MULTIPLICITY OF SOLUTIONS FOR THE NONCOOPERATIVE p-LAPLACIAN OPERATOR ELLIPTIC SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

Sihua Liang 1 and Jihui Zhang ${ }^{2}$

Abstract

In this paper, we study the multiplicity of solutions for a class of noncooperative p-Laplacian operator elliptic system. Under suitable assumptions, we obtain a sequence of solutions by using the limit index theory.

Mathematics Subject Classification. 35J70, 35B20.
Received May 5, 2011.

1. Introduction

In this paper we deal with the existence and multiplicity of solutions to the following p-Laplacian operator

$$
\begin{cases}\Delta_{p} u-|u|^{p-2} u=F_{u}(x, u, v), & \text { in } \Omega \tag{1.1}\\ -\Delta_{p} v+|v|^{p-2} v=F_{v}(x, u, v), & \text { in } \Omega \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu}=|u|^{p^{*}-2} u, \quad|\nabla v|^{p-2} \frac{\partial v}{\partial \nu}=|v|^{p^{*}-2} v, & \text { on } \partial \Omega\end{cases}
$$

where $1<p<N, \Omega \subset \mathbb{R}^{N}(N \geq 3)$ is a bounded domain with smooth boundary, $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is a p-Laplacian operator and $\frac{\partial}{\partial \nu}$ is the outer normal derivative, $F=F(x, u, v), F_{u}=\frac{\partial F}{\partial u}, F_{v}=\frac{\partial F}{\partial v}, p^{*}=N p /(N-p)$ is the critical exponent according to the Sobolev embedding.

In recent years, the existence and multiplicity of solutions for a noncooperative elliptic system have been obtained by many papers. In [1], Benci assumed X is a Hilbert space, f satisfies $(P S)$-condition and is the form

$$
f(u)=\frac{1}{2}\langle L u, u\rangle+\Phi(u),
$$

where L is bounded self-adjoint operator and Φ^{\prime} is compact.

[^0]When $p=2$ (a constant) with Dirichlet boundary condition, Lin and Li [9] considered the following system

$$
\begin{cases}\Delta u=|u|^{2^{*}-2} u+F_{u}(x, u, v), & \text { in } \Omega \\ -\Delta v=|v|^{2^{*}-2} v+F_{v}(x, u, v), & \text { in } \Omega \\ u=0, \quad v=0, & \text { on } \partial \Omega\end{cases}
$$

by applying the Limit Index Theory, they obtained the existence of multiple solutions under some assumptions on nonlinear part.

When $p \neq 2$, Huang and Li [6] considered the following the system of elliptic equations involving the p-Laplacian in the unbounded domain of \mathbb{R}^{N} by applying the Limit Index Theory,

$$
\begin{cases}\Delta_{p} u-|u|^{p-2} u=F_{u}(x, u, v), & \text { in } \mathbb{R}^{N} \\ -\Delta_{p} v+|v|^{p-2} v=F_{v}(x, u, v), & \text { in } \mathbb{R}^{N} \\ u, v \in W^{1, p}\left(\mathbb{R}^{N}\right) & \end{cases}
$$

where $1<p<N$ and they extended some results of [8].
We note that these papers deal with Dirichlet boundary condition $[2,7]$. However, nonlinear boundary conditions have only been considered in recent years. For the Laplace operator with nonlinear boundary conditions see for example $[3,14]$. For elliptic systems with nonlinear boundary conditions see [5]. For previous work for the p-Laplacian with nonlinear boundary conditions of different type see [4, 13].

Motivated by papers above, a natural question arises whether the existence and multiplicity of solutions to the p-Laplacian operator elliptic system with nonlinear boundary conditions (1.1) can be obtained. In this paper we deal with the problem (1.1). Throughout this paper, we assume that $F(x, u, v)$ satisfies the following conditions:
$\left(\mathrm{H}_{1}\right) F \in C\left(\bar{\Omega} \times R^{2}, R^{+}\right)$and $F(x, s, t)=F(x,-s,-t)$ for all $(x, s, t) \in \Omega \times \in \mathbb{R}^{2}$;
$\left(\mathrm{H}_{2}\right) \lim _{|t| \rightarrow \infty} \frac{F_{t}(x, s, t)}{\mid t t^{p-1}}=0$ uniformly for $x \in \Omega$;
$\left(\mathrm{H}_{3}\right) s F_{s}(x, s, t) \geq 0$ for all $(x, s, t) \in \bar{\Omega} \times R^{2}$.
Under assumptions $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$, we have

$$
F_{v}(x, u, v) v=o\left(|v|^{p}\right)
$$

which means that, for all $\varepsilon>0$, there exist $a(\varepsilon), b(\varepsilon)>0$ such that

$$
\begin{equation*}
|F(x, 0, v) v| \leq a(\varepsilon)+\varepsilon|v|^{p} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|F_{v}(x, u, v) v\right| \leq b(\varepsilon)+\varepsilon|v|^{p} . \tag{1.3}
\end{equation*}
$$

Hence, together with condition (1.2), (1.3) and the mean value theorem for any constants β and fixed u we have

$$
\begin{equation*}
\left|F(x, u, v)-\beta F_{v}(x, u, v) v\right| \leq c(\varepsilon)+\varepsilon|v|^{p} \tag{1.4}
\end{equation*}
$$

for some $c(\varepsilon)>0$.
Furthermore, we assume that $F(x, u, v)$ satisfies condition:
$\left(\mathrm{H}_{4}\right)$ There exist $L>0$ (where L will be determined later) and

$$
\xi<|\Omega|^{-1} \min \left\{0, \frac{1}{N} S^{p^{*} /\left(p^{*}-p\right)}-c\left(\frac{1}{2 N}\right)|\Omega|\right\}
$$

such that $F(x, s, t) t \geq L|t|^{p}-\xi$, for every $(x, s, t) \in \bar{\Omega} \times \mathbb{R}^{2}$.

