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Abstract

Discretization of boundary integral equations leads, in general, to fully populated non-symmetric linear systems of equations. An

inherent drawback of boundary element method (BEM) is that, the non-symmetric dense linear systems must be solved. For large-scale

problems, the direct methods require expensive computational cost and therefore the iterative methods are perhaps more preferable. This

paper studies the comparative performances of preconditioned Krylov subspace solvers as bi-conjugate gradient (Bi-CG), generalized

minimal residual (GMRES), conjugate gradient squared (CGS), quasi-minimal residual (QMR) and bi-conjugate gradient stabilized (Bi-

CGStab) for the solution of dense non-symmetric systems. Several general preconditioners are also considered and assessed. The results

of numerical experiments suggest that the preconditioned Krylov subspace methods are effective approaches solving the large-scale dense

non-symmetric linear systems arising from BEM.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The boundary element method (BEM) is an important
technique in the numerical solution of engineering and
scientific problems. The boundary integral equation (BIE)
technique is now well established as a complementary
method to finite element method (FEM) for the analysis of
many engineering problems. The basic idea of the BEM is
to transform the original partial differential equations
(PDEs) into an equivalent BIEs by means of corresponding
Green’s representation formula then to solve the corre-
sponding BIE numerically. In applying BEM, only a mesh
of the boundaries is required, making it easier to use and
often more efficient than FEM, and reducing the number
of unknowns to be solved. The computational bottlenecks
of BEM are the computation of the coefficient matrix and
the solution of the corresponding dense non-symmetric
linear system. As the matrix of system arising from BEM is
fully populated and non-symmetric, so the solution of the
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system is usually obtained using direct solvers as Gauss
elimination, O(N3) operations and O(N2) memory are
required which limit the BEM only apply to medium-size
problems, where N is the number of degrees of freedom
(DOF) of the numerical algorithm. Of course, various
techniques have been exploited to restructure the matrix,
e.g. adaptive cross approximation (ACA), fast multipole
method (FMM), etc. The need to solve large-scale complex
problems brings other solution techniques into focus,
namely, the iterative methods. A fast convergent iterative
method, which would require the number of iterations
much less than N, will decrease the computational cost to
O(N2). On the other hand, the problem remained in the
solution of the dense non-symmetric linear systems
obtained from the discretization step are usually ill-
conditioned, especially when mixed boundary conditions
exist or large-scale problems [1]. The classical iterative
methods like Jacobi or Gauss-seidel, even with relaxation,
either do not convergent or present very low convergence
rates. The conjugate gradient (CG) method was first
described by Hestenes and Stiefel for symmetric positive
definite matrices and later generalized to non-symmetric
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matrices leading to several methods: bi-conjugate gradient
(Bi-CG) [2], generalized minimal residual (GMRES) [3],
conjugate gradient squared (CGS) [4], quasi-minimal
residual (QMR) [5] and bi-conjugate gradient stabilized
(Bi-CGStab) [6]. However, for the solutions of large-scale
problems, the convergence rates of iterative methods are
poor even stagnate or divergent, thus, preconditioning is an
essential technique for the successful use of these iterative
methods.

In recent years, many researches have been carried out
concerning the development of efficient iterative methods
for BEM systems; see, for example, Refs. [7–15]. Among
these researches, there is an interest on the analysis of the
performances of Krylov subspace iterative methods solving
linear systems arising from BEM formulation [13–15].
Otherwise, in order to accelerate the convergence rates of
iterative methods, various preconditioning techniques have
been proposed in the open literatures [16–20]. A number of
specialized schemes such as wavelet-based approximation
or the fast multipole algorithm have been proposed too
which lead to efficient methods with linear computational
complexity.

The aim of this paper is to study the convergence
histories of Krylov subspace iterative methods, as applied
to boundary element equations. We demonstrate the
performance of several Krylov subspace iterative methods
in conjunct with several general preconditioners, to solve
dense non-symmetric matrices arising from BEM elasticity
problems.

2. Krylov subspace methods

The final systems of equations of BEM are obtained by
assuming that the discretized equations are satisfied exactly
at a defined set of collocation points. The system can be
written as

Ax ¼ b, (1)

where x is a vector which is composed of unknown
displacements and tractions, A is the fully populated non-
symmetric influence matrix and b is a vector obtained from
the integrals in terms of the prescribed displacements and
tractions.

