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Abstract

In this paper we investigate conditions on the features of a continuous kernel so that it may approx-
imate an arbitrary continuous target function uniformly on any compact subset of the input space.
A number of concrete examples are given of kernels with this universal approximating property.
Keywords: density, trandation invariant kernels, radial kernels

1. Introduction

Let X be a prescribed input space and set N, :={1,2,...,n}. We shall call a function K from X x X
to C a kernel on X provided that for any finite sequence of inputs x := {Xj : j € Ny} C X the matrix

Kx := (K(Xj, %) : j,k € Np) (1)

is Hermitian and positive semi-definite. Kernels are an essential component in a multitude of novel
algorithms for pattern analysis (Bishop, 1995; Hastie et al., 2001; Scholkopf and Smola, 2002).
Besides their superior performance on a wide spectrum of learning tasks from data, they have a
substantial theoretical basis, as they are reproducing kernels of Hilbert spaces of functions on X
for which point evaluation is always continuous (Aronszajn, 1950). Such spaces are called Repro-
ducing Kernel Hilbert Spaces (RKHS) and an important reason for the interest in kernels is the
(essentially) unique correspondence between them and RKHS. This relationship leads, by means of
the regularization approach to learning, functions having the representation

fi="3 ciK(.xj) 2)
j€Nn
where {cj: j € Ny} C C are parameters typically obtained from training data (Bishop, 1995; Ev-
geniou et al., 2000; Hastie et al., 2001; Scholkopf and Smola, 2002). This useful fact is known as
the Representer Theorem and has wide applicability (Scholkopf et al., 1999; Scholkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004; Wahba, 1990). We shall refer to the function in the sum
on the right hand side of (2) as sections of the kernel K.
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Certainly, the choice of the kernel in (2) affects the performance of kernel based learning algo-
rithms and so, is important. For recent work in this direction, see Argyriou et al. (2005, 2006), Bach
et al. (2004), Lanckriet et al. (2004), Micchelli and Pontil (2005), Micchelli et al. (2006), Neumann
et al. (2004), Ong et al. (2005), Sonnenburg et al. (2006) and references therein. Following Poggio
et al. (2002), we ask a conceptually simpler, but very basic question about choosing the kernel : can
the function representation (2), as the number of summands increases without bound, approximate
any target function arbitrarily close? In the study of this question it is important which norm is used
to compute the error between the function appearing in (2) and a given target function. Indeed, it
is well-known that if we use the norm in the RKHS whose kernel is K then all members of this
Hilbert space are approximable arbitrarily by functions of the type appearing in (2). Actually, this is
the way the Hilbert space associated with a kernel is constructed from the kernel itself (Aronszajn,
1950).

Our concern here is with the uniform norm. To this end, we assume that the input space X is
a Hausdorff topological space and that all kernels to be considered are continuous on X x X. To
begin to address the problem which interests us here, we let Z be a fixed but arbitrary compact
subset of X and, as usual, let C(Z) be the space of all continuous complex-valued functions from Z
to C equipped with maximum norm || - || z. Our hypothesis that the input space is Hausdorff ensures
that it has an abundance of compact subsets. We shall always enforce this hypothesis throughout
and for simplicity of presentation we do not mention it again.

Given a kernel K we form the space of kernel sections

K(Z):=7span{Ky:y e Z},

where Ky : X — C is the function defined at every x € X by the equation Ky(x) := K(x,y). The set
K(Z) consists of all functions in C(Z) which are uniform limits of functions of the form (2) where
{XjrieNy}C 2.

We want to identify kernels with the following universal approximating property: given any
prescribed compact subset Z of X, any positive number € and any function f € C(Z) there is a
function g € K(2) such that || f —g]| z < €. That is, for any choice of compact subset Z of the input
space X, the set K(Z) is dense in C(.Z) in the maximum norm. When a kernel has this property we
call it a universal kernel. In other words, a universal kernel K has the property that K(Z) =C(2). It
is this question of characterizing universal kernels that we address here. We shall demonstrate that it
has a satisfactory resolution in terms of any feature map representation of the kernel K. Indeed, we
provide a necessary and sufficient condition for K to have the universal approximating property in
terms of its features, thereby completing preliminary remarks made about this problem in Micchelli
and Pontil (2004) and Micchelli et al. (2003).

