v)‖, v(t) > σ2(t)‖(u, v)‖, t ∈ [0, 1]} .

Theorem 4. Assume that

(S1) There exist functions ξ1, ξ2 ∈ L2
[0, 1], satisfying

f (u(t), v(t)) ≤ ξ1(t), g(u(t), v(t)) ≤ ξ2(t)

for all f ∈ F(u, v) and g ∈ G(u, v) with (u, v) ∈ P.
(S2) k1, k2 : [R1, R2] → [0, ∞) are continuous and do not vanish identically on any subinterval of [R1, R2].
(S3) Let z0(u, v) = min F(u, v), w0(u, v) = min G(u, v) and the following limits hold:

lim
(u,v)→0

z0(u, v)

max{|u|, |v|}
= ∞,

lim
(u,v)→0

w0(u, v)

max{|u|.|v|}
= ∞.

Then, for any λ, µ ∈ (0, ∞), (1) has at least one positive solution.

In order to prove our results, we first prove some lemmas.

Lemma 3. Let us denote

Φ1(τ, z) = sup
(u,v)∈∂Ωτ ∩P

max
t∈[0,1]

∫ 1

0
K1(t, s)h1(s)z(u(s), v(s))ds,

Φ2(τ, w) = sup
(u,v)∈∂Ωτ ∩P

max
t∈[0,1]

∫ 1

0
K2(t, s)h2(s)w(u(s), v(s))ds,
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where z ∈ F(u, v), w ∈ G(u, v), then one has

lim
τ→∞

Φ1(τ, z)

τ
= 0, lim

τ→∞

Φ2(τ, w)

τ
= 0 (13)

uniformly for z ∈ F(u, v) and w ∈ G(u, v).

Proof. For any (u, v) ∈ ∂Ωτ ∩ P , z(u, v) ∈ F(u, v), and t ∈ [0, 1], from (S1) we deduce that∫ 1

0
K1(t, s)h1(s)z(u(s), v(s))ds ≤

{∫ 1

0
[K1(t, s)h1(s)]

2ds

} 1
2
{∫ 1

0
z2(u(s), v(s))ds

} 1
2

≤

{∫ 1

0
[K1(s, s)h1(s)]

2ds

} 1
2
{∫ 1

0
ξ2

1 (s)ds

} 1
2

.

Consequently, limτ→∞
Φ1(τ,z)

τ
= 0 uniformly for z ∈ F(u, v). Similarly, limτ→∞

Φ2(τ,w)
τ

= 0 uniformly for
w ∈ G(u, v). Hence, (13) holds and this proof is completed. �

Lemma 4. Let us denote

Ψ1(τ, z) = inf
(u,v)∈∂Ωτ ∩P(U0)

max
t∈[0,1]

∫ 1

0
K1(t, s)h1(s)z(u(s), v(s))ds,

Ψ2(τ, w) = inf
(u,v)∈∂Ωτ ∩P(U0)

max
t∈[0,1]

∫ 1

0
K2(t, s)h2(s)w(u(s), v(s))ds,

where z ∈ F(u, v), w ∈ G(u, v), then the following limit is true uniformly for z ∈ F(u, v), w ∈ G(u, v).

lim
τ→0+

Ψ1(τ, z)

τ
= ∞, lim

τ→0+

Ψ2(τ, w)

τ
= ∞. (14)

Proof. In virtue of hypothesis (S3), for any natural number m, there exists εm > 0 such that εm → 0 when m → ∞

and

f (u, v) ≥ m max{|u|, |v|}, (u, v) ∈ (0, εm) × (0, εm), f (u, v) ∈ F(u, v).

For any (u, v) ∈ P(U0) with ‖(u, v)‖ ≤ εm , the definition of P(U0) guarantees

0 < u(t), v(t) ≤ εm, t ∈ [0, 1].

Hence we infer

z0(u(t), v(t))

max{|u(t)|, |v(t)|}
≥ m, 0 < ‖(u, v)‖ ≤ εm and t ∈ [0, 1].