The Krylov subspace methods are considered the most
effective iterative methods currently available for dense
non-symmetric linear systems. We review these methods
briefly in this section.

Let x0 be an initial approximation to the solution of
Eq. (1), r0 ¼ b� Ax0 be the initial residual and let
KmðA; r0Þ ¼ spanfr0;Ar0;A

2r0; . . . ;A
m�1r0g be the Krylov

subspace of dimension m defined by A and r0. Note that
these subspaces are nested, i.e. Km � Kmþ1.

The Krylov subspace methods are iterative methods in
which at the mth step an approximation to the solution of
Eq. (1), xm is found in x0 þ Km, i.e., this approximation is
of the form xm ¼ x0 þ qm�1ðAÞr0, where qm�1 is a poly-
nomial of degree at most m�1. The residual rm ¼ b� Axm
is associated with the so-called residual polynomial pm of
degree at most m with pmð0Þ ¼ 1, since

rm ¼ b� Axm ¼ r0 � Aqm�1ðAÞr0 ¼ pmðAÞr0. (2)

Analogously, the error satisfies xm � x� ¼ pmðAÞ

ðx0 � x�Þ, where x� is the solution of Eq. (1). Let us denote
by Pm the set of all polynomials p of degree at most m such
that p(0) ¼ 1. The approximate solution xm 2 x0 þ Km is
often found by requiring xm to be the minimal values of
some functions. Different methods depend on the choices
of this function, on the characteristics of the matrix, and on
some implementation details [22].
For detailed comments concerning several general

Krylov subspace methods (Bi-CG, GMRES, CGS, QMR
and Bi-CGStab), see Refs. [2–6]. For pseudocodes of
preconditioned Krylov subspace methods, see Ref. [21].

3. Preconditioners and stopping criterion

It is well known that the convergence rate of an iterative
method for solving Eq. (1) depends greatly on the spectral
properties of coefficient matrix A. For ill-conditioned
problems, the convergence may be very slow, the iterative
processes are likely to stagnate or even diverge. If a matrix
M approximates the coefficient matrix A in some ways, the
transformed system M�1Ax ¼M�1b has the same solution
as the original system Ax ¼ b, but the spectral properties of
its coefficient matrix M�1A may be more favorable. The M

is so-called the preconditioner to accomplish such a
transformation.
In practice, the preconditioner should meet two require-

ments as follows. First, the preconditioned matrix M�1A

must be (much) better conditioned than A so that the
equation M�1Ax ¼M�1b can be solved by iterative
technique efficiently. Second, the cost of constructing and
applying the preconditioner M must be cheap. The two
requirements are contradictive commonly, so there is a
trade-off between constructing and applying the precondi-
tioning matrix. The goal of preconditioning is that the total
time solving the preconditioned system is less than the
original system [21].
Most existing preconditioners can be broadly classified

as being either of the implicit or of the explicit kind. A
preconditioner is implicit if its application, within each step
of the chosen iterative method, requires the solution of a
linear system. Perhaps, the most important example is
provided by preconditioners based on incomplete LU
(ILU) decomposition. Here, M is implicitly defined by
M ¼ L̄Ū , where L̄ and Ū are triangular matrices which
approximate the exact L and U factors of A. Applying the
preconditioner requires the solution of two triangular
systems. Implicit preconditioners are quite robust and
often give fast convergence of the preconditioned iteration,
but are difficult to implement in parallel. In contrast, with
explicit preconditioning, a matrix MEA is explicitly
computed and the preconditioning operation reduces to
forming a matrix–vector product or a matrix–matrix



ARTICLE IN PRESS
H. Xiao, Z. Chen / Engineering Analysis with Boundary Elements 31 (2007) 1013–1023 1015
product if multiple right-hand sides are present. These
computations are easier to parallelize than the sparse
triangular solves. Furthermore, the construction of some
types of approximate inverse preconditioners can be
performed in parallel.