Concrete examples of kernels with their feature maps and observations about the associated
density problem are investigated in Section 3. In Section 4, we stress translation invariant kernels
on RY and give several useful sufficient conditions for K to be a universal translation invariant
kernel. This discussion includes the popular choice of the Gaussian kernel. We end the paper with
a remark about issues for further investigation.
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2. Kernels Defined by Feature Maps

We start from a Hilbert space %/ over C and a continuous kernel K on X x X. A feature map for
the kernel K is any continuous function ® : X — %/ such that for each (x,y) € X x X

K(x,y) = (®(x), B(y)) g0 3)

where (-,-)q is the inner product on %/. Every kernel has such a representation and conversely
whenever it does then it is a kernel. However, a feature space representation is not unique. Let us
elaborate on these well-known facts. First, it is straightforward to see that any function K which
has the representation (3) is a kernel. The reason for this fact is that the input matrix appearing in
(1) is formed by the mutual inner products of the set of vectors {®(x;) : j € Ny} and such a matrix
is certainly Hermitian and positive semi-definite. To establish the converse, we first construct the
Hilbert space # associated with the continuous kernel K and then observe for all x,y € X, by the
reproducing kernel property, that

K(X,Y) == (Kx; Ky) g7

Hence, we may choose W = A and for any x € X we let ®(x) = Ky. This feature space represen-
tation is continuous because for all x,y € X we have that

|D(x) — D)1, = K(X,X) +K(y,y) — K(X,y) = K(y,X)

where || - || denotes the norm on W/.

There are alternate means to construct a feature space representation for a continuous kernel K
which has the advantage that the Hilbert space 7/ can be chosen to be separable. To construct such
a representation we must choose a compact subset Z of X and a finite Borel measure | on Z with
supp (K) = Z (see (15) for the definition of the support of a Borel measure). This measure yields a
linear operator T : L?(Z,u) — L?(Z, ) defined for g € L2(Z, ) by the equation

Tg:= [ K(.Y)g)duly). @
Following the ideas of Mercer (1909), T has countably many nonnegative Eigenvalues (each of finite

multiplicities with zero as the only accumulation point of nonnegative Eigenvalues) {A; : i € N} and
corresponding orthonormal Eigenfunctions {@ : i € N} C L?(Z, ) such that

K(x,y) := _%Aicn(X)W, (xy) € Zx 2 (5)

where the series above converges absolutely and uniformly on Z x Z, see also Lax (2002).
To write K in the form (3), we let #2(N) be the Hilbert space of square summable sequences on
N and define a feature map W : Z — ¢?(N) ateach x € Zand j € N as

W) = /M),
Therefore, the Mercer representation in Equation (5) establishes for each x,y € Z that
K(X7y) = (LP(X)7lP(y))£2(N)
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Since we have for all x,y € Z that
HLIJ(X) - Lp(y)HEZ(N) = K(X,X) + K(y7y) - K(X7y) - K(y7 X)7

the continuity of the K implies that the feature map W : Z — ¢2(N) is also continuous.

Of course, to find an Eigenfunction feature representation of a kernel, except in special cir-
cumstances, is a serious challenge both analytically and computationally. Moreover, it should be
observed that this feature space representation depends on the measure . Recent extensions of the
Mercer theorem can be found in Sun (2005) and the reference therein.

