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In this paper, the maintenance problem for a deteriorating system with k + 1 failure modes,
including an unrepairable failure (catastrophic failure) mode and k repairable failure (non-
catastrophic failure) modes, is studied. Assume that the system after repair is not ‘‘as good
as new’’ and its deterioration is stochastic. Under these assumptions, an extended replace-
ment policy N is considered: the system will be replaced whenever the number of repair-
able failures reaches N or the unrepairable failure occurs, whichever occurs first. Our
purpose is to determine an optimal extended policy N⁄ such that the average cost rate
(i.e. the long-run average cost per unit time) of the system is minimized. The explicit
expression of the average cost rate is derived, and the corresponding optimal extended pol-
icy N⁄ can be determined analytically or numerically. Finally, a numerical example is given
to illustrate some theoretical results of the repair model proposed in this paper.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

In the earliest maintenance models, most research works usually assumed that a system after repair can be restored to ‘‘as
good as new’’. This is a perfect repair model. However, this assumption is not always realistic. In practice, most repairable sys-
tems are deteriorating because of the aging effect and accumulative wear or the degeneration of repair technology. Conse-
quently, Barlow and Hunter [1] first presented a minimal repair model in which a failed system after repair will function
again, but with the same failure rate and the same effective age as at the time of failure. Later on, Brown and Proschan [2] first
considered an imperfect repair model in which the repair will be perfect repair with probability p or minimal repair with prob-
ability 1 � p. Many research works on the minimal repair model and the imperfect repair model have been done by Park [16],
Kijima [5], Makis and Jardine [14], Moustafa et al. [15], Sheu et al. [18] and others. In some scenarios, for a deteriorating sys-
tem, it seems more reasonable to assume that the successive working times of the system after repair will become shorter and
shorter, while the consecutive repair times of the system after failure will become longer and longer. Ultimately, it cannot
work any longer, neither can it be repaired. To consider deteriorating systems with such characteristic, Lam [6,7] first intro-
duced a geometric process repair model and studied two replacement policies: one based on the working age T of the system
and the other based on the failure number N of the system. The objective is to choose optimal replacement policies T⁄ and N⁄

respectively such that the average cost rate is minimized. Finkelstein [4] presented a general repair model based on a scale
transformation after each repair to generalize Lam’s work. Zhang [23] generalized Lam’s work by a bivariate replacement pol-
icy (T,N) under which the system is replaced at the working age T or at the time of the Nth failure, whichever occurs first. Later
on, Zhang [24] applied the geometric process repair model to a two-component cold standby repairable system with one
repairman and considered a replacement policy N based on the repair number of component 1. The problem is to determine
. All rights reserved.
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the optimal replacement policy N⁄ such that the long-run expected reward per unit time is maximized. Further, Zhang and
Wang [26] applied the geometric process repair model to a deteriorating two-component cold standby repairable system with
priority in use, they not only studied some important reliability indices, but also considered a replacement policy based on the
working age T of component 1. An optimal replacement policy T⁄ for minimizing the average cost rate of the system can be
found. Many research works on the geometric process repair model see e.g., [8–10,19,20,12,13,25,21,22,3,27].

In most existing models (including the geometric process repair model) for maintenance problems, it is usually assumed
that a system has only one failure mode. However, in practice, a system will probably have more than one failure mode. For
example, a mechanical component can have slight failure and serious failure, and a switch component such as a relay or a
diode may fail due to short or open circuit. For a deteriorating system with k failure modes, when the system cannot be re-
paired ‘‘as good as new’’, Zhang et al. [28] considered a replacement policy N based on the number of failures of the system.
They determined the optimal replacement policy N⁄ such that the long-run expected profit per unit time is maximized and
showed that the repair model for such a system forms a general monotone process model which includes the geometric pro-
cess repair model as a special case. Lam et al. [11] also studied a monotone process repair model for such system with k fail-
ure modes, and showed that this model is equivalent to a geometric process repair model for a simple system with one
failure mode such that both systems have the same average cost rate and optimal replacement policy. Note that they all as-
sumed k failure modes are repairable. However, in many practical situations, some failures are unrepairable (i.e. catastrophic
failures) whereas some are repairable (i.e. non-catastrophic failures). Considering such facts, this paper considers a deteri-
orating system with k + 1 failure modes, including an unrepairable failure (catastrophic failure) mode and k repairable failure
(non-catastrophic failure) modes. When a repairable failure occurs, the system cannot be repaired ‘‘as good as new’’, and the
deterioration of the system is stochastic. If the system fails due to the catastrophic failure, it can be only replaced by a new
and identical one. Under these assumptions, we introduce a new repair-replacement policy N, or called an extended replace-
ment policy N under which the system will be replaced whenever the number of repairable failures reaches N or the unre-
pairable failure occurs, whichever occurs first. Our purpose is to determine an optimal extended replacement policy N⁄ such
that the average cost rate of the system is minimized. The explicit expression of the average cost rate is derived, the corre-
sponding optimal extended replacement policy N⁄ can be determined analytically or numerically. Further, we can show that
the repair model for a system with multi-failure modes in this paper forms a general monotone process repair model, and the
correlation between the general monotone process repair model and the geometric process repair model is also given. Final-
ly, a numerical example is given to illustrate some theoretical results of the repair model in this paper.