Notation. Weak (resp. strong) convergence is denoted by \rightarrow (resp., \rightarrow). $|\cdot|_{p}$ is the usual norm in $L^{p}(\Omega)$. $L_{2}^{p}(\Omega)=L^{p}(\Omega) \times L^{p}(\Omega)$ with the norm $|(u, v)|_{p}:=\left(|u|_{p}^{p}+|v|_{p}^{p}\right)^{\frac{1}{p}} . E:=W^{1, p}(\Omega)$ with the norm $\|u\|_{p}:=$ $\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \mathrm{d} x . Y=E \times E, X_{n}=E \times E_{n} . c_{i}$ denote a positive constant and can be determined in concrete conditions.

According to [15], there exists a Schauder basis Sehauder basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ for E. Furthermore, since E is reflexive, $\left\{e_{n}^{*}\right\}_{n=1}^{\infty}$ the biorthogonal functionals associated to the basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ which are characterized by the relations

$$
e_{n}^{*}\left(e_{m}\right)=\delta_{n, m}= \begin{cases}1, & \text { if } n=m \\ 0, & \text { if } n \neq m\end{cases}
$$

form a basis for E^{*} with the following properties (cf. [10] Prop. 1.b.1 and Thm. 1.b.5). Denote

$$
E_{n}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}, \quad E_{n}^{\perp}=\overline{\operatorname{span}\left\{e_{n+1}, \ldots\right\}}
$$

and

$$
E_{n}^{*}=\operatorname{span}\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}
$$

Let $P_{n}: E \rightarrow E_{n}$ be the projector corresponding to decomposition $E=E_{n} \oplus E_{n}^{\perp}$ and $P_{n}^{*}: E^{*} \rightarrow E_{n}^{*}$ be the projector corresponding to the decomposition $E^{*}=E_{n}^{*} \oplus\left(E_{n}^{*}\right)^{\perp}$. Then $P_{n} u \rightarrow u, P_{n}^{*} v^{*} \rightarrow v^{*}$ for any $u \in E$, $v^{*} \in E^{*}$ as $n \rightarrow \infty$ and $\left\langle P_{n}^{*} v^{*}, u\right\rangle=\left\langle v^{*}, P_{n} u\right\rangle$. Let $\tau: E \rightarrow E^{*}$ be the mapping given by

$$
\langle\tau u, \widetilde{u}\rangle=\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \widetilde{u} \mathrm{~d} x, \quad \text { for all } u, \widetilde{u} \in E .
$$

It is easy to check that the operator τ is bounded, continuous. And if $u_{n} \rightarrow \widetilde{u}$ in E and $\left\langle\tau u_{n}-\tau \widetilde{u}, u_{n}-\widetilde{u}\right\rangle \rightarrow 0$, then $u_{n} \rightarrow \widetilde{u}$ in $E($ see $[6,8])$

The energy functional corresponding to problem (1.1) is defined as follows,

$$
\begin{align*}
J(u, v)= & -\frac{1}{p} \int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \mathrm{d} x+\frac{1}{p} \int_{\Omega}\left(|\nabla v|^{p}+|v|^{p}\right) \mathrm{d} x \\
& -\frac{1}{p^{*}} \int_{\partial \Omega}|u|^{p^{*}} \mathrm{~d} \sigma-\frac{1}{p^{*}} \int_{\partial \Omega}|v|^{p^{*}} \mathrm{~d} \sigma-\int_{\Omega} F(x, u, v) \mathrm{d} x \tag{1.5}
\end{align*}
$$

The main result of this paper is as follows.
Theorem 1.1. Suppose that $F(x, u, v)$ satisfies conditions $\left(H_{1}\right)-\left(H_{4}\right)$. Then there exists $k_{0}>1$ such that (1.1) possesses at least $k_{0}-1$ pairs weak nontrivial solutions.

Remark 1.2. There are two difficulties in considering the elliptic problem (1.1). One is the functional $J(u, v)$ is strongly indefinite. Therefore one cannot apply the symmetric Mountain pass theorem of the functional $J(u, v)$. The other one in solving the problem is a lack of compactness which can be illustrated by the fact that the embedding of $W^{1, p}(\Omega)$ into $L^{p^{*}}(\partial \Omega)$ is no longer compact.

Remark 1.3. Theorem 1.1 is new as far as we know. We mainly follow the way in [8] to prove our main result.

2. Preliminaries and Lemmas

First of all, we recall the limit index theory due to $\mathrm{Li}[8]$. In order to do that, we introduce the following definitions.

Definition 2.1. $[8,16]$ The action of a topological group G on a normed space Z is a continuous map

such that

$$
1 \cdot z=z, \quad(g h) z=g(h z) \quad z \mapsto g z \text { is linear, } \quad \forall g, h \in G .
$$

The action is isometric if

$$
\|g z\|=\|z\|, \quad \forall g \in G, \quad z \in Z
$$

And in this case Z is called G-space.
The set of invariant points is defined by

$$
\text { Fix } G:=\{z \in Z: g z=z, \forall g \in G\}
$$

A set $A \subset Z$ is invariant if $g A=A$ for every $g \in G$. A function $\varphi: Z \rightarrow R$ is invariant $\varphi \circ g=\varphi$ for every $g \in G, z \in Z$. A map $f: Z \rightarrow Z$ is equivariant if $g \circ f=f \circ g$ for every $g \in G$.