Let us now return to the general case of formula (3). To this end, we need to recall facts about
the dual space of C(Z), that is, the space of all continuous linear functionals on C(Z). By the
Riesz representation theorem the linear functionals in dual space of C(Z) are identified as regu-
lar complex-valued measures on Z (see, for example, Lax, 2002; Royden, 1988). The norm of a
complex-valued measure, which is inherited from the norm on C(2), is its total variation and is
defined as

TV(v) := sup{] /ZQ(X)dV(X)I Hlgllz <1,9€C(2)}-

We denote the space of all regular complex-valued measures on Z with this norm by B(Z). For any
v € B(Z), we wish to define the integral [, ®(x)dv(x) as an element of %/ . This is done by noting
that the conjugate linear functional L defined on %/ for each u € W by the equation

LW = [ (@00 1)) ©
has a norm satisfying the inequality
LI <TVO) [Pl < oo,

where || ®|| := max{||®P(x)||4 : X € Z}. Therefore, by the Riesz representation theorem, for the
Hilbert space 7/ (Lax, 2002; Rudin, 1991) there exists a unique element w € W/ such that for each
ue W that

L(u) = (W, U)qp
Itis this vector w which we shall denote by [, ®(x)dv(x). Consequently, we have the useful formula
([ @00dv(x).u)ap = [ (@00, 1)gpv(x) )

valid for allu € W .
Next, we introduce a map U : B(Z) — W by letting for each v € B(Z)

UW) = /Z ®(x)dv(X) ®)
and so the formula (7) becomes
U)Wy = [ (@00,0)3pdV(0). ©

For any y € Z we set u = ®(y) in formula (9) above to obtain by the definition of the kernel (3)
that

V). @) = | Koy)dv(). (10)
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We now conjugate both sides of this equation, integrate both sides of the resulting equation with
respect to the complex-valued measure v and then simplify the resulting left side by another appli-
cation of Equation (7) with the choice u = U (v). Next, we use the feature space representation of
the kernel in (3) on the right hand side of the equation to obtain the equation

V)G = [ [ Koydomave 1)

where v is the conjugate of the complex-valued measure v defined for each Borel set § C Z by
V(S) :=v(S). We remark here that since the kernel K is continuous and Z is compact, Fubini’s
theorem assures that we can interchange the order in the integral on the right hand side of the above
equation (see, for example, Royden, 1988). Moreover, from this formula it follows that the linear
operator U is continuous. Indeed, its norm satisfies the inequality

VI < VK]l

where ||K|| denotes the maxium norm of K on C(Z x Z).
To continue, we recall the notion of annihilator of a subset 4/ of C(Z). This consists of all
elements in B(Z) which are zero on all functions in . In other words, we have that

V+t={v:ive B(Z),/ f(x)dv(x) =0, f € V}.
Ve

Note that the annihilator of a subset of C(Z) is a subspace of B(Z). Furthermore, the closed linear
span of subset 7 of C(Z), denoted by Span 4/, has the same annihilator as the set 4/ itself. More-
over, two subsets 9} and 7% of C(Z) have the same annihilator if and only if Span1; = span 7%.
Also, recall that two closed subspaces are equal if and only if their annihilators are the same (see,
for example, Lax, 2002; Royden, 1988; Rudin, 1991, for these facts).

We shall denote the null space of U by A((U), that is, the subspace of all elements v in B(Z2)
for which U (v) is zero, given by

ANU):={v:veB(2),U(v)=0}.
We remark here that the operator U depends on the set Z.
Proposition 1 If Z is a compact subset of the input space X then
K(2)t=aA(U). 12)
Consequently, K(Z) = C(Z) if and only if U is injective.
Proof By the Hahn Banach theorem, the linear span of a subset 7/ is dense in C(Z), that is,
spanV = C(Zz) if and only if 7+ = {0} (Lax, 2002; Royden, 1988; Rudin, 1991). Therefore, the

second claim follows from (12). We now turn to the proof of this equation. If v € K(Z)+ then by
definition, for all y € Z we have that

/ K(x,y)dv(x) =0
Z
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and so by (11) we get that v € A’(U). Therefore, we have established that K(z)+ C AL(U). To
prove the opposite inclusion we suppose that v € A_(U), then appeal to (10) and conclude that
v € K(2)*, thereby proving the theorem.

[ |

Equation (7) has another consequence. To this end, we introduce a subspace of W defined as
®(Z):=3pan{P(x) : x € Z}.

If Q is a linear mapping between two linear spaces and S is a subset of its domain we use the standard
notation Q(.$) for its image under Q. When the set § is the domain of Q then its image is the range
of Q and is denoted by R (Q). From these definitions it follows that Q(span.§) = spanQ(S).

