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Abstract—It is generally believed genetic algorithm (GA) is superior
to particle swarm optimization (PSO) while dealing with the discrete
optimization problems. In this paper, a suitable mapping method is
adopted and the modified PSO can effectively deal with the discrete
optimization problems of linear array pattern synthesis. This strategy
has been applied in thinned linear array pattern synthesis with
minimum sidelobe level, 4-bit digital phase shifter linear array pattern
synthesis and unequally spaced thinned array pattern synthesis with
minimum sidelobe level. The obtained results are all superior to those
in existing literatures with GA, iterative FFT and different versions
of binary PSO, that show the effectiveness of this strategy and its
potential application to other discrete electromagnetic optimization
problems.

1. INTRODUCTION

Linear array pattern synthesis is a classical electromagnetic optimiza-
tion problem [1]. Its purpose is to find an optimized excitation vector
to obtain a prospective far field pattern. The excitation vector of linear
array consists of excitation amplitude, phase and position of each ar-
ray element. As for excitation amplitude and phase of array elements,
accurate feed network is required for continuous adjustment, which in-
creases the cost and complexity of the array [2]. In order to simplify
the feed network, continuous adjustment for the excitation amplitude
and phase of array elements can be adjusted as discrete adjustment,
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such as array thinning technology adopted for pattern synthesis by
controlling the on/off status of elements [3–13], phase array technol-
ogy adopting N-bit digital phase shifter [14–17], and pattern synthesis
combining array thinning and unequally spaced array [9, 18] etc.

Particle swarm optimization (PSO) is an evolutionary algorithm
based on swarm intelligence [19]. And this algorithm is widely used
in pattern synthesis, such as linear array pattern synthesis [20–22],
planar array pattern synthesis [7, 9–11, 13, 23], conformal array pattern
synthesis [24–26], thinned array pattern synthesis [7, 9–11, 13] etc.

It is generally believed that the genetic algorithm (GA) and ant
colony optimization (ACO) algorithm are more suitable to handle
discrete optimization problems, because of the GA and ACO using
discrete coding method and dealing directly with discrete variables.
Unlike GA and ACO, PSO is an effective tool to deal with continuous
optimization problems, and it cannot be used to directly deal with
discrete optimization problems [7, 13, 27]. How to extend PSO
to discrete optimization problems and to maintain its outstanding
performance became a research focus.

In order to deal with discrete variables, PSO require mapping real
variables to discrete variables or modify algorithm framework. In [27],
a basic binary PSO (BBPSO) is proposed for dealing with discrete
problems. As for BBPSO and other similar improved optimization,
particle’s velocity and position are not directly associated any longer,
which makes BBPSO fail to inherit the advantages of real number PSO,
and this strategy may cause low efficiency and premature convergence
of the optimization in dealing with binary discrete optimization
problems [7]. In order to improve the optimization effect of binary
PSO, a chaotic binary PSO (CBPSO) is proposed in [13] and applied
to thinned array antenna pattern synthesis. [28] proposes a quantum-
inspired binary PSO (QBPSO) which is based on the concept and
principles of quantum computing.

[29] redefines the velocity equation of the particle and particle
position update equation based on Boolean algebra instead of the
method to create a mapping between real number velocity and discrete
particle position. In [23], Boolean PSO proposed in [29] is applied
to thinned planar array antenna pattern synthesis. [7] applies a
mutation operator to the particle velocities (BPSO-vm) based on [29].
[21] combines the adaptive mutation strategy and Boolean velocity
update equation and applies the improved algorithm to linear array
pattern synthesis. As Boolean PSO is completely not compatible with
the real number PSO, the improved achievements of real number PSO
are unavailable.

Apart from 0–1 discrete optimization problem, PSO is also applied
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in integer optimization and mixed optimization problems [18, 30, 31].
In order to solve these problems, the real number position variable
of particle in PSO must be mapped as integer variable. Different
ideas are proposed in various literatures. As for binary PSO,
several binary variables can be used to institute integer variables
and real numbers so that mixed optimization problem can be easily
solved. The disadvantage of this method is that it is hard to
determine the length for bit string of the real variables. Therefore,
the accuracy of optimization results will be affected [18]. In order
to deal with the integer and mixed optimization problems more
effectively, it is necessary to improve the PSO algorithm with better
performance [18, 32].

