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a b s t r a c t

Shape analysis played important role in computer vision based tasks. The importance of shape

information relies that it usually contains perceptual information, and thus can be used for high level

visual information analysis. Currently, there are many ways that shapes can be represented as a

structural manner using graphs. Hence shapes can be analyzed by using graph methods. This paper

describes how graph-spectral methods can be used to transform the node correspondence problem into

one of point-sets alignment. We commence by using the ISOMAP algorithm to embed the nodes of a

graph in a low-dimensional Euclidean space. With the nodes in the graph transformed to points in a

metric space, we can recast the problem of graph-matching into that of aligning the point-sets. Here we

use semidefinite programming to develop a robust point-sets correspondences algorithm. Variations in

graph structure using the covariance matrix for corresponding embedded point-positions is captured.

We construct a statistical point distribution model for the embedded node positions using the

eigenvalues and eigenvectors of the covariance matrix. We show how to use this model to project

individual graph, i.e. shape into the eigenspace of the point position covariance matrix. We illustrate the

utility of the resulting method for shape analysis and recognition on COIL and MPEG-7 databases.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Shape analysis played important role in computer vision based
tasks. The importance of shape information relies that it usually
contains high level visual information. There has already many
methods for shape analysis. The first part methods can be described
as statistical modeling [4,22,15,17]. Here a well established route to
construct a pattern space for the data-shapes is to use principal
components analysis (PCA) [12]. This commences by encoding the
image data or shape landmarks as a fixed length long vector. The
data are then projected into a low-dimensional space by projecting
the long vectors onto the leading eigenvectors of the sample
covariance matrix. This approach has been proved to be particularly
effective, especially for face data and medical images, and has lead
to the development of more sophisticated analysis methods capable
of dealing with quite complex pattern spaces.

However, shape can also be abstracted in a structural manner
using a graph or a tree representation [26,30]. Examples include
the representation of the skeletal structure of silhouettes using
shock-trees [26], and the use of point proximity or region
adjacency graphs to describe object arrangement [19]. The
observation underpinning this paper is that although there has
ll rights reserved.

(B. Xiao).
been considerable effort aimed at learning the variation of shape
in the landmark and parameter domains, little effort has been
devoted to learning the statistical variations in structural
representations of shape. This is a big omission since structural
representations can capture variations in shape in a scale
invariant manner. In addition, structural representations are
intrinsically of higher level, and are closer to the semantic content
of a scene.

In this paper, we introduce a graph based framework for shape
analysis. We combine the ideas from manifold learning and
statistical modeling. After we have a set of graphs each
representing a shape, the first step is to embed the nodes of each
graph in a vector space. We introduce the metric graph
embedding method. In the mathematics literature, there is a
considerable body of work aimed at understanding how graphs
can be embedded on a manifold so as to minimize a measure of
distortion. Recently, there has been considerable interest in the
pattern analysis community in how to embed complex relational
data in a low dimensional manifold. Collectively [13,24,1], these
methods are known as manifold learning theory. Their collective
aim is to develop variants of the classical methods of PCA [12] and
MDS [6], that can be used to better capture localised variations on
the structure of the data. In this paper, we investigate whether
methods from manifold learning theory can be combined with
spectral graph theory to develop effective tools for graph
structure matching. The idea is to use manifold learning methods

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.10.023
mailto:little_point_baixiao@hotmail.com


ARTICLE IN PRESS

B. Xiao et al. / Neurocomputing 73 (2010) 1606–1613 1607
to embed the graphs in a low dimensional coordinate space, and
to use point-pattern matching techniques to find correspondences
between nodes. We proceed as follows. We start by performing a
strategy similar to ISOMAP [13] to embed the graphs in a
Euclidean pattern space. This is done by applying MDS (multi-
dimensional scaling) [6] to the matrix of geodesic distances
between nodes. Once embedded in this space, we can use point-
alignment methods to match the nodes of the graphs. To do this
we develop a variant of the Scott and Longuet-Higgins [10]
algorithm. There are two problems with the existing method.
First, the correspondences are obtained from the matrix formed
by taking the outer-product of the singular vectors of the point
association matrix. This matrix does not have a clear interpreta-
tion, and the resulting search for correspondences using the
maximum row and column entries is ad hoc in nature. Second, the
method breaks down when the point-sets being matched are of
very different sizes [3].