For easy presentation, we first state the definitions of stochastic order and geometric process as follows.

Definition 1. Given two random variables n and g, n is said to be stochastically larger than g or g is stochastically smaller
than n if
Pðn > aÞP Pðg > aÞ; for all real a
denoted by n Pst g or g 6st n (see e.g. Ross [17]). Furthermore, we say that a stochastic process {Xn, n = 1,2, . . .} is stochasti-
cally decreasing if Xn Pst Xn+1 or stochastically increasing if Xn 6st Xn+1 for all n = 1, 2, . . ..
Definition 2. A stochastic process {nn, n = 1,2, . . .} is a geometric process, if there exists a real a > 0 such that {an�1nn,
n = 1,2, . . .} forms a renewal process. The real a is called the ratio of the geometric process (see e.g., Lam [7] and Zhang
[23] for more details).

Obviously, if a > 1, {nn, n = 1,2, . . .} is stochastically decreasing, i.e.
nnPstnnþ1; n ¼ 1;2; . . .
If 0 < a < 1, {nn, n = 1,2, . . .} is stochastically increasing, i.e.
nn6stnnþ1; n ¼ 1;2; . . . :
If a = 1, the geometric process reduces to a renewal process.
If En1 = k, we have Enn ¼ k

an�1 ; n ¼ 1;2; . . ..

2. Model assumptions

We study a repair model for a deteriorating system with multi-failure modes by making the following assumptions.

Assumption 1. At the beginning, a new system is installed. Whenever the system fails, it will be repaired or replaced by a
new and identical one.
Assumption 2. The system has k + 1 different failure modes. The (k + 1)th failure mode is the unrepairable catastrophic fail-
ure mode, and the rest modes are repairable non-catastrophic failure modes. Let Sn be the type of nth failure, clearly
Sn 2 {1,2, . . . ,k,k + 1}, n = 1,2, . . .. The occurrences of these failure modes are stochastic and mutually exclusive.



Fig. 1. A possible course of the system.
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Assumption 3. Assume that the non-catastrophic failures occur with probability p and the catastrophic failure occurs with
probability q = 1 � p. When one of the non-catastrophic failures occurs, the failed system cannot be repaired ‘‘as good as
new’’. The system will be replaced by a new and identical one after the number of repairable failures reaches N or the cat-
astrophic failure occurs. The time interval between the completion of the (n � 1) th repair and the completion of the nth
repair of the system is defined as the nth cycle of the system, n = 1, 2, . . .. Let Xn, Yn and Z be respectively the working time
after (n � 1) th repair, the repair time after nth repairable failure and the replacement time of the system, n = 1, 2, . . . (see
Fig. 1), and let EX1 = k > 0, EY1 = l > 0 and EZ = m > 0. Further assume that the system will be in ith type failure with probability
pi, i.e. pi = P(Sn = i), i = 1, 2, . . . , k, k + 1. Let Mn�1 denote the number of the first n � 1 failures that are respectively mode 1,
mode 2, . . ., mode k, n = 1, 2, . . .. To determine the distribution functions of Xn and Yn, we first introduce the following prob-
abilities and conditional probabilities:
PðXn 6 t; Sn ¼ ijMn�1 ¼ ða1;a2; . . . ;akÞÞ � Ui aa1
1 aa2

2 . . . aak
k t

� �
; ð1Þ
where i = 1, 2, . . . , k, k + 1; 1 6 a1 6 a2 6 � � � 6 ak; while a1, a2, . . . , ak respectively indicate the occurrence number of the mode
1, mode 2, . . ., mode k in the first n � 1 failures, and a1 + a2 + � � � + ak = n � 1; n = 1, 2, . . ..