For these discrete versions of PSO, either the mapping strategy
led real number PSO search properties can not be reserved, or the
modifications cause incompatibility with real number PSO. Comparing
with GA or other methods, the performance of these discrete PSO is
poor in dealing with the discrete optimization problems. In order to
improve the performance of the PSO to handle discrete optimization
problem, more appropriate mapping methods are required, at the same
time, the search characteristics of the PSO should be remained as much
as possible.

Another effective way is rounding and mapping real number
particle position to discrete values, and round-down/round function
can be generally adopted. Round-down function is adopted in [31]
to round the particle position and PSO can be used for integer
programming problem. [33] restricts the chromosomes of genetic
algorithm between 0 and 1. By means of combining interval mapping
and rounding function, mixed integer optimization of array antenna
pattern and microstrip antenna can be achieved. In [34], the particle
position is updated after rounding the particle velocity. However,
“out-of-boundary solutions” might occur in this algorithm, which will
worsen the performance of the algorithm [18].

Rounding strategy and real number PSO are combined in this
paper so that PSO can solve 0–1 discrete optimization problem, integer
optimization problem and mixed optimization problem. Moreover,
pattern synthesis is done to thinned linear array, linear array with 4-bit
digital phase shifter and unequally spaced thinned linear array. The
most commonly used linearly decreasing weight PSO (LDWPSO) [35]
is adopted as the real number PSO for numerical simulation. In all
following examples, the control parameters of LDWPSO are same, the
inertia weight w decreases from 0.9 to 0.4, c1 and c2 are 1.5.

This paper is organized as follows: Section 2 introduces the
optimization strategy proposed in this paper. Section 3 synthesizes the
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200-element thinned linear array. Section 4 synthesizes the 100-element
linear array with 4-bit discrete phase shifter. Section 5 synthesizes the
20-element unequally spaced thinned linear array. And Section 6 is the
conclusion of this paper.

2. OPTIMIZATION STRATEGY

PSO algorithm based on real number variable is adopted in this paper
to deal with discrete optimization problems of array pattern synthesis.
Therefore the real number particle position in PSO must be mapped
as 0–1 discrete value and integer value.

As for PSO whose swarm size is npop and the particle position
dimension is nvar, the particle swarm position is a npop × nvar real
number matrix:

P =




v1,1 v1,2 · · · v1,nvar

v2,1 v2,2 · · · v2,nvar
...

...
. . .

...
vnpop,1 vnpop,2 · · · vnpop,nvar




where vn,m is the position of particle n in dimension m and vn,m a
real number between 0 and 1. In order to solve the discrete and mixed
integer problems, vn,m can be mapped as a real value xn, an integer In

or a discrete value bn [33].

xn = (xmax − xmin)vn,m + xmin

In = rounddown {(Imax − Imin + 1)vn,m}+ Imin

bn = round{vn,m}
(1)

where xmax/xmin and Imax/Imin represent the upper and lower limits
of intervals. Rounddown function represents mantissa rounding.

In the mapping between vn,m and In, rounddown function rather
than round function is adopted in order to guarantee that each integer
value can be equally selected. Meanwhile, Imax/Imin cannot be less
than 0. If the mapping is an integer less than 0, an integer offset value
can be deduced after it is mapped as a positive integer. In order to
further explain this problem, the 4-bit phase shifter is illustrated as an
example.

As for the 4-bit digital phase shifter, the number of phase shifting
angles is 16. The 16 values can be mapped by the value vn,m

in the uniform interval [0, 1]. Therefore, the probability density of
the values should be the same, or the performance of algorithm
will be influenced. As the methods for real number rounding in
round/rounddown function are different, the distribution probability
of each discrete point in different intervals is also varied.
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(a) (b)

Figure 1. Probability density of each integer value between 0 and
15. (a) Distribution probability of every discrete point using round
function. (b) Distribution probability of every discrete point using the
rounddown function.

(a) (b)

Figure 2. Distribution probability of each integer value between −7
and 7. (a) Distribution probability of every discrete point using round
function. (b) Distribution probability of every discrete point using the
rounddown function.