Our first contribution is to extend manifold learning algo-
rithms on graph space for graph embedding. By doing so, we
transform graphs to point-sets in vector space by using tradition
manifold learning algorithms, i.e. ISOMAP [13]. An important
feature for graph embedding is that we can perform a number of
graph manipulation tasks by applying simple point pattern
analysis algorithms to the embedded point position vectors.

Following the first contribution, after embed each graph in
point-sets, our second contribution in this paper is rather than
performing singular value decomposition on the inter-point-set
proximity matrix, we use semidefinite programming (SDP) [9] to
locate correspondences. By using SDP we overcome the first of
these problems, since it leads to a correspondence matrix which is
doubly stochastic, and hence has clear meaning. Second, the
resulting matching method is more robust to size difference than
that of Scott and Longuet-Higgins. Once we found the correspon-
dence between the nodes of the two graphs, we can apply our
methods on image matching. We have showed our algorithms for
matching on both synthetic and real-world database.

Our third contribution is to construct statistical model to learn
the structure variation in graphs. Once we have solved the
matching correspondence problem, we draw on ideas from linear
deformable models to construct a simple and explicit statistical
model for graph structure. One of the problems that limits the use
of the structural clustering methods [2] is that they suffer from
exponential complexity and are therefore not easily sampled
from. To overcome the problem of exponential complexity we
turn to the shape analysis literature, where principal components
analysis has been proved to be a powerful way of capturing the
variations in sets of landmark points for 2D and 3D objects [5].

Hence, we use the graph embedding to construct a statistical
model for graph structure. Our aim is to construct a statistical
model that can account for the distribution of embedded point
positions for corresponding nodes in a sample of graphs. A
reference graph is selected, and the correspondences between the
nodes of each sample graph and the reference graph are
established using the spatial alignment method. We capture
variations in graph structure using the covariance matrix of the
corresponding embedded point positions. We construct a point
distribution model for the embedded node positions using the
eigenvalues and eigenvectors of the covariance matrix. We show
how to use this model to project individual graphs into the
eigenspace of the point position covariance matrix. We also
illustrate the utility of the resulting method for shape analysis.
Experiments on the COIL and MPEG-7 databases are performed.

The outline of the paper is like this. In Section 2, we introduce
the methods on how to embed the graph in coordinate spaces so
transfer each graph to a point-set. Then the graph nodes
correspondence problems can be solved by using a point-sets
alignment algorithm which will be introduced in Section 3. With
the correspondence at hand, in Section 4, we continue to
construct a graph statistical model which can be used to compute
the similarities between graphs. Finally, in Section 5, we evaluate
our methods on experiments.
2. Metric embedding of graphs

We are interested in the abstract problem of embedding the
nodes of a graph into an Euclidean space. Here we use Isomap [13]
as a way to solve the low-distortion graph embedding problem.
The idea behind Isomap is to apply classical MDS [29] to the
matrix of geodesic distances between data-points. In this way the
data are mapped from a high-dimensional input space to the low-
dimensional space of a nonlinear manifold. Although the method
was originally devised for dimensionality reduction, we can use it
here for the low-distortion graph embedding problem.

2.1. Metric embedding using Isomap

To commence, suppose that the graph under study is denoted
by G¼(V,E) where V is the set of nodes and EDV � V is the set of
edges. Since we wish to adopt a graph-spectral approach we
introduce the adjacency matrix A for the graph where

Aðu,vÞ ¼
1 if ðu,vÞAE

0 otherwise

�
ð1Þ

The graph can also be represented by geodesic distance matrix S.
The pairwise geodesic distances between nodes d(u,v) are used
as the elements of an N�N dissimilarity matrix S, whose
elements are defined as follows:

Sðu,vÞ ¼
dðu,vÞ if uav

0 if u¼ v

�
ð2Þ

There are many algorithms to compute the geodesic distance
matrix S, here for the simplicity we use the canonical Dijkstra
algorithm [7].