Similarly,
PðYn 6 t; Sn ¼ ijMn ¼ ða1;a2; . . . ;akÞÞ � Vi ba1
1 ba2

2 . . . bak
k t

� �
; ð2Þ
where i = 1, 2, . . . , k; 1 P b1 P b2 P � � �P bk > 0; while a1, a2, . . . , ak are respectively indicate the occurrence number of the
mode 1, mode 2, . . ., mode k in the first n failures, and a1 + a2 + � � � + ak = n; n = 1, 2, . . ..

Assumption 4. Xn, Yn, Z, n = 1, 2, . . . are independent.

Assumption 5. Assume that the repair cost rate of the system is cr, the working reward rate of the system is cw, and the
replacement cost of the system comprises two parts: one part is the basic replacement cost C, the other part is the cost pro-
portional to the length of replacement time Z at rate c0.
Assumption 6. The extended replacement policy N is adopted by which the system will be replaced whenever the number
of repairable failures reaches N or the unrepairable failure occurs, whichever occurs first.

Remarks:
Note that ai indicates the impact on the lifetime of the system by each occurrence of ith type failure, and bi denotes the

impact on the repair time of the system by each occurrence of ith type failure. Thus, we can always arrange the k repairable
failure modes in the light of failure ponderance. The conditions 1 6 a1 6 a2 6 � � � 6 ak and 1 P b1 P b2 P � � �P bk > 0 mean
that the failure ponderance is increasing in i (i = 1,2, . . . ,k), i.e. (i + 1) th type failure is more serious than ith type failure
for i = 1, 2, . . . , k � 1. Obviously, 1st type repairable failure mode is a failure mode with the lowest ponderance, so that
for i > 1, we have
X2jS1 ¼ 1PstX2jS1 ¼ i; Y1jS1 ¼ 16stY1jS1 ¼ i
while kth type repairable failure mode is a failure mode with the highest ponderance. Thus, it is logical that we define (k + 1)
th type failure mode as an unrepairable failure (catastrophic failure) mode.

In the Eqs. (1) and (2), ai represents the number of occurrence of ith type failure mode among the first n � 1 failures. In
other words, the conditional probability distributions of Xn and Yn are both relational with failure mode i. We can also find
that the distribution functions of Xn and Yn are both relational with failure mode i in next section.

3. System analysis

To determine the distribution functions of Xn and Yn, first of all, using the Eqs. (1) and (2), when n = 1, we have
PðX1 6 t; S1 ¼ iÞ ¼ UiðtÞ; ði ¼ 1;2; . . . ; k; kþ 1Þ; ð3Þ

PðY1 6 t; S1 ¼ iÞ ¼ ViðtÞ; ði ¼ 1;2; . . . ; kÞ: ð4Þ
In general, we have
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PðXn 6 tjMn�1 ¼ða1;a2; . . . ;akÞÞ ¼
Xkþ1

i¼1

PðXn 6 t; Sn ¼ ijMn�1 ¼ ða1;a2; . . . ;akÞÞ ¼
Xkþ1

i¼1

Ui aa1
1 aa2

2 . . . aak
k t

� �
; ðn ¼ 1;2; . . .Þ:

ð5Þ
Similarly,
PðYn 6 tjMn ¼ ða1;a2; . . . ;akÞÞ ¼
Xk

i¼1

Vi ba1
1 ba2

2 . . . bak
k t

� �
; ðn ¼ 1;2; . . .Þ: ð6Þ
Now, according to the formula of total probability and a conclusion of the multinomial distribution, we can respectively
obtain the distribution functions of Xn and Yn.
FnðtÞ ¼ PðXn 6 tÞ ¼
X