3.1. Jacobi preconditioning

The simplest preconditioner consists of just the diagonal
of the matrix:

mi;j ¼
ai;j if i ¼ j;

0 otherwise:

�
(3)

This is known as the Jacobi preconditioner. It is possible to
use this preconditioner without using any extra storage
beyond that of the matrix itself [21].

3.2. Block Jacobi preconditioning

Block versions of the Jacobi preconditioner can be
derived by a partitioning of the variables. If the index set
S ¼ f1; 2; . . . ; ng is partitioned as S ¼ [iSi with the sets Si

mutually disjoint, then

mi;j ¼
ai;j if i and j are in same index subset;

0 otherwise:

�
(4)

The preconditioner is now a block-diagonal matrix.
Often, natural choices for the partitioning suggest them-
selves: in problems with multiple physical variables per
node, blocks can be formed by grouping the equations per
node. The partitioning can be based on the physical
domain. Examples are a partitioning along lines in the 2D
case, or planes in the 3D case [21].

3.3. Incomplete factorization preconditioners

A broad class of preconditioners is based on incomplete
factorizations of the coefficient matrix. Such a precondi-
tioner is then given in factored form M ¼ LU with L lower
and U upper triangular. The efficiency of the precondi-
tioner depends on how well M�1 approximates A�1.

The most common type of incomplete factorizations is
based on taking a set S of matrix positions, and keeping all
positions outside this set equal to zero during the
factorization. The resulting factorization is incomplete in
the sense that fill is suppressed. Often, S is chosen to
coincide with the set of non-zero positions in A, discarding
all fill. This factorization type is called the Incomplete LU
factorization of level zero. The pseudocode of ILU(0) is
given in Ref. [21].

If not only we prohibit fill-in elements, but we also alter
only the diagonal elements, i.e. any alterations of off-
diagonal elements are ignored, we obtain a simplified
version of ILU(0), called D-ILU. Splitting the coefficient
matrix into its diagonal, lower triangular, and upper
triangular parts as A ¼ DA þ LA þUA, the preconditioner
can be written as M ¼ ðDþ LAÞD
�1ðDþUAÞ, where D is

the diagonal matrix containing the pivots generated. The
preconditioner is described in Ref. [21].
By definition, the L and U matrices in ILU(0) have

together the same number of non-zero elements as the
original matrix A. The accuracy of this incomplete
factorization may be insufficient to yield an adequate rate
of convergence. There are same people present the concept
of level of fill-in ILUP(p).
There are a number of drawbacks to the above

algorithm. First, the amount of fill-in and computational
work for obtaining the ILUP(p) factorization is not
predictable for p40. Secondly, the cost of updating the
levels can be quite high.
The modification of above algorithm that leads to an

incomplete factorization require account for sparse pattern
include a dropping strategy for get rid of some fill-ins. A
dropping rule can be applied to a whole row by apply the
same rule to all elements of the row.

3.4. Stopping criterion

Since an iterative method computes successive approx-
imations to the solution of a linear system, a practical test
is needed to determine when to stop the iteration [21]. A
good stopping criterion should
1.
 identify when the error eðiÞ ¼ xðiÞ � x is small enough
to stop;
2.
 stop if the error is no longer decreasing or decreasing
too slowly;
3.
 limit the maximum amount of time spent iterating.
The general stopping criterions are given as follows:

Criterion 1: i4maxit or jjrðiÞjjpstop_tol � ðjjAjj � jjxðiÞjjþ

jjbjjÞ.
Criterion 2: i4maxit or jjrðiÞjjpstop_tol � jjbjj.
Criterion 3: i4maxit or jjrðiÞjjpstop_tol � jjxðiÞjj=jjAjj.

The relative error jjeðiÞjj=jjxðiÞjj in the computed solution
is bounded by stop_tol, where maxit is the maximum
number of iteration, ||b|| is the norm of b, jjAjj is the norm
of A, stop_tol is the stopping toleration.