Our goal is to find a low-distortion or distortion-free embed-
ding from the graph metric space into a normed space. Here we
use Isomap [13] as a way to solve the low-distortion graph
embedding problem. The idea behind Isomap is to apply classical
MDS [29] to map data points from their high-dimensional input
space to low-dimensional coordinates of a nonlinear manifold.
The key contribution is hence to apply MDS to the pairwise
distances not in the input Euclidean space, but in the geodesic
space of the manifold.

Although the method was originally devised for dimension-
ality reduction, we can use it here for the low-distortion graph
embedding problem. Viewed as an isometric feature mapping,
Isomap is a mapping f : X-Y from the observation space X to a
Euclidean feature space Y that preserves as closely as possible the
intrinsic metric structure of the observations, i.e. the distances
between observations as measured along geodesic(shortest) paths
of X [13]. The distortion in this embedding is nearly 1.

For graphs, the embedding procedure is straightforward. We
first construct the shortest path distance matrix S for each graph.
Each element du,v in S is the shortest path distance between the
pair of nodes u and v of the graph. We embed each graph in a
Euclidean space by performing MDS on the matrix S.

The first step of MDS is to calculate a matrix K whose element

with row r and column c is given by Kðr,cÞ ¼ � 1
2 ½d

2ðr,cÞ�d̂
2
ðr,�Þ�

d̂
2
ð�,cÞþ d̂

2
ð�,�Þ�, where d̂ðr,�Þ ¼ ð1=NÞ

PN
c ¼ 1 dðr,cÞ is the average

dissimilarity value over the r th row, d̂ð�,cÞ is the similarly defined
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average value over the c th column and d̂ð�,�Þ ¼ ð1=N2Þ
PN

r ¼ 1�PN
c ¼ 1 dðr,cÞ is the average similarity value over all rows and

columns of the similarity matrix K.
We subject the matrix K to an eigenvector analysis to obtain a

matrix of embedding co-ordinates X. If the rank of K is k,krN,
then we will have k non-zero eigenvalues. We arrange these k

non-zero eigenvalues in descending order, i.e. l1Z l2Z � � �Z lk40.
The corresponding ordered eigenvectors are denoted by ~ui where
li is the i th eigenvalue. The embedding co-ordinate system for the
graphs obtained from different views is X ¼ ½~f 1,~f 2, . . . ,~f s�, where
~f i ¼

ffiffiffi
li

p
~ui are the scaled eigenvectors. For the graph-node indexed

u, the embedded vector of co-ordinates is ~xi ¼ ðXu,1,Xu,2, . . . ,Xu,sÞ
T .
3. Semidefinite programming for graph matching

By applying Isomap to the two graphs to be matched, we
obtain two point sets I and J, containing m and n features,
respectively. We now follow a way similar to Scott and Longuet-
Higgins’ method. We regard the points in I and J as lying in the
same plane. We then represent the ‘proximities’ between the
features in I and the features in J. We use the Gaussian form

Gij ¼ expð�m2
ij=2d2

Þ ð3Þ

to compute the matrix of proximity weights. In the equation, mij is
the Mahalanobis distance between two nodes, which is

m2
ijðMÞ ¼ ðxi�xjÞ

0S�1
ðxi�xjÞ ð4Þ

and S is the point set covariance matrix. The use of the
Mahalanobis metric instead of the Euclidean distance has several
advantages. First, it automatically accounts for the scaling of the
coordinate axes. Second, it corrects for correlation between the
different features. Third, it can provide curved as well as linear
decision boundaries.

With an inter-graph node distance matrix to hand, then one
way to find correspondences is to use the Scott and Longuet-
Higgins algorithm [10]. This involves performing the singular
value decomposition (SVD) G¼TDU. The matrices of T and U are
orthogonal. The matrix D contains the singular values along its
diagonal in descending numerical order. The final step is to
compute the correlation between T’s rows and U’s columns, giving
an association matrix P¼TEU, where E is obtained by replacing
each diagonal element in D by a 1. The element Pij indicates the
strength of attraction between feature iA I and jA J. The rows of P,
index the features in the first graph, and its columns those in the
second graph. If Pij is both the largest element in row i and column
j then we regard these features as being in one-to-one
correspondence with one-another. If Pij is the greatest element
in row i but not the greatest in column j, then we may regard iA I

competing unsuccessfully for partnership with jA J. Similar
remarks apply if Pij is the greatest element in its column but not
in its row [10].