In view of this, together with (S3), for any τ ∈ (0, εm) and z(u, v) ∈ F(u, v), we have

Ψ1(τ, z)

τ
=

1
τ

inf
(u,v)∈∂Ωτ ∩P(U0)

max
t∈[0,1]

∫ 1

0
K1(t, s)h1(s)z(u(s), v(s))ds

≥
1
τ

inf
(u,v)∈∂Ωτ ∩P(U0)

max
t∈[0,1]

σ1(t)
∫ 1

0
K1(s, s)h1(s)z0(u(s), v(s))ds

≥
M3

τ
inf

(u,v)∈∂Ωτ ∩P(U0)

∫ 1

0
K1(s, s)h1(s)

min{u(s), v(s)}z0(u(s), v(s))

max{|u(s)|, |v(s)|}
ds

>
M3

τ
inf

(u,v)∈∂Ωτ ∩P(U0)
‖(u, v)‖

∫ 1

0
K1(s, s)h1(s)

min{σ1(s), σ2(s)}z0(u(s), v(s))

max{|u(s)|, |v(s)|}
ds

= M3 inf
(u,v)∈∂Ωτ ∩P(U0)

∫ 1

0
K1(s, s)h1(s)

σ (s)z0(u(s), v(s))

max{|u(s)|, |v(s)|}
ds
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≥ M3m
∫ 1

0
K1(s, s)h1(s)σ (s)ds

= M1 M3m,

where M3 = maxt∈[0,1] σ1(t). Obviously, M1 M3 > 0. This implies limτ→0+
Ψ1(τ,z)

τ
= ∞ uniformly for z ∈ F(u, v)

when m → ∞. Similarly, we can prove limτ→0+
Ψ2(τ,w)

τ
= ∞ uniformly for w ∈ G(u, v). The proof of Lemma 4 is

completed. �

Proof of Theorem 4. It is easy to see that, for each λ, µ ∈ (0, ∞), Tλµ is u.s.c. and completely continuous and
Tλµ(P) ⊂ C K (P). To prove that the result of Theorem 4 is true, it is sufficient to show that Tλµ has at least one
positive fixed point. For this purpose, we seek that all conditions of Theorem 1 are fulfilled. We will show that Tλµ

satisfies the condition (H1). For any λ, µ ∈ (0, ∞) and (u, v) ∈ ∂ΩR ∩ P with some large enough R > 0, we know
from (13) that

λΦ1(R, z)

R
≤ 1,

µΦ2(R, w)

R
≤ 1 for all z ∈ F(u, v), w ∈ G(u, v). (15)

Similarly, for any (u, v) ∈ ∂Ωr ∩ P with some small enough 0 < r � R, we know from (14) that

λΨ1(r, z)

r
> 1,

µΨ2(r, w)

r
> 1 for all z ∈ F(u, v), w ∈ G(u, v). (16)

Noting that the definitions of Aλ, Bµ yield that, for any (u, v) ∈ ∂Ωτ ∩ P , and any yu,v ∈ Aλ(u, v), there exists

z(u, v) ∈ F(u, v) such that yu,v(t) = λ
∫ 1

0 K1(t, s)h1(s)z(u(s), v(s))ds and

λΦ1(τ, z) = sup
(u,v)∈∂Ωτ ∩P

‖yu,v‖, λΨ1(τ, z) = inf
(u,v)∈∂Ωτ ∩P(U0)

‖yu,v‖.

Also, for any xu,v ∈ Bµ(u, v), there exists w ∈ G(u, v) such that xu,v(t) = µ
∫ 1

0 K2(t, s)h2(s)w(u(s), v(s))ds and

µΦ2(τ, w) = sup
(u,v)∈∂Ωτ ∩P

‖xu,v‖, µΨ2(τ, w) = inf
(u,v)∈∂Ωτ ∩P(U0)

‖xu,v‖.

Thus it follows from (15)

‖yu,v‖ ≤ ‖(u, v)‖, ‖xu,v‖ ≤ ‖(u, v)‖ for (u, v) ∈ ∂ΩR ∩ P

and from (16)

‖yu,v‖ > ‖(u, v)‖, ‖xu,v‖ ≥ ‖(u, v)‖ for x ∈ ∂Ωr ∩ P(U0).

The arbitrariness of yu,v, xu,v shows

‖ f ‖ ≤ ‖(u, v)‖ for all f ∈ Tλµ(u, v) and (u, v) ∈ ∂ΩR ∩ P, (17)

‖ f ‖ > ‖(u, v)‖ for all f ∈ Tλµ(u, v) and (u, v) ∈ ∂Ωr ∩ P(U0). (18)

By virtue of (17) and (18), Tλµ satisfies (H1), and we infer that there exists (u, v) ∈ P , which is a fixed point of Tλµ,
such that r ≤ ‖(u, v)‖ ≤ R. This proof is completed. �

In what follows, we deal with the existence of two positive solutions for (1).