Suppose Z is a G-Banach space, that is, there is a G isometric action on Z. Let

$$
\Sigma:=\{A \subset Z: A \text { is closed and } g A=A, \forall g \in G\}
$$

be a family of all G-invariant closed subset of Z, and let

$$
\Gamma:=\left\{h \in C^{0}(Z, Z): h(g u)=g(h u), \quad \forall g \in G\right\}
$$

be the class of all G-equivariant mapping of Z. Finally, we call the set

$$
O(u):=\{g u: g \in G\}
$$

G-orbit of u.
Definition 2.2. [8] An index for (G, Σ, Γ) is a mapping $i: \Sigma \rightarrow \mathcal{Z}_{+} \cup\{+\infty\}$ (where \mathcal{Z}_{+}is the set of all nonnegative integers) such that for all $A, B \in \Sigma, h \in \Gamma$, the following conditions are satisfied:
(1) $i(A)=0 \Leftrightarrow A=\emptyset$;
(2) (monotonicity) $A \subset B \Rightarrow i(A) \leq i(B)$;
(3) (subadditivity) $i(A \cup B) \leq i(A)+i(B)$;
(4) (supervariance) $i(A) \leq i(\overline{h(A)}), \forall h \in \Gamma$;
(5) (continuity) If A is compact and $A \cap \operatorname{Fix} G=\emptyset$, then $i(A)<+\infty$ and there is a G-invariant neighbourhood N of A such that $i(\bar{N})=i(A)$;
(6) (normalization) If $x \notin \operatorname{Fix} G$, then $i(O(x))=1$.

Definition 2.3. [1] An index theory is said to satisfy the d-dimension property if there is a positive integer d such that

$$
i\left(V^{d k} \cap S_{1}\right)=k
$$

for all $d k$-dimensional subspaces $V^{d k} \in \Sigma$ such that $V^{d k} \cap \operatorname{Fix} G=\{0\}$, where S_{1} is the unit sphere in Z.
Suppose U and V are G-invariant closed subspaces of Z such that

$$
Z=U \oplus V
$$

where V is infinite dimensional and

$$
V=\overline{\bigcup_{j=1}^{\infty} V_{j}}
$$

where V_{j} is a $d n_{j}$-dimensional G-invariant subspace of $V, j=1,2, \ldots$, and $V_{1} \subset V_{2} \subset \ldots \subset V_{n} \subset \ldots$ Let $\quad 1$

$$
Z_{j}=U \bigoplus V_{j}
$$

and $\forall A \in \Sigma$, let

$$
A_{j}=A \bigoplus Z_{j}
$$

Definition 2.4. [8] Let i be an index theory satisfying the d-dimension property. A limit index with respect to $\left(Z_{j}\right)$ induced by i is a mapping

$$
i^{\infty}: \Sigma \rightarrow \mathcal{Z} \cup\{-\infty,+\infty\}
$$

given by

$$
i^{\infty}(A)=\lim \sup _{j \rightarrow \infty}\left(i\left(A_{j}\right)-n_{j}\right)
$$

Proposition 2.5. [8] Let $A, B \in \Sigma$. Then i^{∞} satisfies:
(1) $A=\emptyset \Rightarrow i^{\infty}=-\infty$;
(2) (monotonicity) $A \subset B \Rightarrow i^{\infty}(A) \leq i^{\infty}(B)$;
(3) (subadditivity) $i^{\infty}(A \cup B) \leq i^{\infty}(A)+i^{\infty}(B)$;
(4) If $V \cap \operatorname{Fix} G=\{0\}$, then $i^{\infty}\left(S_{\rho} \cap V\right)=0$, where $S_{\rho}=\{z \in Z:\|z\|=\rho\}$;
(5) If Y_{0} and $\widetilde{Y_{0}}$ are G-invariant closed subspaces of V such that $V=Y_{0} \oplus \widetilde{Y_{0}}, \widetilde{Y_{0}} \subset V_{j_{0}}$ for some j_{0} and $\operatorname{dim} \widetilde{Y_{0}}=d m$, then $i^{\infty}\left(S_{\rho} \cap Y_{0}\right) \geq-m$.
Definition 2.6. [16] A functional $J \in C^{1}(Z, R)$ is said to satisfy the condition $(P S)_{c}^{*}$ if any sequence $\left\{u_{n_{k}}\right\}$, $u_{n_{k}} \in Z_{n_{k}}$ such that

$$
J\left(u_{n_{k}}\right) \rightarrow c, \quad \mathrm{~d} J_{n_{k}}\left(u_{n k}\right) \rightarrow 0, \quad \text { as } k \rightarrow \infty
$$

possesses a convergent subsequence, where $Z_{n_{k}}$ is the n_{k}-dimension subspace of $Z, J_{n_{k}}=\left.J\right|_{Z_{n_{k}}}$.
Theorem 2.7. [8] Assume that
$\left(\mathrm{B}_{1}\right) J \in C^{1}(Z, R)$ is G-invariant;
$\left(\mathrm{B}_{2}\right)$ there are G-invariant closed subspaces U and V such that V is infinite dimensional and $Z=U \oplus V$;
$\left(\mathrm{B}_{3}\right)$ there is a sequence of G-invariant finite dimensional subspaces

$$
V_{1} \subset V_{2} \subset \cdots \subset V_{j} \subset \cdots, \quad \operatorname{dim} V_{j}=d n_{j}
$$

such that $V=\overline{\cup_{j=1}^{\infty} V_{j}}$;
$\left(\mathrm{B}_{4}\right)$ there is an index theory i on Z satisfying the d-dimension property;
$\left(\mathrm{B}_{5}\right)$ there are G-invariant subspaces $Y_{0}, \widetilde{Y_{0}}, Y_{1}$ of V such that $V=Y_{0} \oplus \widetilde{Y_{0}}, Y_{1}, \widetilde{Y_{0}} \subset V_{j_{0}}$ for some j_{0} and $\operatorname{dim} \widetilde{Y_{0}}=\mathrm{d} m<\mathrm{d} k=\operatorname{dim} Y_{1} ;$
$\left(\mathrm{B}_{6}\right)$ there are α and $\beta, \alpha<\beta$ such that f satisfies $(P S)_{c}^{*}, \forall c \in[\alpha, \beta]$;
(B_{7})

$$
\left\{\begin{array}{l}
\text { (a) either } \operatorname{Fix} G \subset U \oplus Y_{1}, \text { or } \operatorname{Fix} G \cap V=\{0\}, \\
\text { (b) there is } \rho>0 \text { such that } \forall u \in Y_{0} \cap S_{\rho}, f(z) \geq \alpha, \\
\text { (c) } \forall z \in U \oplus Y_{1}, f(z) \leq \beta,
\end{array}\right.
$$

if i^{∞} is the limit index corresponding to i, then the numbers

$$
c_{j}=\inf _{i^{\infty}(A) \geq j} \sup _{z \in A} f(u), \quad-k+1 \leq j \leq-m
$$

are critical values of f, and $\alpha \leq c_{-k+1} \leq \cdots \leq c_{-m} \leq \beta$. Moreover, if $c=c_{l}=\cdots=c_{l+r}, r \geq 0$, then $\quad 35$ $i\left(\mathbb{K}_{c}\right) \geq r+1$, where $\mathbb{K}_{c}=\{z \in Z: \mathrm{d} f(z)=0, f(z)=c\}$.