Pk

j¼1
aj¼n�1

PðXn 6 tjMn�1 ¼ ða1;a2; . . . ;akÞÞPðMn�1 ¼ ða1;a2; . . . ;akÞÞ

¼
X

Pk

j¼1
aj¼n�1

Xkþ1

i¼1

Uiðaa1
1 aa2

2 . . . aak
k tÞPðMn�1 ¼ ða1;a2; . . . ;akÞÞ

¼
Xkþ1

i¼1

X
Pk

j¼1
aj¼n�1

Uiðaa1
1 aa2

2 . . . aak
k tÞ ðn� 1Þ!

a1!a2! . . .ak!
pa1

1 pa2
2 . . . pak

k ; ðn ¼ 1;2; . . .Þ: ð7Þ
Similarly,
GnðtÞ ¼ PðYn 6 tÞ ¼
Xk

i¼1

X
Pk

j¼1
aj¼n

Viðba1
1 ba2

2 . . . bak
k tÞ n!

a1!a2! . . .ak!
pa1

1 pa2
2 . . . pak

k ; ðn ¼ 1;2; . . .Þ: ð8Þ
Now, for such a deteriorating system with multi-failure modes in this paper, we can obtain the following two important
conclusions, but their proofs are given in the Appendix.

Theorem 1.
EXn ¼ k
p1

a1
þ p2

a2
þ � � � þ pk

ak

� �n�1

; n ¼ 1;2; . . . ; ð9Þ
where k ¼ EX1 ¼
Pkþ1

i¼1 ki, and ki �
R1

0 tdUiðtÞ.
EYn ¼ l
p1

b1
þ p2

b2
þ � � � þ pk

bk

� �n

; n ¼ 1;2; . . . ; ð10Þ
where l ¼ EY1 ¼
Pk

i¼1li, and li �
R1

0 tdViðtÞ.
Theorem 2. For n = 1, 2, . . . and any real t > 0, then
PðXn > tÞP PðXnþ1 > tÞ; PðYn > tÞ 6 PðYnþ1 > tÞ: ð11Þ
In other words, we have
XnPstXnþ1; Yn6stYnþ1:
Theorem 1 gives the expectations of Xn and Yn (n = 1,2, . . .). It is very important for calculating the average cost rate of the
system.

Theorem 2 shows that {Xn, n = 1,2, . . .} is stochastically decreasing while {Yn, n = 1,2, . . .} is stochastically increasing. Thus, the
repair model for the deteriorating system with multi-failure modes in this paper is a general monotone process repair model.

For the following writing, we denote respectively
Ak ¼
Xk

i¼1

pi

ai

 !�1

; Bk ¼
Xk

i¼1

pi

bi

 !�1

: ð12Þ
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To understand the meaning of Ak and Bk in Eq. (12), we now introduce the concept of harmonic mean of a discrete random
variable.

Definition 3. Given a random variable X with E 1
X

� �
– 0, define mH ¼ 1

E 1
Xð Þ

as the harmonic mean of X.

Based on Definition 3, we note the following conclusions:

(1) If X is a discrete random variable such that X = ai with probability pi for i = 1, 2, . . . , k, then mH ¼
Pk

i¼1
pi
ai

� ��1
is the har-

monic mean of a1, a2, . . . , ak.
(2) If a < X < b, then a < mH < b.

Based on Eq. (12), we can interpret Ak and Bk as the harmonic means of a1, a2, . . . , ak and b1, b2, . . . , bk, respectively. Based
on conclusion (2) given above, we have
1 6 a1 6 Ak 6 ak; 0 < bk 6 Bk 6 b1: ð13Þ
4. Average cost rate under extended policy N

Now, we use an extended replacement policy (or an extended policy) N by which the system will be replaced whenever
the number of repairable failures of the system reaches N or the unrepairable failure first occurs before the repairable failure
numbers N of the system, whichever occurs first. Our objective is to determine an optimal extended policy N⁄ such that the
average cost rate is minimized. Let s1 be the first replacement time of the system under extended policy N. Let sn (n P 2) be
the time between the (n � 1) th replacement and the nth replacement of the system under extended policy N. Obviously,
{s1,s2, . . .} forms a renewal process, while the interarrival time between two consecutive replacements is called a renewal
cycle of the system.