However, the Scott and Longuet-Higgins method can prove to
be sensitive to instabilities in the singular vectors [3]. For this
reason we turn to semidefinite programming as an alternative.
The semidefinite programming problem (SDP) is essentially an
ordinary linear program where the nonnegativity constraint is
replaced by a semidefinite constraint on matrix variables. It is
interesting to note that SDP is a special instance of a more general
problem class called conic linear programs, where one seeks to
minimize a linear objective function subject to linear constraints
and a cone constraint [31]. The process has many applications,
ranging from control theory to structural design. In particular,
many hard optimization problems can be relaxed to a problem
with convex quadratic constraints which, in turn, can be
formulated as an SDP [21]. The handbook [34] has described the
application of SDP on combinatorial optimization, on nonconvex
quadratic programming, on eigenvalue and nonconvex optimiza-
tion, etc.

The standard form for the primal problem is

min trace CY

s:t: trace FiY ¼ biði¼ 1,2, . . .mÞ, YZO

where C, Fi and Y are real symmetric n�n matrices and bi is a
scalar. The constraint YZO means that the variable matrix must
lie on the closed convex cone of positive semidefinite solutions.
Back to the problem of Longuet-Higgins’ algorithm who try to find
a solution matrix P which can best correlates with G in the sense
of maximizing the inner product

P : G¼
X

i

X
j

PijGij ¼ traceðPT GÞ

At the paper [10], the authors try to use spectral methods singular
value decomposition (SVD) to find the solution. Although elegant
and convenient, spectral methods are only guaranteed to find a
locally optimal solution to the problem. For this reason in this
paper we turn to the more general method of semidefinite
programming to locate an optimal solution which utilizes the
convexity properties of the matrix representation. To use SDP, we
notice that neither P nor G is symmetric matrix. By solving this
problem, we introduce the matrix W which is (m+n)� (m+n) size
and the definition is given below:

W :
O PT

P O

" #

The same for matrix G we extend it into matrix V which is defined
below:

V :
O GT

G O

" #

Matrix V is also (m+n)� (m+n) size.
Then maximize trace(PTG) is to maximize trace(WV)+

trace(WTVT) which equals maximize trace(WV). Hence, W corre-
sponds to C while V corresponds to Y in Eq. (5). We next to
introduce the constraint matrix which in the symbol Fi which is
(m+n)� (m+n) size and the definition is given below:

F1 ¼

0 0 � � � 0 1=2 � � � 1=2

0 0 � � � 0 0 � � � 0

^

1=2 0 � � � 0

1=2 0 � � � 0

^

1=2 0 � � � 0

2
666666666664

3
777777777775

F2 ¼

0 0 � � �0 0 � � � 0

0 0 � � �0 1=2 � � � 1=2

^

0 1=2 � � � 0

0 1=2 � � � 0

^

0 1=2 � � � 0

2
666666666664

3
777777777775
^

And the cost vector bi is a m+n length with each element equals to
1. The first m constraint matrices keeps the columns of variable
matrix sum to 1 and the following n constraint matrices keeps
the row variable matrix sum to 1. The reasons to set Fi matrices
is like this. For example, F1 V¼1 equals:

P
jð1=2� Vð1,jÞþ

1=2� Vðj,1ÞÞ ¼ 1, jZm while P(1,j) and P(j,1) both correspond to
the same element in the matrix P, and sum of P(1,j) is the sum of
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the 1st column of matrix P. So we can use SDP methods to solve
the P matrix. In this paper, we use the SDP solver developed by
Fujisawa et al. [14]. In this case, we will finally obtain the
association matrix P that maximizes trace (PTG) from Y, and the
solution matrix will be limited to be doubly stochastic.
4. Graph similarity

From previous sections, we have solved the correspondence
between pairs of graphs by using the association matrix P. In this
section, we continue the work from previous section, to introduce
how we compute the similarity among a set of graphs. Part of this
work has been published in [35]. The idea is to first find the
correspondence between the embedded graph point-sets by using
the methods from previous section. With the correspondence
results at hand, we construct a statistical model for the embedded
point-sets. We can then use some statistical properties, i.e. mean,
covariance to characterize the embedded point-sets hence the
corresponding graphs. From these statistical properties, we can
extract a similarity measure for the graph. When a new graph is
given, we can still use the constructed graph statistical model to
evaluate the similarity between the new given graph and the
mean of the training graph set. Below we will describe the details
of the methods.