3. Local Palais-Smale Condition

To prove eur existenee result, sine we have lest the in the inclusion $W^{1, p}(\Omega) \hookrightarrow L^{p^{*}}(\partial \Omega)$, we can no longer expect the Palais-Smale condition to hold. Anyway we can prove a local Palais-Smale condition that will hold for $J(u, v)$ below a certain value of energy. Let u_{n} be a bounded sequence in $W^{1, p}(\Omega)$ then there exists a subsequence that we still denote u_{n} such that

$$
\begin{aligned}
& u_{n} \rightharpoonup u \quad \text { weakly in } W^{1, p}(\Omega) \\
& u_{n} \rightarrow u \quad \text { strongly in } L^{r}(\Omega), 1 \leq r<p^{*} \\
& \left|\nabla u_{n}\right|^{p} \rightharpoonup \mathrm{~d} \mu,\left.\quad\left|u_{n}\right| \partial \Omega\right|^{p^{*}} \rightharpoonup \mathrm{~d} \eta
\end{aligned}
$$

weakly-* in the sense of measures. Observe that $\mathrm{d} \eta$ is a measure supported on $\partial \Omega$.
If we consider $\phi \in C^{\infty}(\bar{\Omega})$, from the Sobolev trace inequality we obtain, passing to the limit

$$
\begin{equation*}
\left(\int_{\partial \Omega}|\phi|^{p^{*}} \mathrm{~d} \eta\right)^{\frac{1}{p^{*}}} S^{\frac{1}{p}} \leq\left(\int_{\Omega}|\phi|^{p} \mathrm{~d} \mu+\int_{\Omega}|u|^{p}|\nabla \phi|^{p} \mathrm{~d} x+\int_{\Omega}|\phi u|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \tag{3.1}
\end{equation*}
$$

where S is the best constant in the Sobolev trace embedding theorem. From (3.1) we observe that if $u=0$ we get a reverse Hölder-type inequality (but it involves one integral over Ω) between the two measures μ and η.

Similar to the proof of $[11,12]$, we have the following lemma.
Lemma 3.1. [4] Let u_{j} be a weakly convergent sequence in $W^{1, p}(\Omega)$ with weak limit u such that

$$
\left|\nabla u_{j}\right|^{p} \rightharpoonup \mathrm{~d} \mu, \quad \text { and }\left.\quad\left|u_{j}\right| \partial \Omega\right|^{p^{*}} \rightharpoonup \mathrm{~d} \eta,
$$

weakly-* in the sense of measures. Then there exists $x_{1}, \ldots, x_{l} \in \partial \Omega$ such that
(i) $\mathrm{d} \eta=|u|^{p^{*}}+\sum_{j=1}^{l} \eta_{j} \delta_{x_{j}}, \eta_{j}>0$;
(ii) $\mathrm{d} \mu \geq|\nabla u|^{p}+\sum_{j=1}^{l} \mu_{j} \delta_{x_{j}}, \mu_{j}>0 ;$
(iii) $\left(\eta_{j}\right)^{\frac{p}{p^{*}}} \leq \frac{\mu_{j}}{S}$.

Similar to $[6,16]$, it is easy to obtain the following lemme
Lemma 3.2. Assume $1 \leq \theta_{1}, \theta_{2}, \theta<\infty, I \in C\left(\bar{\Omega} \times R^{2}, R\right)$ and

$$
I(x, u, v) \leq C\left(|u|^{\frac{\theta_{1}}{\theta}}+|v|^{\frac{\theta_{2}}{\theta}}\right) .
$$

Then for every $(u, v) \in L^{\theta_{1}}(\Omega) \times L^{\theta_{2}}(\Omega), I(\cdot, u, v) \in L^{\theta}(\Omega)$ and the operator

$$
T:(u, v) \mapsto I(x, u, v)
$$

is a continuous map from $L^{\theta_{1}}(\Omega) \times L^{\theta_{2}}(\Omega)$ to $L^{\theta}(\Omega)$.
Lemma 3.3. Suppose that $F(x, u, v)$ satisfies conditions $\left(H_{1}\right)-\left(H_{3}\right)$. Then
(i) $J \in C^{1}(X, R)$;
(ii)

$$
\begin{aligned}
\langle\mathrm{d} J(u, v),(\widehat{u}, \widehat{v})\rangle= & -\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \widehat{u}+|u|^{p-2} u \widehat{u} \mathrm{~d} x-\int_{\partial \Omega}|u|^{p^{*}-2} u \widehat{u} \mathrm{~d} \sigma \\
& +\int_{\Omega}|\nabla v|^{p-2} \nabla v \cdot \nabla \widehat{v}+\ll|v|^{p-2} v \widehat{v} \mathrm{~d} x-\int_{\partial \Omega}|v|^{p^{*}-2} v \widehat{v} \mathrm{~d} \sigma \\
& -\int_{\Omega} F_{u}(x, u, v) \widehat{u} \mathrm{~d} x-\int_{\Omega} F_{v}(x, u, v) \widehat{v} \mathrm{~d} x
\end{aligned}
$$

(iii) A critical point of J is a weak solution of system (1.1).