Let C(N) be the average cost rate of the system under extended policy N. According to renewal reward theorem (see, e.g.
Ross [17]), we have
CðNÞ ¼ the expected cost incurred in a renewal cycle
the expected length of the renewal cycle

: ð14Þ
Now, let W be the length of a renewal cycle of the system under extended policy N. According to Assumptions 2 and 3,
then
W ¼
XN

j¼1

Xj þ
XN�1

j¼1

Yj þ Z

 !
IA þ

XN

l¼1

Xl

j¼1

Xj þ
Xl�1

j¼1

Yj þ Z

 !
IAl
; ð15Þ
where the first term shows that the catastrophic failure does not occur before the number of repairable failures of the
system reaching N; the second term shows that the catastrophic failure occurs before the number of repairable failures
of the system reaching l while l = 1, 2, . . . , N; so A = {S1 – k + 1,S2 – k + 1, . . . ,SN – k + 1} while Al = {S1 – k + 1,S2 – k + 1, . . . ,

Sl�1 – k + 1,Sl = k + 1} and let A ¼
PN

l¼1Al; I is an indicator function such that
ID ¼
1; if event D occurs;
0; if event D does not occur:

�

Thus, the expectations of the indicator functions IA and IA are respectively given by
EIA ¼ PðAÞ ¼ pN; EIA ¼ PðAÞ ¼ P
XN

l¼1

Al

 !
¼
XN

l¼1

pl�1ð1� pÞ; 0 6 p 6 1: ð16Þ
Obviously, we have under extended policy N
pN þ
XN

l¼1

pl�1ð1� pÞ ¼ 1:
According to Assumption 3, clearly q = pk+1. Thus, whenever the system fails at a time we have
pþ q ¼ ðp1 þ p2 þ � � � þ pkÞ þ pkþ1 ¼ 1:
According to assumptions, Theorem 1 and Eqs. (12)–(16), the average cost rate of the system under extended policy N is
given by
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CðNÞ ¼

E cr
PN�1

j¼1 Yj � cw
PN

j¼1Xj þ C þ c0Z
� �

IAþ
h

cr
Pl�1

j¼1Yj � cw
Pl

j¼1Xj þ C þ c0Z
� �

IA

i
2
4

3
5

E
PN

j¼1Xj þ
PN�1

j¼1 Yj þ Z
� �

IA þ
Pl

j¼1Xj þ
Pl�1

j¼1Yj þ Z
� �

IA

h i

¼

cr
PN�1

j¼1
l

Bj�1
k

� cw
PN

j¼1
k

Aj�1
k

þ C þ c0m
	 


pNþ
PN

l¼1 cr
Pl�1

j¼1
l

Bj�1
k

� cw
Pl

j¼1
k

Aj�1
k

þ C þ c0m
	 


pl�1ð1� pÞ

2
664

3
775

PN
j¼1

k
Aj�1

k

þ
PN�1

j¼1
l

Bj�1
k

þ m
	 


pN þ
PN

l¼1

Pl
j¼1

k
Aj�1

k

þ
Pl�1

j¼1
l

Bj�1
k

þ m
	 


pl�1ð1� pÞ

¼
cr
PN�1

j¼1
l

Bj�1
k

� cw
PN

j¼1
k

Aj�1
k

	 

pN þ

PN
l¼1 cr

Pl�1
j¼1

l
Bj�1

k

� cw
Pl

j¼1
k

Aj�1
k

	 

pl�1qþ C þ c0m

PN
j¼1

k
Aj�1

k

þ
PN�1

j¼1
l

Bj�1
k

	 

pN þ

PN
l¼1

Pl
j¼1

k
Aj�1

k

þ
Pl�1

j¼1
l

Bj�1
k

	 

pl�1qþ m

: ð17Þ
When p = 1, this system will become a deteriorating system with k distinct repairable failure modes. We denote the aver-
age cost rate of the system under the policy N by C1(N), then
C1ðNÞ ¼
cr
PN�1

j¼1
l

Bj�1
k

� cw
PN

j¼1
k

Aj�1
k

þ C þ c0mPN
j¼1

k
Aj�1

k

þ
PN�1

j¼1
l

Bj�1
k

þ m
: ð18Þ
The optimal replacement policy N⁄ can be respectively determined by minimizing C(N) and C1(N). Because the complicacy
for the expression of the average cost rate C(N), it is difficult to prove the existence of the optimal replacement policy N⁄

theoretically. However, we can show theoretically that the optimal replacement policy N⁄ is unique for minimizing C1(N).
And in the following numerical example, we can see that the optimal replacement policy N⁄ can be numerically determined
such that C(N⁄) is minimized.