4. Numerical examples

In this section, we report on the results of numerical
experiments aimed at assessing the performance and
efficiency of general Krylov subspace methods in conjunc-
tion with different preconditioning techniques considered
for the solution of large-scale dense non-symmetric linear
systems arising from BEM elasticity problems. We
investigate the residual histories of these Krylov subspace
methods.
The experiments with different Krylov subspace methods

are performed using the iterative solvers written in
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Fig. 3. Eigenvalues distribution of unpreconditioning.
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FORTRAN90 and compiled Compaq Visual Fortran 6.5.
All experiments are performed on a PC with 1GB RAM
memory under Windows XP Professional. The computer is
equipped with a 2.8GHz Intel Pentium 4 processor and no
special software optimization or specialized hardware. The
convenient choice of stopping criteria for different iterative
methods is used in the stopping criteria 2 above Section 3.4.

4.1. Example 1

There are different performances and efficiencies of an
iterative method using different precision numbers. The
iterative behaviors of using single precision and double
precision numbers to solve a problem are studied. The
numerical example considered in this section consists of a
150mm� 150mm� 150mm on which uniaxial stress
szz ¼ 100 kPa is applied. The properties of the cube are:
Young’s modulus E ¼ 210GPa and Poisson’s ratio
n ¼ 0.3. The discretization employed 600 quadrilateral
elements with a total 602 nodes and the number of DOF is
1806. The convergence histories of GMRES and Bi-
CGStab are depicted in Figs. 1 and 2. The initial guess is
the zero vector.
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From Figs. 1 and 2, we compare the convergence
histories of restarted GMRES and Bi-CGStab without
using preconditioning techniques. The first letter ‘‘S’’
means single precision; ‘‘D’’ means double precision. From
these figures, it can be seen that the convergence rates using
double precision number is faster than single precision in
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the same conditions. Therefore, we employ the double
precision number to compute the follow numerical
examples so that we can research the properties of Krylov
subspace methods more effectively.

4.2. Example 2

The convergence of Krylov subspace methods depends
to a large extent on the eigenvalues distribution of the
coefficient matrix. Distributions of the eigenvalues of
unpreconditioned matrix A and preconditioned matrix
[MA] are shown in Figs. 3–6. In these figures, ‘‘UNPR’’
means without using preconditioning, ‘‘BJOB’’ means
Block Jacobi preconditioning, ‘‘ILU0’’ means ILU(0)
preconditioning, ‘‘DILU’’ means a simplified version of
ILU(0) preconditioning.

From Fig. 3, it can be seen that the eigenvalues of the
system are very scattered, all of them have a large negative
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Fig. 6. Eigenvalues distribution of DILU preconditioning.
real part and no clustering appears. Such a distribution is
not at all favorable to the rapid convergence of Krylov
subspace methods. From Figs. 4–6, it can be seen that the
eigenvalues of preconditioned matrix [MA] are well
clustered around 1. One goal of preconditioning is to
improve this distribution by grouping the eigenvalues into
a few small clusters and around 1 as approximate as
possible.

4.3. Example 3

In this section, we solve the same numerical problem
using different preconditioned Krylov subspace methods.
The model in this example is same as the model used in
example 1. The convergence histories of Krylov subspace
methods in conjunct with different preconditioning tech-
niques are depicted in Figs. 7–11 which give us some clues
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r different preconditioning techniques.
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concerning the numerical behaviors of the proposed
schemes. In these figures, ‘‘JOBI’’ means Jacobi precondi-
tioning, ‘‘ILU3’’ and ‘‘ILU5’’ mean Incomplete LU
factorization preconditioning with Tri-diagonal and Five-
diagonal non-zero structure, respectively. ‘‘� ’’ means that
the iterative process is break down or divergent.

From these figures, it can be seen that the convergence
velocities of Krylov subspace methods can be significantly
improved by using the preconditioning techniques. The
residual values of Jacobi preconditioned Krylov subspace
methods tend to decrease very rapidly compared with the
tri-diagonal and five-diagonal non-zero structure precon-
ditioning techniques. Among these Krylov subspace
methods, the residual histories of GMRES decrease
monotonically and rapidly with the increase of iterative
number. Nevertheless, the convergence behaviors of other
methods are quite irregular even break down. From Figs. 7
and 9, it can be seem that the convergence velocities of
CGS are about twice as fast as for Bi-CG; however, the
convergence behaviors of CGS iterative method are highly
irregular and even break down in conjunct with some of
preconditioning techniques.