Title Suppressed Due to Excessive Length
Now set

$$
\begin{gathered}
X=U \oplus V, \quad U=E \times\{0\}, \quad V=\{0\} \times E, \\
Y_{0}=\{0\} \times E_{1}^{\perp}, \quad V=Y_{0} \oplus \widetilde{Y_{0}}, \\
Y_{1}=\{0\} \times E_{k_{0}}, \quad E_{k_{0}}=\operatorname{span}\left\{e_{1}, \ldots, e_{k_{0}}\right\},
\end{gathered}
$$

then $\operatorname{dim} \widetilde{Y_{0}}=1, \operatorname{dim} Y_{1}=k_{0}$.
Define a group action $G_{2}=\{1, \tau\} \cong \mathcal{Z}_{2}$ by setting $\tau(u, v)=(-u,-v)$, then Fix $G=\{0\} \times\{0\}$ (also denote $\{0\})$. It is clear that U and V are G-invariant closed subspaces of X, and $Y_{0}, \widetilde{Y_{0}}$ and Y_{1} are G-invariant subspace of V. Set

$$
\Sigma:=\{A \subset X \backslash\{0\}: A \text { is closed in } X \text { and }(u, v) \in A \Rightarrow(-u,-v) \in A\}
$$

Define an index γ on Σ by:

$$
\gamma(A)=\left\{\begin{array}{l}
\min \left\{N \in \mathcal{Z}: \exists h \in C\left(A, \mathbb{R}^{N} \backslash\{0\} \text { such that } h(-u,-v)=h(u, v)\right)\right\}, \\
0, \quad \text { if } A=\emptyset, \\
+\infty, \quad \text { if such } h \text { does not exist. }
\end{array}\right.
$$

Then we have the following proposition from [6]: γ is an index satisfying the properties given in Definition 2.2. Moreover, γ satisfies the one-dimension property. According to Definition 2.4 we can obtain a limit index γ^{∞} with respect to $\left(X_{n}\right)$ from γ.

Now we turn to prove local Palais-Smale condition.
Lemma 3.4. Assume condition $\left(H_{1}\right)-\left(H_{3}\right)$ hold, Then the functional J satisfies the local $(P S)_{c}$ condition in

$$
c \in\left(-\infty, \frac{1}{N} S^{p^{*} /\left(p^{*}-p\right)}-c\left(\frac{1}{2 N}\right)|\Omega|\right)
$$

in the following sense: if

$$
J\left(u_{n_{k}}, v_{n_{k}}\right) \rightarrow c \in\left(-\infty, \frac{1}{N} S^{p^{*} /\left(p^{*}-p\right)}-c\left(\frac{1}{2 N}\right)|\Omega|\right), \quad \mathrm{d} J_{n_{k}}\left(u_{n_{k}}, v_{n_{k}}\right) \rightarrow 0, \quad \text { as } k \rightarrow \infty,
$$

Proof. First, we show that $\left\{\left(u_{n_{k}}, v_{n_{k}}\right)\right\}$ is bounded in X.
We note that by condition $\left(H_{3}\right)$,

$$
\begin{align*}
o(1)\left\|u_{n_{k}}\right\|_{p} & \geq\left\langle-\mathrm{d} J_{n_{k}}\left(u_{n_{k}}, v_{n_{k}}\right),\left(u_{n_{k}}, 0\right)\right\rangle \\
& =\int_{\Omega}\left|\nabla u_{n_{k}}\right|^{p}+\left|u_{n_{k}}\right|^{p} \mathrm{~d} x+\int_{\partial \Omega}\left|u_{n_{k}}\right|^{p^{*}} \mathrm{~d} \sigma+\int_{\Omega} F_{u}\left(x, u_{n_{k}}, v_{n_{k}}\right) u_{n_{k}} \mathrm{~d} x \\
& \geq \int_{\Omega}\left|\nabla u_{n_{k}}\right|^{p}+\left|u_{n_{k}}\right|^{p} \mathrm{~d} x+\int_{\partial \Omega}\left|u_{n_{k}}\right|^{p^{*}} \mathrm{~d} x \\
& \geq\left\|u_{n_{k}}\right\|_{p}^{p} \tag{3.2}
\end{align*}
$$

since $p>1$, from (3.2), we know that $\left\|u_{n_{k}}\right\|_{p}$ is bounded. On the one hand, we have

$$
\begin{aligned}
& J_{n_{k}}\left(0, v_{n_{k}}\right)-\frac{1}{p^{*}}\left\langle\mathrm{~d} J_{n_{k}}\left(u_{n_{k}}, v_{n_{k}}\right),\left(0, v_{n_{k}}\right)\right\rangle \\
= & \left(\frac{1}{p}-\frac{1}{p^{*}}\right) \int_{\Omega}\left(\left|\nabla v_{n_{k}}\right|^{p}+\left|v_{n_{k}}\right|^{p}\right) \mathrm{d} x-\int_{\Omega}\left[F\left(x, u_{n_{k}}, v_{n_{k}}\right)-\frac{1}{p^{*}} F_{v}\left(x, u_{n_{k}}, v_{n_{k}}\right) v_{n_{k}}\right] \mathrm{d} x \\
= & c+o(1)\left\|v_{n}\right\|_{p},
\end{aligned}
$$

\square
where $o(1) \rightarrow 0$ and M is a some positive number. Thus (3.3) implies that $\left\{v_{n_{k}}\right\}$ is bounded in $W^{1, p}(\Omega)$. This implies $\left\|u_{n_{k}}\right\|_{p}+\left\|v_{n_{k}}\right\|_{p}$ is bounded in X.