Let the sample be T¼{G1,G2,y,Gk,y,GK} where the k th graph
Gk¼(Vk,Ek) has node-set Vk and edge-set Ek. The result of
performing metric embedding of the nodes of the k th graph is
a matrix of co-ordinates Yk. Our aim in this section is to construct
a statistical model that can be used to describe the distribution of
embedded node co-ordinates for the sample of graphs. Since the
graphs contain different numbers of nodes, we truncate the
co-ordinate matrices to remove the spatial dimensions corre-
sponding to insignificant eigen-modes. Hence, we retain just the
first N rows of each co-ordinate matrix. For the graph Gk the
truncated node co-ordinate matrix is denoted by Ŷ k.

To construct the statistical model for the sample of graph, we
require correspondences between the nodes of each sample graph
and the nodes of a reference structure. Here we take the reference
graph to be the graph in the sample with the largest number of
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Fig. 1. Delaunay graphs overla
nodes. This graph has index k� ¼ argmaxGk AT jVkj. To locate the
correspondences between the nodes of each sample graph
and those of the reference graph, we use methods described in
Section 3. We compute the association matrix P between each
sample graph and the reference graph.

Once we have correspondences to hand, then we can construct
the statistical model for the set of graphs. To do this we model
variations in the positions of the embedded points using a point
distribution model. Point distribution model has been used for
shape analysis to characterize the variation within the shape
space which is normally represented by feature points [5].
We commence by computing the mean point positions. The
matrix of mean-position co-ordinates and the associated
covariance matrix are

X̂ ¼
1

T

X
kAT

PT
k,k� Ŷ k

S¼
1

T

X
kAT

ðPT
k,k� Ŷ k�X̂ ÞðPT

k,k� Ŷ k�X̂ ÞT

To construct the point-distribution model, we perform the
eigendecomposition S¼CGCT where G¼ diagðg1,g2, . . . ,gK Þ is
the diagonal matrix of ordered eigenvectors and C¼ ðc1j . . . jcK Þ

is the matrix with the correspondingly ordered eigenvectors as
columns. We deform the mean-embedded node positions in the
directions of the leading eigenvectors of the point-position
covariance matrix S. Let ~C be the result of truncating the matrix
C after S columns and let b be a parameter-vector of length S. We
convert the mean point position matrix with a long vector form.
Let ColiðX̂ Þ be the i th column of the mean-point position matrix X̂ .
The long vector is given by Ẑ ¼ ðColT1ðX̂ Þ,ColT2ðX̂ Þ, . . .Þ. The long
vector corresponding to deformed point set position is ~Z ¼ Ẑþ ~Cb.
The matrix with deformed point position as column is X̂ . An
observed configuration of embedded nodes ~Y maybe fitted to the
model. To do this the best fit parameters estimated using the least
squares procedure

b� ¼ argmin
b
ð ~Y�X̂� ~CbÞT ð ~Y�X̂� ~CbÞ

The best-fit parameter vector is b� ¼ ~C
T
ð ~Y�X̂ Þ.
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Fig. 2. Our algorithm for CMU and MOVI house sequences.

Table 1
Experiments results for MOVI house sequence images.

Images Points Correct

correspondence

False

correspondence

No

correspondence

house1 140 – – –

house2 134 112 8 14

house3 130 109 6 15

house5 140 110 8 22

Table 2
Summary of comparison of the four matching algorithms.