Proposition 2
RU) =(2). (13)

Proof We shall prove the proposition by showing that

If u e ®(Z)* then (7) implies for any v € B(Z) that u € R (U)". Conversely, if u e ®(U)" then
again we get for any v € B(Z) from (7) that [, (®(x),u)4dv(x) = 0. In particular, choosing v to
be the point evaluation at an arbitrary x € Z we obtain that (P(x),u) 4, = 0 and so we conclude that
u € ®(2)*, thereby establishing (13). [ |

Let us now introduce another linear operatorV : W — C(Z) defined forany u € W and x € Z as
(V (u))(x) := (P(x),u) 4. Certainly, V is bounded, as its norm satisfies the inequality ||V || < ||P|| .
Moreover, according to (7) we have that

U)W = [ V() 0dve) (14)

which means that the adjoint of the operator V denoted by V* : B(Z) — W is U, thatis, U =V*.
Next, we point out a consequence of this fact and Proposition 1.

Coradllary 3 K(Z) =R (V).

Proof It is generally true for any bounded linear operator that A(Q*) = R (Q)* (Lax, 2002; Rudin,
1991) and, in particular, AL(U) = R (V)= so the result follows directly from Proposition 1. [ |

We recall that the linear span of a subset S is dense in W/, that is, spanS = W/, if and only if the
only u € W with (u,v) =0 forall ve § is u = 0 (We already use a similar fact for the space C(2)).
It follows directly from Equation (14), for any subset § of %/ such that span S is dense in W/, that
V(S)*+ = A(U) and so with this remark and Proposition 1 we conclude that

K(Z) =7spanV (S).
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We use this equation in the following manner. Recall that a subset 9 of 9/ is orthonormal
if for every distinct elements u,v € 9 we have that (u,v) =0 and also (u,u) = 1. Every Hilbert
space has an orthonormal basis 9 (which may not be countable) such that for every u € W the set
{y:y € 9,(u,y) # 0} is countable. Moreover, we have for u € W the decomposition

u= 3% (uyy,

yey

where the sum on the right hand side of this equation converges in W for any ordering of elements
of 9 (Lax, 2002; Rudin, 1991). Corresponding to each element y in an orthonormal basis 9" of W/
we define the function Fy, € C(Z) at x € Z by the equation Fy(x) = (®(x),Yy)q and introduce the
corresponding subspace of C(Z2)

() :=span{F :ye 7}

Note the important difference between the sets ®(Z) and ®(9). The first is in the Hilbert space
W and the second is in C(Z). Combining the above remarks we obtain the following equivalence
between density of kernel representation and feature function density in C(Z).

Theorem 4 If Z is a compact subset of the input space X, K a kernel with feature space represen-
tation (3) and 9 an orthornormal basis for % then K(2) = ®(9).

Parallel to our notion that a kernel is universal, we say a feature map @ is universal provided
that given any compact subset Z of the input space X, any positive number € and any function
f € C(Z) there is a function g € ®(9") such that || f —g||z < €. That is, for any choice of compact
subset Z of the input space X, the set {F, :y € 9"} is dense in C(Z). In other words, we have that
®(9") = C(Z). Therefore, with this terminology we can succinctly summarize our conclusion in
Theorem 4 by saying that a kernel K expressed in feature space form (3) is universal if and only if
its features are universal!

We now consider an alternate way to express the universality of a kernel K in terms of the
operator T and the corresponding measure | defined in Equation (4) which determines it. To this
end, we recall the that the support of a Borel measure v on Z is defined to be the closed set

supp (v) :=({S C Z:Sis closed, v(S®) =0} . (15)

Consequently, if [, f(x)dv(x) =0, v a Borel measure with supp (v) = Zand f is a nonnegative and
continuous function on Z then f = 0.

The first statement we make is about the mapping T defined in Equation (4) which is an imme-
diate consequence of Theorem 4 concerning its Eigenfunctions.

Corollary 5 If K is a kernel on an input space X, Z a compact subset of X, {A; :i € N} CR,\{0}
and {@ :i € N} C L?(z,u) are the nonzero Eigenvalues and corresponding orthonormal Eigen-
functions of the compact operator T where supp (1) = Z then K(Z) =C(2) if and only if span{e; :
ie N} =C(2).