Next, we prove that $\left\{\left(u_{n_{k}}, v_{n_{k}}\right)\right\}$ contains a subsequence converging strongly in X.
We note that $\left\{u_{n_{k}}\right\}$ is bounded in E. Hence, up to a subsequence, $u_{n_{k}} \rightharpoonup u$ weakly in E and $u_{n_{k}}(x) \rightarrow u(x)$, a.e. in \mathbb{R}^{N}. We claim that $u_{n_{k}} \rightarrow u$ strongly in E. In fact, note that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{n_{k}}-\nabla u\right|^{p}+\left|u_{n_{k}}-u\right|^{p} \mathrm{~d} x+\int_{\partial \Omega}\left|u_{n_{k}}-u\right|^{p^{*}} \mathrm{~d} \sigma & +\int_{\Omega} F_{u}\left(x, u_{n_{k}}-u, v_{n_{k}}\right)\left(u_{n_{k}}-u\right) \mathrm{d} x \\
& =\left\langle-\mathrm{d} J_{n_{k}}\left(u_{n_{k}}-u, v_{n_{k}}\right),\left(u_{n_{k}}-u, 0\right)\right\rangle \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

and condition $\left(H_{3}\right)$ imply that

$$
\begin{equation*}
u_{n_{k}} \rightarrow u \quad \text { strongly in } E \tag{3.4}
\end{equation*}
$$

In the following we will prove that there exists $v \in E$ such that

$$
\begin{equation*}
v_{n_{k}} \rightarrow v \quad \text { strongly in } E \tag{3.5}
\end{equation*}
$$

By Lemma 3.1 and (3.3) there exists a subsequence, there exists a subsequence, that we still denote $v_{n_{k}}$ such that

$$
\begin{aligned}
& v_{n_{k}} \rightharpoonup v \quad \text { weakly in } W^{1, p}(\Omega) \\
& v_{n_{k}} \rightarrow v \quad \text { strongly in } L^{r}(\Omega), 1 \leq r<p^{*}, \text { and a.e. in } \\
& \left|\nabla v_{n_{k}}\right|^{p} \rightharpoonup \mathrm{~d} \mu \geq|\nabla v|^{p}+\sum_{k=1}^{l} \mu_{k} \delta_{x_{k}} \\
& \left.\left|v_{n_{k}}\right| \partial \Omega\right|^{p^{*}} \rightharpoonup \mathrm{~d} \eta=\left.|v|_{\partial \Omega}\right|^{p^{*}}+\sum_{k=1}^{l} \eta_{k} \delta_{x_{k}}
\end{aligned}
$$

Let $\phi(x) \in C^{\infty}(\Omega)$ such that $\phi(x) \equiv 1$ in $B\left(x_{k}, \varepsilon\right), \phi(x) \equiv 0$ in $\Omega \backslash\left(x_{k}, 2 \varepsilon\right)$ and $|\nabla \phi| \leq 2 / \varepsilon$, where x_{k} belongs to the support of $\mathrm{d} \eta$. Consider Then $\left\{\phi v_{n_{k}}\right\}$ is bounded in E, Obviously, $\left\langle\mathrm{d} J_{n_{k}}\left(u_{n_{k}}, v_{n_{k}}\right),\left(0, v_{n_{k}} \phi\right)\right\rangle \rightarrow 0$, i.e.

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left[\int_{\Omega}\left(\left|\nabla v_{n_{k}}\right|^{p}+\left|v_{n_{k}}\right|^{p}\right) \phi \mathrm{d} x-\int_{\partial \Omega}\left|v_{n_{k}}\right|^{p^{*}} \phi \mathrm{~d} \sigma-\int_{\Omega} F_{v}\left(x, u_{n_{k}}, v_{n_{k}}\right) v_{n_{k}} \phi \mathrm{~d} x\right] \\
& =-\lim _{n \rightarrow \infty} \int_{\Omega}\left(v_{n_{k}}\left|\nabla v_{n_{k}}\right|^{p-2} \nabla v_{n_{k}} \nabla \phi\right) \mathrm{d} x \tag{3.6}
\end{align*}
$$

On the other hand, by Hölder inequality and weak convergence, we obtain

$$
\begin{align*}
0 & \leq\left.\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left|\int_{\Omega} v_{n_{k}}\right| \nabla v_{n_{k}}\right|^{p-2} \nabla v_{n_{k}} \nabla \phi \mathrm{~d} x \mid \\
& \leq \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left(\int_{\Omega}\left|v_{n_{k}}\right|^{p}|\nabla \phi|^{p} \mathrm{~d} x\right)^{\frac{1}{p}}\left(\int_{\Omega}\left|\nabla v_{n_{k}}\right|^{q} \mathrm{~d} x\right)^{\frac{p-1}{p}} \\
& \leq C \lim _{\varepsilon \rightarrow 0}\left(\int_{\Omega}|v|^{p}|\nabla \phi|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
& \leq C \lim _{\varepsilon \rightarrow 0}\left(\int_{B\left(x_{j}, \varepsilon\right)}|\nabla \phi|^{N} \mathrm{~d} x\right)^{\frac{1}{N}}\left(\int_{B\left(x_{j}, \varepsilon\right)}|v|^{p^{*}} \mathrm{~d} x\right)^{\frac{1}{p^{*}}} \\
& \leq C \lim _{\varepsilon \rightarrow 0}\left(\int_{B\left(x_{j}, \varepsilon\right)}|v|^{p^{*}} \mathrm{~d} x\right)^{\frac{1}{p^{*}}}=0 . \tag{3.7}
\end{align*}
$$

Frem (3.6) and (3.7), we haven

$$
\begin{equation*}
0=\lim _{\varepsilon \rightarrow 0}\left[\int_{\partial \Omega} \phi \mathrm{d} \eta-\int_{\Omega} \phi \mathrm{d} \mu-\int_{\Omega}|v|^{p} \phi \mathrm{~d} x-\int_{\Omega} F_{v}(x, u, v) v \phi \mathrm{~d} x\right]=\eta_{k}-\mu_{k} . \tag{3.8}
\end{equation*}
$$

Combing this with Lemma 3.1, we obtain $\left(\mu_{k}\right)^{p / p^{*}} S \leq \mu_{k}$. This result implies that

$$
\mu_{k}=0 \quad \text { or } \quad \mu_{k} \geq S^{p^{*} /\left(p^{*}-p\right)} .
$$