4.4. Example 4

In this section, the performances of Krylov subspace
iterative methods in conjunct with different precondition-
ing techniques for solving the linear equations arising from
the BEM elasticity problems are investigated. The dis-
cretization is employed 1536 quadrilateral elements, and
the number of DOF is 4614. Here, the convergence
criterion is e ¼ 1.0� 10�6. The computational time of
solving the linear equation system using preconditioned
Krylov subspace iterative methods along with the number
of iterations are shown in Table 1. The ‘‘–’’ means the
iterative process generate break down or divergence, the
‘‘min’’ means minute, ‘‘s’’ means second.
From Table 1, it can be seen that the solution time of

preconditioned Krylov subspace methods outperforms the
direct method, and the preconditioning techniques improve
the convergence rates. With the increase of unknowns, the
advantages of Krylov subspace methods will evident
gradually. Thereby, the preconditioning techniques are
indispensable to the numerical solution of large-scale
problems.

4.5. Example 5

In this section, the dependencies of iterative perfor-
mances of GMRES on restarted parameters are investi-
gated. The model in this example is same as the model used
in Example 1. The discretization employed 1536 quad-
rilateral elements, and the number of DOF is 4614. Here,
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Table 1

Performances of preconditioned Krylov subspace iterative methods for DOF ¼ 4614

Methods Preconditioning

techniques

Iterations Residual Time of each

iterative step (s)

Time of

solution

Direct methods NO – – – 10min 2 s

Bi-CG NO 174 7.29E�07 3.90 12min 26 s

JOBI 26 5.30E�07 3.91 2min 45 s

BJOB 22 1.42E�06 3.91 2min 29 s

ILU3 47 1.74E�06 3.89 4min 6 s

ILU5 48 1.46E�06 3.94 4min 13 s

DILU – – 5.50 –

GMRES(20) NO 360 7.04E�07 2.01 12min 56 s

JOBI 20 4.50E�07 2.00 1min 36 s

BJOB 20 2.38E�08 2.00 1min 36 s

ILU3 40 7.95E�07 2.00 2min 16 s

ILU5 60 1.36E�08 2.00 2min 56 s

DILU 60 1.67E�07 3.12 4min 4 s

GMRES(40) NO 280 2.44E�08 1.95 7min 26 s

JOBI 40 5.07E�13 1.96 2min 14 s

BJOB 40 2.13E�11 1.96 2min 14 s

ILU3 40 4.78E�08 1.96 2min 14 s

ILU5 40 3.21E�08 2.65 2min 14 s

DILU 40 6.27E�08 3.12 2min 59 s

CGS NO – – 3.83 –

JOBI 12 1.05E�05 3.81 1min 45 s

BJOB 12 2.30E�06 3.81 1min 46 s

ILU3 26 3.71E�06 3.80 2min 38 s

ILU5 22 4.13E�06 3.80 2min 23 s

DILU 28 5.27E�06 5.98 3min 48 s

QMR NO 135 7.32E�07 3.85 9min 54 s

JOBI 22 4.95E�07 3.80 2min 43 s

BJOB 18 9.35E�07 5.23 3min 8 s

ILU3 42 2.49E�07 3.86 3min 58 s

ILU5 36 6.49E�07 3.83 3min 28 s

DILU – – 5.05 –

Bi-CGStab NO 129 1.38E�04 3.80 9min 26 s

JOBI 16 8.72E�07 3.81 2min 8 s

H. Xiao, Z. Chen / Engineering Analysis with Boundary Elements 31 (2007) 1013–1023 1019
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Table 1 (continued )

Methods Preconditioning

techniques

Iterations Residual Time of each

iterative step (s)

Time of

solution

BJOB 14 1.77E�07 3.82 2min 0 s

ILU3 24 9.37E�07 3.92 2min 36 s

ILU5 31 1.99E�07 3.95 3min 3 s

DILU 27 8.19E�07 6.00 3min 41 s
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Fig. 12. Convergence histories of GMRES(m) for different restart parameter m.
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the convergence criterion e ¼ 1.0� 10�10 was chosen for all
subsequent calculations.