Figure 1 shows the probability density of each integer values after
rounding by adopting round/rounddown function in integer interval
[0, 15]. It can be concluded from Figure 1 that rounddown function
guarantees the distribution probabilities of integer values are the same.

Figure 2 shows the situation where the negative integer is included
in the interval, rounding and mapping the real numbers to integer
interval [−7, 7]. It can be seen from Figure 2 that neither rounding
methods can guarantee that the distribution probability at each integer
value is the same.

Therefore, in order to map real number positions as different
integers by rounding, rounddown function and positive interval must
be adopted. If integers includes negative values, the positive interval
shall be mapped at first and then translate it along the negative axis.

The rounding process can be done in fitness function. In this way,
there is no need to modify the PSO. What we need to do is to set
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research range of the algorithm swarm in the interval [0, 1]. Thus,
discrete and mixed integer optimization problems and real number
PSO algorithm are related with each other, which make full use of the
achievements of the real number PSO.

3. LOW-SIDELOBE PATTERN SYNTHESIS OF LINEAR
THINNED ARRAY

Thinning an array means turning off some elements in an antenna
array to create a desired radiation pattern [3]. An element connected
to the feed network is “on”, and an element connected to a matched or
dummy load is “off”. Generally, the intervals between array elements
are the same as λ/2, and no phase shifter is used between the array
element and feed. Compared to the pattern synthesis methods by
adjusting amplitude, phase and position of array element, pattern
synthesis with array thinning owns several advantages such as low cost
and easy implementation [36, 37].

Thinned array is a discrete problem and there are many
researches on the synthesis of thinned arrays using discrete coding
intelligent algorithms, such as GA [3, 5], ant colony optimization
(ACO) algorithm [4], binary PSO [7, 8], Boolean differential evolution
algorithm (BDE) [38], iterative FFT [39].

In this example, a 200-element thinned array with structure as
Figure 3 is considered. All the elements are uniformly distributed in
the X-axis and are symmetric about the origin. In addition, they own
the same feed amplitude and equal interval between elements.

If the element interval d is set to λ/2, its far field pattern
expression follows:

AF (θ, I)=
−1∑

i=−N

Iiej(π·(i+0.5)·sin(θ))+
N∑

i=1

Iiej(π·(i−0.5)·sin(θ)), θ∈ [0, π] (2)

where Ii is the excitation amplitude and θ the angle between wave
direction and the X-axis. I and θ are all scalar value. For the thinned
array, when Ii is “1” means array element is turned on and vice versa.

1 N

… ………

-2-N

d

2

X-axis 

-1

Figure 3. Centro-symmetric thinned linear antenna array.
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This example has been studied in [3, 39]. In order to compare
with existing research works, the peak sidelobe level (PSLL), 3 dB
beamwidth (HPBW) and fill factor η are considered as optimization
object. The fitness function is shown as Equation (3).

fitness(I) = FPSLL(I) + Γ1 {abs(HPBW−HPBWset) > T1}
+Γ2 {abs(η − ηset) > T2} (3)

where HPBWset is the desired 3 dB beamwidth, HPBW is the obtained
3 dB beamwidth. η and ηset are obtained and desired value of fill
factor, η = (number of elements turned on)/(total number of elements
in array). Γ1 and Γ2 are penalty factor, T1 and T2 are used as accept
threshold. In this example, Γ1 and Γ2 are 10 and 105, T1 and T2 are
set as 0.01 and 0.005.

From Equation (3), we can know that the penalty coefficient of fill
factor is very large, the algorithm will not converges if there is no filter
in population initialization. The purpose of the filter is to ensure that
there is at least one particle satisfying the fill factor constraint when
initializing swarm positions.

The desirable peak sidelobe level (PSLL) is −23 dB, ηset is
77% and 78%, HPBWset is 0.5◦. This example is a multi-object
optimization, many solutions will be discarded because of the two
penalty constraints and the optimization process will be very difficult.

Table 1. Comparisons of the simulation results.

Design
parameters

Result 1
Fig. 3(a)
in Ref. [3]

Fig. 1(a)
in Ref. [39]

Result 2
Fig. 5(a)

in Ref. [3]
η 77% 77% 77% 78% 78%

PSLL (dB) −23.03 −22.13 −22.92 −22.8 −22.27
HPBW (◦) 0.58 0.58 0.58 0.58 0.58
Directivity

(dB)
28.74 28.76 28.90 28.95 28.93

Table 2. Switched off elements for each result.