If the second case $\mu_{k} \geq S^{p^{*} /\left(p^{*}-p\right)}$ holds, for some $k \in J$, then by using Lemma 3.1 and the Hölder inequality, we have that

$$
\begin{aligned}
c & =\lim _{n \rightarrow \infty}\left(J_{n_{k}}\left(0, v_{n_{k}}\right)-\frac{1}{p^{*}}\left\langle\mathrm{~d} J_{n_{k}}\left(u_{n_{k}}, v_{n_{k}}\right),\left(0, v_{n_{k}}\right)\right\rangle\right) \\
& =\left(\frac{1}{p}-\frac{1}{p^{*}}\right) \int_{\Omega}\left(\left|\nabla v_{n_{k}}\right|^{p}+\left|v_{n_{k}}\right|^{p}\right) \mathrm{d} x-\int_{\Omega}\left[F\left(x, u_{n_{k}}, v_{n_{k}}\right)-\frac{1}{p^{*}} F_{v}\left(x, u_{n_{k}}, v_{n_{k}}\right) v_{n_{k}}\right] \mathrm{d} x \\
& \geq \frac{1}{N} \int_{\Omega} \mathrm{d} \mu-c\left(\frac{1}{2 N}\right)|\Omega| \\
& \geq \frac{1}{N} \int_{\Omega}\left|\nabla v_{n_{k}}\right|^{p} \mathrm{~d} x+\frac{1}{N} S^{p^{*} /\left(p^{*}-p\right)}-c\left(\frac{1}{2 N}\right)|\Omega| \\
& \geq \frac{1}{N} S^{p^{*} /\left(p^{*}-p\right)}-c\left(\frac{1}{2 N}\right)|\Omega|
\end{aligned}
$$

where $\varepsilon=1 / 2 N$. This is impossible. Consequently, $\mu_{k}=0$ for all $k \in J$. From (3.8) we know that $\eta_{k}=0$ for all $k \in J$ and hence

$$
\left.\int_{\partial \Omega}\left|v_{n_{k}}\right|\right|^{p^{*}} \mathrm{~d} \sigma \rightarrow \int_{\partial \Omega}|v|^{p^{*}} \mathrm{~d} \sigma
$$

Now $v_{n_{k}} \rightharpoonup v$ in E and Brezis-Lieb lemma [2] implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\partial \Omega}\left|v_{n_{k}}-v\right|^{q^{*}} \mathrm{~d} \sigma=0 . \tag{20}
\end{equation*}
$$

Thus, we have

$$
\begin{aligned}
o(1)\left\|v_{n_{k}}\right\|_{p} & =\left\|v_{n_{k}}\right\|_{p}^{p}-\int_{\Omega}\left|v_{n_{k}}\right|^{p^{*}} \mathrm{~d} \sigma-\int_{\Omega} F_{v}\left(x, u_{n_{k}}, v_{n_{k}}\right) v_{n_{k}} \mathrm{~d} x \\
& =\left\|v_{n_{k}}-v\right\|_{p}^{p}+\|v\|_{p}^{p}-\int_{\Omega}|v|^{p^{*}} \mathrm{~d} \sigma-\int_{\Omega} F_{v}(x, u, v) v \mathrm{~d} x \\
& =\left\|v_{n_{k}}-v\right\|_{p}^{p}+o(1)\|v\|_{p}
\end{aligned}
$$

since $\mathrm{d} J_{n_{k}}(0, v)=0$. Thus we prove that $\left\{v_{n_{k}}\right\}$ strongly converges to v in E. Thus (3.5) holds. (3.4) and (3.5) imply the conclusion of Lemma 3.4 follows.

4. Proof of Theorem 1.1

Proof of Theorem 1.1. Now we shall verify the conditions of Theorem 2.7. Obviously, $\left(B_{1}\right),\left(B_{2}\right),\left(B_{4}\right)$ in Theorem 2.7 are satisfied. Set $V_{j}=E_{j}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{j}\right\}$, then $\left(B_{3}\right)$ is also satisfied. Since $1=\operatorname{dim} \widetilde{Y_{0}}<k_{0}=$ $\operatorname{dim} Y_{1},\left(B_{5}\right)$ is satisfied. In the following we verify the conditions in $\left(B_{7}\right)$. Since $\mathrm{Fix} G \cap V=0$, that is (a) of $\left(B_{7}\right)$ holds. It remains to verify $(b),(c)$ of $\left(B_{7}\right)$. Choose a number α such that

$$
\begin{equation*}
\alpha<\min \left\{0, \frac{1}{N} S^{p^{*} /\left(p^{*}-p\right)}-c\left(\frac{1}{2 N}\right)|\Omega|, \frac{1}{N} 2^{\frac{p^{*}}{p-p^{*}}} S^{\frac{p p^{*}}{p-p^{*}}}-b\left(\frac{1}{2 p}\right)|\Omega|\right\} . \tag{4.1}
\end{equation*}
$$

(i) If $(0, v) \in Y_{0} \cap S_{\rho}$ (where ρ is to be determined) then by $\left(H_{2}\right)$,

$$
\begin{align*}
J(0, v) & =\frac{1}{p} \int_{\Omega}|\nabla v|^{p}+|v|^{p} \mathrm{~d} x-\frac{1}{p^{*}} \int_{\partial \Omega}|v|^{p^{*}} \mathrm{~d} \sigma-\int_{\Omega} F(x, 0, v) \mathrm{d} x \\
& \geq\left(\frac{1}{p}-\varepsilon\right) \cdot \int_{\Omega}|\nabla v|^{p}+|v|^{p} \mathrm{~d} x-\frac{1}{p^{*}} \int_{\partial \Omega}|v|^{p^{*}} \mathrm{~d} \sigma-b(\varepsilon)|\Omega| \\
& \geq \frac{1}{2 p}\|v\|_{p}^{p}-\frac{1}{p^{*}} S^{p^{*}}\|v\|_{p}^{p^{*}}-b\left(\frac{1}{2 p}\right)|\Omega| \tag{4.2}
\end{align*}
$$

where $\varepsilon=\frac{1}{2 p}$. Since

$$
\max _{t \in \mathbb{R}}\left(\frac{1}{2 p} t^{p}-\frac{1}{p^{*}} S^{p^{*}} t^{p^{*}}-b\left(\frac{1}{2 p}\right)|\Omega|\right)=\frac{1}{N} 2^{\frac{p^{*}}{p-p^{*}}} S^{\frac{p p^{*}}{p-p^{*}}}-b\left(\frac{1}{2 p}\right)|\Omega|,
$$