Lemma 5. Assume that the following condition holds

(S4) For each α ∈ (0, 1) there exists εα > 0 such that, for any 0 ≤ max{|u(t)|, |v(t)|} ≤ εα, t ∈ [0, 1],

z(t) ≤ ασ1(t) max{|u(t)|, |v(t)|} with z(t) ∈ F(u(t), v(t)),

w(t) ≤ ασ2(t) max{|u(t)|, |v(t)|} with w(t) ∈ G(u(t), v(t)).

Then one has

lim
τ→0+

Φ1(τ, z)

τ
= 0, lim

τ→0+

Φ2(τ, w)

τ
= 0 (19)

uniformly for z ∈ F(u, v) and w ∈ G(u, v), where, Φ1,Φ2 are given as in Lemma 3.
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Proof. In virtue of hypothesis (S4), for any positive integer m, there exists εm > 0 such that εm → 0 when m → ∞

and

z(t) ≤
1
m

σ1(t) max{|u|, |v|}, t ∈ [0, 1], (u, v) ∈ [0, εm] × [0, εm], z(t) ∈ F(u(t), v(t)).

For any (u, v) ∈ P with 0 < ‖(u, v)‖ ≤ εm , the definition of the norm in E guarantees

0 ≤ u(t), v(t) ≤ εm, t ∈ [0, 1].

Hence we infer

z(t) ≤
1
m

σ1(t) max{|u(t)|, |v(t)|}, 0 ≤ ‖(u, v)‖ ≤ εm, z(t) ∈ F(u(t), v(t)) and t ∈ [0, 1].

In view of this, together with (S4), for any τ ∈ (0, εm) and z(u, v) ∈ F(u, v), we have

Φ1(τ, z)

τ
=

1
τ

sup
(u,v)∈∂Ωτ ∩P

max
t∈[0,1]

∫ 1

0
K1(t, s)h1(s)z(u(s), v(s))ds

≤
1

mτ
sup

(u,v)∈∂Ωτ ∩P
max

t∈[0,1]

∫ 1

0
K1(t, s)h1(s)σ1(s) max{|u(s)|, |v(s)|}ds

≤
1

mτ
sup

(u,v)∈∂Ωτ ∩P
‖(u, v)‖

∫ 1

0
K1(s, s)h1(s)σ1(s)ds =

M ′

2

m
,

where M ′

2 =
∫ 1

0 K1(s, s)h1(s)σ1(s)ds. This obviously implies limτ→0+
Φ1(τ,z)

τ
= 0 uniformly for z ∈ F(u, v) when

m → ∞. Similarly, we can prove limτ→0+
Φ2(τ,w)

τ
= 0 uniformly for w ∈ G(u, v). The proof of Lemma 5 is

completed. �

Theorem 5. If the conditions (S1), (S2) and (S4) hold. In addition, assume there exist the continuous functions
ϕ1, ϕ2 : [0, ∞) → [0, ∞) with ϕi (y)

y nonincreasing on (0, ∞)(i = 1, 2) such that

F(u, v) ≥ ϕ1(min{u, v}), G(u, v) ≥ ϕ2(min{u, v}) (20)

for all (u, v) ≥ (0, 0), and there exists L > 0 such that

L ≤ min
{
λϕ1(L) max

0≤t≤1
σ1(t)M1, µϕ2(L) max

0≤t≤1
σ2(t)M2

}
. (21)

Then (1) has at least two positive solutions (u1, v1), (u2, v2) ∈ E with 0 < ‖(u1, v1)‖ < ‖(u2, v2)‖.

Proof. In the proof of Theorem 4 we have pointed out that Tλµ is u.s.c. for each λ, µ ∈ (0, ∞) and completely
continuous and Tλµ(P) ⊂ C K (P). Let us show that

‖x‖ < ‖y‖ for all y ∈ Tλµx, x = (u, v) ∈ P(u0) ∩ ∂ΩL . (22)

To see this let y = (z, w) ∈ Tλµx , there exists f ∈ F(u, v) such that z(t) = λ
∫ 1

0 K1(t, s)h1(s) f (s)ds ∈ Aλ f (t).
Note that (u, v) ∈ P(U0) ∩ ∂ΩL , so we have

‖(u, v)‖ = L and u(t) > σ1(t)L ≥ 0, v(t) > σ2(t)L ≥ 0 for each t ∈ [0, 1].