Results Number of switch off elements

1
±51,±52,±54,±61,±64,±65,±70,±71,±72,±76,±77,

±79,±80,±82,±84,±85,±87,±88,±89,±91,±93,±97,±99

2
±53,±57,±60,±64,±65,±69,±70,±71,±73,±75,±79
±81,±82,±83,±84,±86,±87,±89,±92,±94,±95,±96
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Figure 4. The pattern of result 1 in Table 2. (PSLL = −23.03 dB, fill
factor = 77%, HPBW = 0.58◦, Directivity = 28.74 dB).

Therefore, the particle size is set as 400, the optimization iteration is
20000, 50 independent runs are repeated.

The results of optimization strategy proposed by this paper and
results of existing literatures are listed in Table 1. The best PSLL
obtained is −23.03 dB and the fill factor is 77%. If fill factor increases
to 78%, the obtained lowest PSLL is −22.8 dB.

The results of BBPSO, CBPSO and BPSO-vm are poor when
comparison with Table 1, the best one is close to −21 dB, so these
results are not listed.

Table 1 shows that the best results of this paper is superior than
results in [3, 39], it indicates that the strategy of this paper can make
PSO exhibit the similar performance with GA and IFT method.

Table 2 lists the the switched off element of each result in Table 1.
Figure 4 is the pattern of the best result under the 77% fill factor.

Figure 5 is the distribution of PSLLs obtained by this paper and the
convergence curves is shown in Figure 6. The distribution of PSLLs
shows that most of optimized results are better than−21 dB,and nearly
10% results are close to −22.13 dB,which was the best result in [3].

4. PATTERN SYNTHESIS OF LINEAR ARRAY WITH
4-BIT DIGITAL SHIFTERS

Pattern synthesis for array achieved by controlling the phase of array
elements is a problem being widely researched [14, 15, 17]. As for phase
array, the excitation amplitudes of each array elements are the same,
which decreases the production cost and excitation error.

In application of phase array, digital phase shifter is widely applied
for beam forming and interference suppression. Phase shifter can be
used to control the phase of array elements. Compared with phase
shifter whose phase can be continuously adjusted, the application of
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Figure 6. Convergence curves.

Figure 7. Centro-symmetric antenna array using digital phase
shifters.

digital phase shifter is wider [14]. As for digital phase shifter, the
number of phase shifting angles is limited.

While as for n bit digital phase shifter, the number of available
phase shifting angles is 2n. Thus, the essence of pattern synthesis
for phase array adopting n bit digital phase shifter is an integer
optimization problem.

Considering the 2N -element linear array with 4-bit phase shifter
as Figure 7 [14], the excitation amplitudes of all array elements are the
same and the phases of array elements are symmetrical to the center
of the array. The element spacing d on each side is 0.5λ.

As for this array, its far field pattern is as follows:

AF (θ, φ) =
−1∑

i=−N

ej(π·i·sin(θ)+φi) +
N∑

i=1

ej(π·i·sin(θ)+φi) (4)

where φi is the excitation phase of the ith element.
Consistent with the [14], the phase shifting range of the 4-bit

phase shifter adopted in this example is [0◦, 114.5◦] and the step value
is 7.63◦.

The optimization target in this example is the pattern synthesis
for 100-element array. It is required that sidelobe level shall be lower
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Figure 8. The optimized array pattern with minimum PSLL and
null control (solid). 100 elements, null positions are 30◦ and 31◦,
PSLL = −14.7 dB, HPBW = 0.8◦, directivity = 24.2 dB.

than −12 dB and the null level no lower than −60 dB shall be generated
at 30◦ and 31◦.

Therefore, the fitness value function is as shown in formula (5).

f(x) = α · PSLL(AF (θ, φ)) + β ·
∑

∀θj∈ψ

AF (θj , φ) (5)

where PSLL is the peak sidelobe level of the pattern, θj the specified
null angle value, and Ψthe set of all the null positions. α and β are the
weighting factors of sidelobe level and null, and in this paper they are
set to 0.8 and 0.2 respectively. Besides, the angular resolution is 0.1◦.