Therefore, there exists $\rho>0$ such that $J(0, v) \geq \alpha$ for every $\|v\|_{p}=\rho$, that is (b) of (B_{7}) holds.
(ii) For each $(u, v) \in U \oplus Y_{1}$, by condition $\left(H_{4}\right)$, we hava

$$
\begin{align*}
J(u, v)= & -\frac{1}{p} \int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \mathrm{d} x+\frac{1}{p} \int_{\Omega}\left(|\nabla v|^{p}+|v|^{p}\right) \mathrm{d} x \\
& -\frac{1}{p^{*}} \int_{\partial \Omega}|u|^{p^{*}} \mathrm{~d} \sigma-\frac{1}{p^{*}} \int_{\partial \Omega}|v|^{p^{*}} \mathrm{~d} \sigma-\int_{\Omega} F(x, u, v) \mathrm{d} x \\
\leq & \frac{1}{p}\|v\|_{p}^{p}-L|v|_{p}^{p}+\xi|\Omega| \\
\leq & \max _{v \in E_{k_{0}}}\left(\frac{1}{p}\|v\|_{p}^{p}-L|v|_{p}^{p}\right)+\xi|\Omega| \\
= & \max _{\left\{t \geq 0, v \in \partial B_{1}(0) \cap E_{k_{0}}\right\}}\left[t^{p}\left(\frac{1}{p}-L|v|_{p}^{p}\right)\right]+\xi|\Omega| . \tag{4.3}
\end{align*}
$$

Title Suppressed Due to Excessive Length
Let $r=\min \left\{\int_{\Omega}|v|^{p} \mathrm{~d} x: v \in \partial B_{1}(0) \cap E_{k_{0}}\right\}$. By taking $L \geq \frac{1}{p r}$, we have

$$
\begin{equation*}
\frac{1}{p}-L|v|_{p}^{p} \leq \frac{1}{p}-L r \leq 0 \tag{4.4}
\end{equation*}
$$

2

$$
J(u, v) \leq \xi|\Omega| \leq \min \left\{0, \frac{1}{N} S^{p^{*} /\left(p^{*}-p\right)}-c\left(\frac{1}{2 N}\right)|\Omega|\right\} .
$$

Let $\beta=\xi|\Omega|$, so we get (c) in $\left(B_{7}\right)$. By Lemma 3.4, for any $c \in[\alpha, \beta], J(u, v)$ satisfies the condition of $(P S)_{c}^{*}$, then $\left(B_{6}\right)$ in Theorem 2.7 holds. So according to Theorem 2.7,

$$
c_{j}=\inf _{i \infty(A) \geq j} \sup _{z \in A} f(u), \quad-k_{0}+1 \leq j \leq-1 ;
$$

are critical values of $J, \alpha \leq c_{-k_{0}+1} \leq \cdots \leq c_{-1} \leq \beta<0$ and J has at least $k_{0}-1$ pairs critical points.

Acknowledgements. The Project is supported by NSFC (10871096), Research Fundation during the 12st Five-Year Plan Period of Department of Education of Jilin Province, China (Grant [2011] No. 196), Natural Science Foundation of Changchun Normal University.

References

[1] V. Benci, On critical point theory for indefinite functionals in presence of symmetries. Trans. Amer. Math. Soc. 274 (1982) 533-572.
[2] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents. Comm. Pure Appl. Math. 34 (1983) 437-477.
[3] M. Chipot, I. Shafrir and M. Fila, On the solutions to some elliptic equations with nonlinear boundary conditions. Advances Differential Equations 1 (1996) 91-110.
[4] J. Fernández Bonder and J.D. Rossi, Existence results for the p-Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl. 263 (2001) 195-223.
[5] J. Fernández Bonder, J.P. Pinasco and J.D. Rossi, Existence results for a Hamiltonian elliptic system with nonlinear boundary conditions. Electron. J. Differential Equations 1999 (1999) 1-15.
[6] D.W. Huang and Y.Q. Li, Multiplicity of solutions for a noncooperative p-Laplacian elliptic system in \mathbb{R}^{N}. J. Differential Equations 215 (2005) 206-223.
[7] W. Krawcewicz and W. Marzantowicz, Some remarks on the Lusternik-Schnirelman method for non-differentiable functionals invariant with respect to a finite group action. Rocky Mt. J. Math. 20 (1990) 1041-1049.
[8] Y.Q. Li, A limit index theory and its application. Nonlinear Anal. 25 (1995) 1371-1389.
] F. Lin and Y.Q. Li, Multiplicity of solutions for a noncooperative elliptic system with critical Sobolev exponent. Z. Angew. Math. Phys. 60 (2009) 402-415.
[10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Springer, Berlin (1977).
[11] P.L. Lions, The concentration-compactness principle in the caculus of variation: the limit case, I. Rev. Mat. Ibero. $\mathbf{1}$ (1985) 45-120.
[12] P.L. Lions, The concentration-compactness principle in the caculus of variation: the limit case, II. Rev. Mat. Ibero. 1 (1985) 145-201.
[13] K. Pflüger, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. Differential Equations 10 (1998) 1-13.
[14] S. Terraccini, Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions. Differential Integral Equations 8 (1995) 1911-1922.
[15] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North- Holland, Amsterdam (1978).
[16] M. Willem, Minimax Theorems. Birkhäuser, Boston (1996).

[^0]: Keywords and phrases. p-Laplacian operator, limit index, critical growth, concentration-compactness principle.
 1 College of Mathematics, Changchun Normal University, Changchun 130032, Jilin, P.R. China. liangsihua@163.com
 2 Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046,
 P.R. China. jihuiz@jlonline.com