We use the GMRES with different restarted parameter
m to compute the example. According to the results of
numerical tests, we plot the residual errors against the
number of iterations in Fig. 12. From the figure, it can be
seen that the performances of GMRES with the large
restarted parameter outperform the small restarted para-
meter.
The relationship of the number of iterations to the

restarted parameters is shown in Fig. 13. From the figure, it
can be seen that the number of iterations decreases with the
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increase of restarted parameter. Therefore, the smaller
restarted parameter is unsuitable for the engineering
computation. However, with the increase of restarted
parameter, the requirement of memory is proportional
increase, too. There is a trade-off between CPU time and
the requirement of memory.

4.6. Example 6

From the results of above numerical experiments, it can
be seen that the GMRES, QMR and Bi-CGStab are more
effective in comparison with other Krylov subspace
methods. In this section, we emphatically investigate the
Table 2

The CPU time (in s) and the number of iterations for Krylov subspace metho

Solvers DOF

1158 1806

GMRES(15) Residual 8.43E�13 9.25

CPU time (s) 4.72 10.5

Iterations 30 30

GMRES(30) Residual 6.81E�12 5.38

CPU time (s) 4.78 10.6

Iterations 30 30

GMRES(60) Residual 2.98E�12 1.90

CPU time (s) 5.18 11.5

Iterations 60 60

QMR Residual 7.20E�11 3.35

CPU time (s) 4.85 11.4

Iterations 26 29

Bi-CGStab Residual 5.85E�11 6.52

CPU time (s) 4.57 10.6

Iterations 17 19
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Fig. 14. Convergence histories o
performances of the three methods solving different DOFs
of BEM problems. The Block Jacobi preconditioning
technique is employed. The results are shown in Table 2.
From Table 2, it can be seen that the performance of

GMRES(30) is superior to other iterative methods. The
choice of restarted parameter can affect the efficiency of
GMRES. On the other hand, we can find that the number
of iterations increases slowly with the increase of DOFs,
and the number of iterations is fairly small relative to the
number of unknowns.
Figs. 14 and 15 show that the performances of QMR and

Bi-CGStab in conjunct with Block Jacobi preconditioning
technique for different numbers of DOFs, respectively.
ds

4056 4614 7206

E�12 3.29E�10 3.41E�10 1.12E�11

4 91.03 117.05 379.35

30 30 45

E�12 4.13E�11 4.17E�11 7.57E�11

3 89.14 114.25 293.29

30 30 30

E�12 1.28E�11 1.36E�11 1.22E�11

0 132.48 171.09 445.51

60 60 60

E�11 2.72E�11 3.97E�11 8.33E�11

1 138.17 182.40 514.72

31 32 36

E�12 8.82E�11 4.62E�10 8.79E�11

4 101.51 126.69 354.17

19 18 21

20 25 30 35 40

rations

DOF=1158

DOF=4056

DOF=7206

f QMR for different DOFs.
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Fig. 15. Convergence histories of Bi-CGStab for different DOFs.
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These curves are related to cases of DOF ¼ 1158, 4056 and
7206, respectively. The figures indicate that the residues
decrease rapidly with the increase of iteration number.
Analogously, the iterative numbers of QMR and Bi-
CGStab increase slowly with the increase of DOFs, too.

5. Conclusions

In this paper, we have shown how the dense non-symmetric
linear systems arising from BEM elasticity problems can be
efficiently solved with preconditioned Krylov subspace
iterative methods. The computational cost to achieve the
solution using the Krylov subspace methods are proportional
to it N2 and it5N (it is the number of iterations), the
improvement of computational efficiency is very substantial
in comparison with the direct solution methods.

The preconditioned Krylov subspace solvers are found
faster than the unpreconditioned solvers for large-scale
problems. The reason is that the dense non-symmetric
matrices arising from BEM are strongly ill-conditioned,
especially when mix and complex boundary condition exist or
large-scale problems. Thereby, the preconditioning techniques
are indispensable to the solution of large-scale problems.

Based on the results of numerical experiments, we enrich
the experiences concerning the performances of Krylov
subspace methods in conjunct with preconditioning tech-
niques for the solution of large-scale dense non-symmetric
linear systems arising from BEM elasticity problems.
Preconditioned Krylov subspace methods are well effective
iterative solvers in large-scale boundary element engineer-
ing analyses.
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