Methods Correct

correspondence

False

correspondence

No

correspondence

Our method 110 8 22

Umeyama 84 30 26

Scott and

Longuett-Higgins

97 17 26

Shapiro and Brady 83 17 40

B. Xiao et al. / Neurocomputing 73 (2010) 1606–16131610
Finally, the similarity of a pair of graphs can be measured using
the difference in their best-fit parameter vectors. Since the
parameter-vector is just the projection of the corresponding
graph into the eigenspace of the model, the difference is
parameter vectors is related to the distance between graphs in
the eigenspace. Suppose that the graphs Gk1

and Gk2
have best fit

parameter vectors b�k1
and b�k2

, respectively. The Euclidean
distance between the parameter vectors is

d2ðk1,k2Þ ¼ ðb
�
k1
�b�k2
Þ
T
ðb�k1
�b�k2
Þ ¼ ðŶ k1

�Ŷ k2
Þ
T ~C ~C

T
ðŶ k1
�Ŷ k2

Þ:

5. Experiments

In this section, we provide some experiments for our methods.
We divide this section into two parts. In the first part, we test our
methods on image matching. We use COIL and MOVI data to find
the corresponding between pairs of images. In the second part,
we extend our experiment by using the matching results to
perform shape image analysis. Here we use COIL data-set [23]
together with MPEG-7 data-set [27].

5.1. Image matching

In this section, we provide some experimental evaluation of
the new matching method.

Our experiments are based on some real-world data experi-
ments. We also compare our methods with some alternatives.
These alternatives are Shapiro and Brady [18] and Scott and
Longuet-Higgins’ [10] feature set matching methods. These two
methods use coordinate information for the feature points, and do
not incorporate the graph structure information. We also
investigated Umeyama’s [28] method. In our method we are
concerned with matching the Delaunay triangulation of corner-
features. From each image in each view sequence, we extract
corner features [11]. We use the detected feature points as nodes
of a graph. The edge relations are obtained by computing the
Voronoi tessellations of the feature points, and constructing the
region adjacency graph, of the Voronoi regions. We apply our
matching method to two image sequences (MOVI and Desk).
There are rotation, scaling, and perspective distortion present.
Example images from these sequences are shown in Fig. 1 and
correspond to different camera viewing directions. The detected
feature points and their Delaunay triangulations are overlayed on
the images. The first four images are from the MOVI sequence and
each contains about 140 nodes. The second four images are from
the Desk sequence and each contains about 400 nodes.

In Fig. 2, we test our method on some pairs of images. In
Table 1 we summarize the matching results for the MOVI houses.
Here we list the number of nodes in the Delaunay graphs, the
number of correct correspondence, the number of correspondence
errors, and the number of points without correspondence. We
also selected a pair of images which contain the same number of
corner points (images 1 and 4 from MOVI sequence 140 nodes).
Although the number of corners is the same, there are differences
in the both identities of the detected points and their structural
arrangement. We compared these images’ matching results by
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using our algorithm, Umeyama’s algorithm, Scott and Longuet-
Higgins’ algorithm and Shapiro and Brady’s method. The
compared results are summarized in Table 2. From these
results, it is clear that our new method is better than these ones.
5.2. Shape indexing

In this part we provide some experimental evaluation on our
graph model for shape analysis. We use two databases for the
evaluation. The first one is COIL 100 database [23], which consists
of a series of 2D views of 3D objects collected at 72 equally spaced
viewing directions on a great circle of the object view-sphere. For
the COIL 100 database, we still extract the Delaunay graphs for
each image. The second database is MPEG-7 shape silhouette
database [27]. For the second database, the shock tree is a tree
structure based representation of the differential structure of the
boundary of a 2D shape. It is obtained by locating the shape
skeleton, and examining the differential behavior of the radius of
the bitangent circle from the skeleton to the object boundary, as
the skeleton is traversed [16]. The shock tree extraction process
has been further improved by Torsello and Hancock [30] recently.
In this paper we use the methods in [30] to extract tree structure
representations from the silhouettes. Example images from the
data sets are shown in Figs. 3 and 4.

In the first experiment, we investigate whether the methods
explored in the paper can identify finer view structure of the
different objects. Here we use COIL database. In Fig. 5 we show
the result of projecting the embedded node vectors for the graphs
extracted from the three image sequences in the COIL database
onto the eigenvectors of the embedded node position covariance
matrix S. Since b¼CT

ðvec½Ŷ ��X̂ Þ, the projection is given by the
components of the parameter vector b. To visualize the
Fig. 3. Sample views of the COIL 100 database objects.