The next comment concerns the range of the operator T.

Theorem 6 If supp()= Z for the measure appearing in Equation (4) then K(Z) = R (T).
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Proof It suffices to show that K(2)* = ®(T)+. If v € K(Z)~ then foreachy € Z
/ K(x,y)dv(x) = 0.
V4
By Fubini’s theorem, we observe for each g € L?(Z,u) that
L T060dve) = [ g){ [ Kixyaveoyauty) =0

and so we conclude that v € R (T)*. Conversely, v € R (T ) then by the above equation we obtain
for any g € C(Z) that

oWt [ Kixy)aviduy) =o.
Z Z

We now choose g = [, K(x,-)dv(x) in this equation and conclude that

/. 1ay)Pauty) =o.
VA

Since supp (1) = Z, we obtain that g = 0, that is, v € K(2)*. [ |

As a consequence of Theorem 6, we observe that K(Z) =C(Z) ifand only if R(T) =C(2).

We end this section by remarking that the results presented here may be extended from C(Z) to
LP— spaces where p € [1,0). However, as we remarked in the introduction our focus here is on the
maximum norm and so we do not go into this matter here.

3. Examples of Universal Kernels

In this section, we give examples of kernels defined by feature maps and study the corresponding
density problem. We begin with a set {@; : j € I} of continuous complex-valued functions on X
where I is a countable set of indices and define the kernel K by

K(xY) =Y @), (y)€XxX, (16)

JET

where we assume that the series converges uniformly on Z x Z for every compact subset Z of x.
To make use of the presentation in Section 2 we set W = ¢2(N), choose the standard orthonormal
basis 9 for %/ in Theorem 4 and obtain the following result.

Theorem 7 The kernel K defined by Equation (16) is universal if and only if the set of features
{@;: j € I} is universal.

We shall now apply Theorem 7 to dot product kernels on various domains of R% and C9. To this
end, we start with an entire function G defined at any z € C by the equation

G(z):= Z anz" (17)

nNezy

where the coefficients {a, : n € Z, } are assumed to be all positive. The function G induces the dot
product kernel K defined at x,y € CY by the equation

K(xy) :==G((x,y)) (18)
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where we shall always use (x,y) for the standard inner product between the vectors x and y. For an
extensive discussion of dot product kernels see FitzGerald et al. (1995).

Corollary 8 The dot product kernel defined in Equation (18) is universal on C% and RY.

Proof For any lattice vector o := (0 : j € Ng) € Z4 we set |a| := Y jeng Oj- Using the multinomial
expansion we conclude that the dot product kernel defined in Equation (18) can be expressed in the
form

Ky =5 @u()@(y), xyeC

d
aezd

where the features are defined for a € Z4 atx € C% as

@ (X) 1= a|a<’a|> x2.

a

As is well-known, for example as a special case of the Stone-Weierstrass approximation theorem
(Rudin, 1991, page 122), these features are universal on C¢ and RY so the result follows from The-
orem 7. |

The next result we present is a version of the above remark appropriate for the unit ball B¢ :=
{x:(x,x) <1} in RY. We have in mind the following fact. Again, we start with the function
G defined above in (17) but in the next result we only assume that it is analytic in the unit disc
A:={z:|z] <1,zeC}

Corollary 9 If G is analytic in A and has all positive coefficients then K is universal on BY.

The proof is identical to the proof of Corollary 8 and therefore is omitted.