When the particle size and iteration are set as 40 and 400,
satisfactory results can be easily obtained by adopting the strategies
in this paper and the best results are shown in Figure 8.

As for the arrays in this example, though the initial pattern (all
phases of the arrays are the same) can meet the requirements that
sidelobe level is not lower than −12 dB, it is quite difficult to meet
the requirements for null and sidelobe as the element phase values are
limited.

It can be seen from Figure 9(a) that the best result of sidelobe
level is −14.7 dB, −2.7 dB higher than −12 dB obtained in [14]. The
directivity and HPBW of the best result in this paper are 24.2 dB and
0.8◦, same with the result of [14].

It can be seen from Figure 9(b) that the null position of the best
result obtained by QPSO in [14] is not accurate. The null depth at
30◦ is −62 dB, which reaches the optimization target. The null which
should appear in the position of 31◦ appears at 30.5◦, so that the
null level at 31◦ is −37.4 dB. Exactly speaking, the optimal solution
obtained from QPSO fails to meet the optimization conditions. It can
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be noticed from Figure 9(b) that the optimal result obtained in this
paper meets the requirements on aspects of null string position and
depth.

To sum up, the optimal results obtained by strategies in this paper
meets the requirements for sidelobe level and null depth, superior to
the best result in [14], which shows the high performance of strategies
in this paper on discrete phased array pattern synthesis.

Because [14] provides convergence curves comparison between
QBPSO and BBPSO, the performance of QBPSO is better than
BBPSO. From above we can know strategy proposed in this paper is
much superior to QBPSO, so there is no longer available for comparison
with other discrete versions of PSO.

The phase values of array elements corresponding to the best result
obtained by strategies in this paper are shown in Table 3.

(a) PSLL comparison (b) nulls comparison

Figure 9. The PSLL comparison of two results.

Table 3. Phase data of each element correspond to Figure 8.

Element

index

Phase 

Data(°) 
Element

index 

Phase 

data(°) 
Element 

index 

Phase 

data(°) 
Element

index

Phase

data(°)
Element

index

Phase

data(°)

−1/1 68.67 −11/11 76.30 −21/21 22.89 −31/31 91.56 −41/41 99.19

−2/2 38.15 −12/12 76.30 −22/22 7.63 −32/32 106.82 −42/42 22.89

−3/3 61.04 −13/13 30.52 −23/23 15.26 −33/33 99.19 −43/43 53.41

−4/4 61.04 −14/14 76.30 −24/24 68.67 −34/34 106.82 −44/44 53.41

−5/5 76.30 −15/15 45.78 −25/25 76.30 −35/35 83.93 −45/45 7.63 

−6/6 76.30 −16/16 61.04 −26/26 68.67 −36/36 7.63 −46/46 99.19

−7/7 83.93 −17/17 91.56 −27/27 99.19 −37/37 68.67 −47/47 45.78

−8/8 76.30 −18/18 106.82 −28/28 68.67 −38/38 0 −48/48 45.78

−9/9 68.67 −19/19 83.93 −29/29 68.67 −39/39 30.52 −49/49 68.67

−10/10 61.04 −20/20 38.15 −30/30 83.93 −40/40 106.82 −50/50 76.30
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5. LOW-SIDELOBE PATTERN SYNTHESIS OF
APERIODIC THINNED ARRAY

Recently, it is a research focus to adopt evolutionary algorithm
for unequally spaced linear array synthesis with minimum sidelobe
level [2, 18, 20, 22]. In [18], a symmetric aperiodic thinned array with
a dimension of 9.5λ is studied.

In [18], a hybrid PSO algorithm based on real number and binary
variables is adopted. So, the locations and on/off status of array
elements are all optimized by hybrid PSO in order to get pattern with
PSLL constraint. The optimization application is a combination of
thinned array and unequally spaced array and it is obviously a mixed
integer optimization problem.

The structure of aperiodic thinned linear array in [18] is shown in
Figure 10. The diameter of the array is 9.5λ and the array position is
symmetrical on the array center. The positions of both array elements
at left and right ends are fixed and remain “on”.