Fig. 4. Sample views of the MPEG 7 database objects

Fig. 5. Eigenprojection of graphs fro
distribution, we have placed a thumbnail image at the location
specified by the first three components of the parameter vector b.
The line connecting the thumbnails corresponds to the sequence
order of the original images. The main feature to note is that
neighboring images in the sequence are close together in the
eigenspace and the generative model produce good trajectory
view structures of different objects.

We have also experimented the graph statistical model as a
method of clustering shapes. In this experiment, we use both the
COIL and MPEG-7 databases. For the COIL database, we select 20
image from each class as training data to construct the statistical
model. The rest images as testing for query. The similarity value is
computed as described in Section 4. We measure the performance
by using the so-called ‘bullseye test’ in which each image is used
as a query and one counts the number of corrected images in the
top 40 matches. We obtain a retrieval rate of 84.5%.

We can also use the best fit parameters b* as feature vector for
recognition. We compare the results obtained by using our
algorithms with two alternative spectral methods. The first one
is called Laplacian spectrum method [20] which is just use the
leading eigenvalues from Laplacian matrix L of the graph as
feature vector. In our experiment, we choose the first 10 leading
eigenvalues to construct the feature vector for each graph. The
second spectral methods has recently been introduced by Wilson
et al. [33] which has reported a family of invariants that can be
computed by applying symmetric polynomials to the elements
from the graph spectral matrix. Here we use supervised learning
methods. For each kind of object, we choose 30 graphs randomly
from each class as training sets. We have used several canonical
supervised learning algorithms, generative mixture models
(GMM) [8], support vector machines (SVM) [32] and linear
discriminant analysis (LDA) [25]. In Table 3, we give the
classification accuracy with different methods i.e. ours,
Laplacian spectrum [20] and symmetric polynomials [33], by
using a specific learning algorithm. In this experiment, the feature
vector b* with the GMM classification methods gives the best
classification rate.

In the second experiment, we use the silhouettes from MPEG-7
to extract graph representations using the method from [30]. We
follow the procedure outlined in previous sections. We first
embed the shock graph in co-ordinate sets by using graph
embedding. Then for sets of graphs we construct the statistical
m 15 images in duck sequence.

Table 3
A classification performance for COIL 100 database.

Our methods (%) Laplacian

spectrum (%)

Symmetric

polynomials (%)

LDA 97 84 90

GMM 96 83 91

SVM 97 85 91
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model and compute the similarity between pairs of graphs
Section 4. To identify different objects from similarity matrix,
we use the pairwise clustering algorithm proposed by Torsello
et al. in [30] which use EM (expectation maximization) algorithm
to iteratively segment the similarity matrix into disjoint subsets.
In Fig. 6, we plot the proportion of shapes from the database
correctly classified as the number of shape classes is increased. In
this experiment, we also compare our results with the graph edit
distance method computed by Torsello et al. in [30]. From Fig. 6,
the classification curvature from our method is clearly higher
than other methods.
6. Conclusion and future work

This paper has presented an efficient approach for shape
analysis by using graph models. The approach is to first use the
Isomap algorithm to embed the graph based shape representation
in a Euclidean space by using the geodesic distance between
graph nodes. Each node is hence transformed to a point in co-
ordinate space. The graph nodes correspondence problems can
alleviated by using point-sets alignment. With the correspon-
dence results between graphs we continue to construct the
statistical model for the graph structure. The idea underpinning
the generative model is to construct a point distribution model for
the embedded point position vectors. The mean and covariance
matrix of the aligned embedded point position vectors are used to
capture the intrinsic variation within the correspondence graphs.
We demonstrated the utility of the methods for shape analysis in
both COIL and shock graph databases which certainly can be used
for visual information retrieval and indexing.

Our future plans involve the use of a mixture model to describe
the positions of the embedded nodes, and to assess uncertainty in
the computation of correspondence. We also plan to apply the
algorithm to the graphs which contain high-level vision informa-
tion from the images, i.e. Gestalt graphs, relational graphs. We
also plans to expand our work in video based analysis.
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