We end our discussion of dot product kernels by considering the case of the unit sphere S¢ in
RI+1, To this end, we review the construction of Schoenberg kernels on S¢ (Schoenberg, 1942).
Let Pd, k € Z be the k-th degree ultraspherical polynomial. When d = 1, P} is the k-th degree
Chebyshev polynomial (Rivlin, 1990) and ford > 1, Pl‘j' is determined by the generating function

1 d /1y
= P (D)Z", ze A te[-1,1].
(1—2zt +22)(d-1)/2 kez%

We assume that we have a sequence of nonnegative numbers {ay : k € Z, } such that

Y aPl(l) <o (19)
keZy

Let the function g : [0, — R be given att € [0, 11 by the equation

g(t) := Z axPy(cost). (20)

kEZ

The condition (19) ensures that the series in (20) converges uniformly on [0, 1, since Plf achieves
its maximum in absolute value on the interval [—1,1] at 1 (Szeg0, 1959, page 166).
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The geodesic distance between x,y € SY is given by
Dy (X,y) := arccos(x,y)
and Schoenberg proved in Schoenberg (1942) that K is kernel on S® if and only if it has this form
K(x,y) :==g(Da(x,y)), xyeSs’. (21)

Theorem 10 The kernel given by Equation (21) is universal on S¢ if and only if for all k € Z.., ax
is positive.

Proof We write the kernel in (21) in the feature form. For this purpose, we recall some basic
facts about spherical harmonics which can be found in Stein and Weiss (1971). Let # be the
set of all homogeneous harmonic polynomials of total degree k on R4+ restricted to SY and set
h := dim . We view # as a subspace of the LZ(Sd,ood) where wy is the Lebesgue measure on
SY. Let {ij . ] € N, } be an orthonormal basis for # and recall that # is orthogonal to #, if
k # k’ (Stein and Weiss, 1971). For each k € Z,, there exists a positive constant ci such that for all
X,y € ¢

Ry =cc Y YFOYKY). (22)

J€Nh,

Therefore, by Equations (20) and (22), we have that

Koy = Y ac S Y OY[(y), xyes’.

keZ j€NR,

We let I :={(k,]) : k€ Z,,j e Ny} and introduce for each ¢ = (k, j) € I the feature

. k
@ = \/akcij .

Now, if all the ay, k € Z, are positive we conclude that span{qy : ¢ € I} is the linear space of all
polynomials and, in particular, is universal. However, if there exists am € Z . such that a,, = 0 then
span{qy : ¢ € I} is orthogonal to #Hy, and hence is not universal. [ |

4. Translation Invariant Kernels on R9

In the remaining part of this paper we shall focus on translation invariant kernels on RY which have
the form
K(xy) =k(x=y), xyeR

for some function k which is continuous on R9. Recall that Bochner (1959) proved that K is a kernel
if and only if there is a unique finite Borel measure p on RY such that k at any x € RY has the form

K(x) == / edp(y). (23)
R
We shall study the question of the universality of the kernel K in terms of the properties of its

corresponding finite Borel measure . We start by identifying the input space as X := RY and then
introduce our Hilbert space %/ of all complex-valued functions on supp (1) with inner product
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(1.9 i= [ )gHIAHX).
Supp ()
Next, we introduce the feature map ® : RY — 94/ which is defined by setting for each x,y € R¢
®(x)(y) := €'Y (24)

so that K(x,y) = (P(x),®(y)) 4y, X,y € RY. Note that in this case the Hilbert space % is the usual
L2(supp (1), 1) space of all square integrable complex-valued functions relative to the measure p
on supp(K). Since  is a finite Borel measure every bounded continuous function on supp (1) is
contained in W .

Next, we introduce the set of exponentials

E(W) i= {P(x) : x € supp (W)}-
We say ‘() is universal provided that () is dense in C(Z) for every compact subset Z of RY.
Lemma 11 For each compact subset Z of RY, K(2) = C(2) if and only if span‘E(p) = C(2).

Proof We observe by Fubini’s theorem that the map U : B(Z) — W/ corresponding to ® in Equa-
tion (24) is identified by formula (7) for each v € B(Z) and y € supp (1) to be

UW)(y) = / g0 dv (x).
Z
Hence, we see that A((U) = E(u)" and so U is injective if and only if spanZ(p) is dense in C(Z).
Therefore, the result follows from Proposition 1. |

As a consequence of Lemma 11, we find that the universality of K depends on the density of the
set £() of complex exponentials.

Theorem 12 The translation kernel K is universal if and only if the set of exponential features E ()
is universal.