Meanwhile, apart from the two array elements at both ends, the
positions of other array elements can be adjusted. From another point
of view, the example is an application of array pattern synthesis where
the number and spacing of array elements are all adjustable. In fact,
the pattern synthesis for the array is to find the most suitable number
and spacing of array elements to minimize the sidelobe level of the
array pattern.

In [18], the maximum number of elements in this array is set as 20.
Except for the two constant “on” elements at both ends, the maximum
number of adjustable array elements is 18. As the array is symmetrical,
it is only required to work out the spaces of 9 array elements and their
on/off status. Thus, the solution special dimension of the PSO is set
as 18, including nine array positions and nine on/off status of arrays.

Figure 10. A symmetric aperiodic thinned array with a dimension of
9.5λ and a largest possible element number of 20. The locations and
on/off status of isotropic antenna elements are represented by a real
vector consisting of 18 real numbers in [0, 1].
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As for the single side adjustable array elements, the position
interval is [0,4.5λ] and the array space cannot be less than 0.25λ. In all
dimensions, the interval of search for PSOs is [0, 1]. Particle position
can be transferred into array position and array status through real
number and 0–1 discrete mapping in Equation (1).

The same as [18], the fitness function in this example is sidelobe
level and it is a single target optimization problem. The pattern
calculation formula is as follows:

AF (θ,R, B) =
9∑

i=1

Bi cos(2πRi cos θ) + cos(4.75× 2π cos θ), θ ∈ [0, π]

(6)
where R is the single side array position vector and Ri is the element
position of element i. While B is the array status vector and Bi is
the on/off status of array element i. The second part in formula (6)
represents the radial component of the two fixed array elements at both
ends.

In this example, the fitness function is as shown in formula (7),
only the PSLL is considered.

fitness(I) = FPSLL(I) (7)

The particle swarm of LDWPSO is 20 and the total optimization
iteration is 1000. Experiments shall be done for 20 times, which is the
same as that in [18].

The pattern corresponding to the best result in this paper is shown
in Figure 11 and Figure 12 is the fitness function curve. The best PSLL
obtained in this paper is −23.27 dB with all the 20 array elements
turned on, superior than −22.23 dB in [18]. The HPBW and directivity
are 5.6◦ and 19.8 dB, similar with the 5.2◦ and 19.5 dB in [18].

-23.27dB

Figure 11. Best result, 20 element, PSLL = −23.27 dB.
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Figure 12. Convergence curves comparison.

Convergence curves in this paper and in [18] are shown in
Figure 12. The array position corresponding to the best result is shown
in formula (8):

R = {±0.1981,±0.5798,±0.9276,±1.3343,±1.7725,
±2.2111,±2.6856,±3.2731,±3.9901,±4.7500} (8)

Different with the quantity of optimal array elements in this paper,
the best quantity of open array elements in [18] is 18. This is to say
there are two array elements are closed. At that time, the optimal
sidelobe level is −22.3 dB.

Considering that the diameter of this array is 9.5λ. If not
all the twenty array elements are open, the average space between
array elements are greater than 0.5λ. In order to further verify the
conclusion, several simulations are done under the condition that the
minimum space is 0.25λ and the maximum number of array elements
is set as 40. The simulation result shows that sidelobe level larger than
−23 dB can be obtained when the total number of open array elements
is 20 or 21. Therefore, the results in this paper is more convective
compared with [18].

6. CONCLUSION

PSO is an evolutionary algorithm based on real number variables and
it is widely applied in electromagnetic field. In order to solve the
discrete optimization problem, different researchers proposed several
binary PSO and quantized PSO.

As these improved algorithms make some alteration which is
suitable for discrete problems to the particle velocity and position
update formula, there is some efficiency difference between modified
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algorithm and real number PSO. Meanwhile, the existing achievements
of real number PSO cannot be directly utilized. It is also an effective
way to transfer the real number particles into integer and binary
variables with the rounding function.

Rounding and interval mapping strategy are adopted in this paper
to solve 0–1 discrete, integer optimization and mixed optimization
problem. And pattern synthesis is obtained in different arrays. The
results are all superior to the existing research literatures, that show
the effectiveness of the strategies proposed in this paper. And it
can be further applied in other discrete electromagnetic optimization
problems.
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