Now let t0 ∈ [0, 1] be such that σ1(t0) = max0≤t≤1 σ1(t) > 0, we have

z(t0) = λ

∫ 1

0
K1(t0, s)h1(s) f (s)ds

≥ λ

∫ 1

0
K1(s, s)σ1(t0)h1(s)ϕ1(min{u(s), v(s)})ds

= λσ1(t0)
∫ 1

0
K1(s, s)h1(s)

ϕ1(min{u(s), v(s)})

min{u(t), v(t)}
min{u(t), v(t)}ds
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≥
λϕ1(L)

L
σ1(t0)

∫ 1

0
K1(s, s)h1(s) min{u(t), v(t)}ds

>
λϕ1(L)

L
σ1(t0)

∫ 1

0
K1(s, s)h1(s)σ (s)Lds

= λϕ1(L)σ1(t0)M2 ≥ L = ‖(u, v)‖.

This implies that ‖z‖ ≥ z(t0) > ‖(u, v)‖ for all z ∈ Aλ(u, v). Similarly, we have ‖w‖ > ‖(u, v)‖ for all
w ∈ Bµ(u, v). As a result, we infer that (22) is true. Moreover, by (22) we obtain that Tλµ satisfies the condition
(H3).

By means of Lemma 3, there exists a constant R > L such that (15) holds. We also know from Lemma 5 that there
exists another constant 0 < r < L such that

λΦ1(r, z)

r
≤ 1,

µΦ2(r, w)

r
≤ 1 for all z ∈ F(u, v), w ∈ G(u, v). (23)

By means of (15) and (23), combining the proof of Theorem 4, we are able to infer that |y| ≤ |x | for all y ∈ Tλµx and
x ∈ P ∩ ∂Ωr or for all y ∈ Tλµx and x ∈ P ∩ ∂ΩR . This, together with (22), shows that Tλµ satisfies the condition
(H5). Theorem 5 is proved by Theorem 3. �

References

[1] D.R. Dunninger, H. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal. 42 (2000) 803–811.
[2] D.R. Dunninger, H. Wang, Existence and multiplicity of positive solutions for elliptic systems, Nonlinear Anal. 29 (1997) 1051–1060.
[3] L. Peletier, R.C.A.M. van der Vorst, Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic

equations, Differential Integral Equations 5 (1992) 147–761.
[4] M.A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[5] D.J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press Inc., Boston, New York, 1988.
[6] D.R. Anderson, R.I. Avery, Fixed point theorem of cone expansion and compression of functional type, J. Difference Equ. Appl. 8 (2002)

1073–1083.
[7] R.W. Leggett, L.R. Williams, A fixed point theorem with application to an infectious disease model, J. Math. Anal. Appl. 76 (1980) 91–97.
[8] R.P. Agarwal, D. ORegan, Periodic solutions to nonlinear integral equations on the infinite interval modelling infectious disease, Nonlinear

Anal. 40 (2000) 21–35.
[9] M. Zima, Fixed point theorem of Leggett–Williams type and its application, J. Math. Anal. Appl. 299 (2004) 254–260.

[10] P.J. Torres, Existence of noe-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,
J. Differential Equations 190 (2003) 643–662.

[11] D. Jiang, J. Chu, M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. Differential Equations
211 (2005) 282–302.

[12] J.R. Graef, B. Yang, Positive solutions to a multi-point higher order boundary value problem, J. Math. Anal. Appl. 316 (2006) 409–421.
[13] R.P. Agarwal, D. O’Regan, A note on the existence of multiple fixed points for multivalued maps with applications, J. Differential Equations

160 (2000) 389–403.
[14] D. O’Regan, Fixed points for set valued mappings in locally convex linear topological spaces, Math. Comput. Modelling 28 (1) (1998) 45–55.


	Multiplicity of positive radial solutions for an elliptic inclusion system on an annulus
	Introduction
	Existence of fixed points
	Positive radial solutions for elliptic systems
	References