An interesting feature of this result is that whenever a translation kernel K is universal with
corresponding measure | then any kernel corresponding to any other measure p with the same
support as W is also universal! Another consequence of this result pertains to the integral operator T
defined by Equation (4). Specifically, let Z be a compact subset of RY, v a finite Borel measure on
Z such that supp (v) = Zand T the integral operator defined by (4) then Theorem 6 and Lemma 11
yield the following result.

Corollary 13 IfK isatranslation kernel on RY then ® (T ) =C(Z) if and only if span‘E () =C(2).

We now turn our attention to describing various conditions on the support of the measure p
which ensures the corresponding set of exponential features E is universal. To this end, we say,
as in Micchelli et al. (2003), that a subset S of CY is a uniqueness set if an entire function on C°
vanishes on § then it is everywhere zero on C9. We recall the following result from Micchelli et al.
(2003).
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Proposition 14 If supp (k) is a uniqueness subset of CY then the translation kernel K is universal.

Proof By Theorem 12, it suffices to show that for each compact set Z of RY there does not exist
nontrivial v € B(Z) satisfying for each y € supp (i) that

/ et dv(x) = 0. (25)
y

Suppose there exists v € B(Z) that satisfies (25) for all y € supp (1). Then the entire function F
defined for each z € CY as

F(z):= / e'@dv(x)
Z
vanishes on supp (1). Consequently, F must be everywhere zero and so v = 0. [ ]
We note here that the proof above adapts to show that for each finite Borel measure w on Z

and p € [1,0), K(Z) = LP(Z,w) if and only if spanE(p) = LP(Z, w). This fact, together with the
remark at the end of Section 2, implies that R (T) = LP(Z,w) if and only if Span‘E(n) = LP(Z, w).

Proposition 15 If supp (1) has positive Lebesgue measure on RY then the translation kernel K is
universal.

Proof By Proposition 14, we suffice to point out the well-known fact that the real zeros of any
nontrivial entire function on CY form a set of Lebesgue measure zero on RY. |

By Proposition 15, the uniqueness condition is satisfied by a large class of finite Borel measures
on RY. To elaborate on this point further, we apply the Lebesgue decomposition theorem to p and
write it uniquely as

M= Hc+Us

where |l¢ is the continuous part of |1 (Royden, 1988), in other words, there is a nonnegative function
g € LY(RY), such that for all Borel sets S C R

pe(S) = [ g @)

and (s is the singular part of u so that the Lebesgue measure of its support is zero. Our next result
makes use of this decomposition.

Proposition 16 If the continuous part of W in its Lebesgue decomposition is nonzero then the trans-
lation kernel K is universal.

Proof We only need to show that supp (1) has positive Lebesgue measure if the continuous part ¢
of u in its Lebesgue decomposition is nonzero. Let g be the nonnegative function in LY(RY) that
determines ¢ by (26). The hypothesis that . # 0 implies g # 0. Since supp (K¢) = supp(g) €
supp (p) it follows that supp (1) has positive Lebesgue measure. |
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We shall now turn our attention to the Schoenberg kernels on RY x RY (Schoenberg, 1938). A
continuous function g : R, — R determines a radial kernel on RY x RY by the formula

K(x,y) :=g([x—y[?), x,yeR (27)

where ||| := /(x,X) is the usual euclidean norm of x € RY. It was proved in Schoenberg (1938)
that K is a kernel on RY x RY for all d € N if and only if there exists a finite Borel measure i on R
such that forallt € R

g(t) = /R e %y (0). 28)

All kernels of this type are not universal. Indeed, the choice of a measure concentrated only at
o = 0 gives a kernel K that is identically constant and therefore it is not universal. This is the only
exceptional case as we shall explain in the next result.

Theorem 17 If the measure p in Equation (28) is not concentrated at zero then the radial kernel K
in (27) is universal.

Proof We first show how to prove the result using Proposition 16 when the measure y has the
additional property that for some a > 0 its support is contained in the ray [a,). In that case, we

use the formula » 2
eolXI® = (21]:[)d/d (g) / eite % gg
R

valid for all x € RY and o > 0. Using Fubini’s theorem, we express the function k in (23) for the
kernel K in (27) at x € RY as

K(x) = /R 0D (y)dy

where the function f is defined at y € RY by the equation

The function f is strictly positive and
/ f(y)dy = / du(o) >0,
Rd a

so the theorem is a consequence of Proposition 16. If the support of the measure is not a subset
of the open ray R, we proceed differently. A direct computation using the power series for the
exponential function and the multinomial expansion yields the formula

Kixy) = 5 (’“‘)2“ / ololxag-alI?yag-olygy(g).
o70 \ @/ |aft o

This suggests that we introduce the Hilbert space W of real-valued functions on the set M :=
79 x supp (1) with inner product

o
(FEE (“’)2 /wpp(u)F(a,o)G(a,o)du(o)

CALT
aczd o

2663



MICCHELLI, XU AND ZHANG

and a feature map ® : RY — 9/ defined at (a,0) € M and x € RY as
®(x)(a,0) := oll/2x@e 0l
Hence we have the feature space representation for the kernel K given for each x,y € RY as

K(%y) = (®(x), DY) gp-

Now, we let Z be some prescribed compact subset of RY. As in the proof of Theorem 11 we
identify the operator U : B(Z) — W in (7) atv € B(Z) and (a,0) € M as

U(v)(a,o):/Zc‘“‘/zx“e“’“x”zdv(x).

Therefore, if there is a positive p € supp (1) and v € A_(U) then for any a € Zi we have that

/ x%e PP gy (x) = 0.
Z

This implies, by the density of all polynomials in C(Z), that v = 0. In other words, U is injective
and so the result follows from Proposition 1. |

As a consequence of Theorem 17 we conclude that the following two classes of kernels are
universal:

K(x,y) :=e o xyerd
and
K(x,y) i= (B+[x=y[?)~% xyeR
where a and 3 are arbitrary positive numbers.
Next, we give a quite different condition on the support of the measure i so that the correspond-
ing translation kernel is universal. For this discussion we shall use the celebrated Stone-Weierstrass
theorem (Rudin, 1991).

Proposition 18 If supp (k) is a subgroup of RY such that for each x € RY\ {0} the set {(x,y) :y €
supp (W)} & Z then K is universal.

Proof By Theorem 12, it suffices to show that span‘£(l) is dense in C(Z). Suppose all the hypothe-
ses are satisfied and there exists some compact set Z C RY such that K(Z) is not dense in C(Z2).
Since supp (k) is a subgroup of RY we see that 1 € span‘E(y) and that for all f,g € span‘E(p),
both fg and f belong to span‘E(u). Therefore, by the Stone-Weierstrass theorem, there exist dis-
tinct points xq,x2 € Z such that for all f € spanE(p), f(x1) = f(x2). That is, for each y € supp (1)

eia=%2¥) — 1 or in other words, (X1 — X2,y) /2T € Z. This contradiction proves the proposition. M

Corollary 19 Ifd =1, supp (1) is a subgroup of R and there exists y1,y2 € supp (1) \ {0} such that
y1/Y2 is an irrational number then K is universal.

Proof By the hypotheses of the corollary, it is clear that there does not exist x € R\ {0} such that
both xy1 and xy, are integers. The result follows immediately from Proposition 18. |
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5. Conclusion

We have provided a variety of conditions for a kernel to be universal in terms of properties of its
features. Several examples of universal dot product kernels are given. In the case of translation
kernels we showed that universality depends on the density of a set of complex exponentials. This
problem has attracted much interest in the literature. An extensive survey of existing results on the
univariate case is given in Redheffer (1977) and additional information in Beurling and Malliavin
(1967). With this available information a complete characterization of univariate translation kernels
follows. We show that except in rare circumstances all Schoenberg radial kernels are universal.

Our study indicates that there is intimate relationship between uniformly approximating a pre-
scribed target function by a kernel and approximating by its features. There is an important problem
which is not treated here that deserves careful attention. Given a prescribed error € > 0 and a
prescribed target function f, what is the relationship between the number of features needed to rep-
resent f with error € and the number of kernel sections needed for the same purpose. We intend to
address this issue on another occasion.
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