5. Optimal replacement policy N⁄

Now, our problem is to determine the optimal replacement policy N⁄ for minimizing C1(N) explicitly. For this purpose,
first of all, we can rewrite the Eq. (18) as
C1ðNÞ ¼ AðNÞ � cw;
where
AðNÞ ¼
ðcr þ cwÞ

PN�1
j¼1

l
Bj�1

k

þ C þ ðc0 þ cwÞmPN
j¼1

k
Aj�1

k

þ
PN�1

j¼1
l

Bj�1
k

þ m
:

Thus, to minimize C1(N) is equivalent to minimize A(N). Now, we study the difference of A(N + 1) and A(N):
AðN þ 1Þ � AðNÞ ¼
ðcr þ cwÞ

PN
j¼1

l
Bj�1

k

þ C þ ðc0 þ cwÞmPNþ1
j¼1

k
Aj�1

k

þ
PN

j¼1
l

Bj�1
k

þ m
�
ðcr þ cwÞ

PN�1
j¼1

l
Bj�1

k

þ C þ ðc0 þ cwÞmPN
j¼1

k
Aj�1

k

þ
PN�1

j¼1
l

Bj�1
k

þ m

¼
ðcr þ cwÞ l

BN�1
k

PN
j¼1Bj�1

k þ C þ ðc0 þ cwÞm
k

AN
k

PNþ1
j¼1 Aj�1

k þ l
BN�1

k

PN
j¼1Bj�1

k þ m
�
ðcr þ cwÞ l

BN�2
k

PN�1
j¼1 Bj�1

k þ C þ ðc0 þ cwÞm
k

AN�1
k

PN
j¼1Aj�1

k þ l
BN�2

k

PN�1
j¼1 Bj�1

k þ m

¼
ðcr þ cwÞl khðNÞ þ mAN

k

h i
� ½C þ ðc0 þ cwÞm� kBN�1

k þ lAN
k

� �
AN

k BN�1
k

k
AN

k

PNþ1
j¼1 Aj�1

k þ l
BN�1

k

PN
j¼1Bj�1

k þ m
	 


k
AN�1

k

PN
j¼1Aj�1

k þ l
BN�2

k

PN�1
j¼1 Bj�1

k þ m
	 
 ;
where hðNÞ ¼
PN

j¼1Aj
k �

PN�1
j¼1 Bj

k.
According to the numerator of A(N + 1) � A(N), we structure an auxiliary function
BðNÞ ¼
ðcr þ cwÞl khðNÞ þ mAN

k

h i
½C þ ðc0 þ cwÞm� kBN�1

k þ lAN
k

� � : ð19Þ
Because the denominator of A(N + 1) � A(N) is always positive, the sign of A(N + 1) � A(N) is the same as the sign of its
numerator. Thus, the following lemma is straightforward.
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Lemma 1.
AðN þ 1Þ T AðNÞ () BðNÞ T 1

Lemma 1 shows that the monotonicity of A(N) is determined by the value of B(N). Now, we consider the difference of

B(N + 1) and B(N), and obtain the following result through calculation and simplification.
BðN þ 1Þ � BðNÞ ¼
ðcr þ cwÞl khðN þ 1Þ þ mANþ1

k

h i
½C þ ðc0 þ cwÞm� kBN

k þ lANþ1
k

� � � ðcr þ cwÞl khðNÞ þ mAN
k

h i
½C þ ðc0 þ cwÞm� kBN�1

k þ lAN
k

� �

¼

ðcr þ cwÞlk kBN�1
k ½hðN þ 1Þ � BkhðNÞ� þ mBN�1

k AN
k ðAk � BkÞ

n
þl AN

k hðN þ 1Þ � ANþ1
k hðNÞ

h io
2
4

3
5

kBN
k þ lANþ1

k

� �
kBN�1

k þ lAN
k

� � :
According to the Eq. (13), we have
hðN þ 1Þ � BkhðNÞ ¼
XNþ1

j¼1

Aj
k �

XN

j¼1

Bj
k

 !
� Bk

XN

j¼1

Aj
k �

XN�1

j¼1

Bj
k

 !
¼ ð1� BkÞ

XN

j¼1

Aj
k þ ANþ1

k � Bk

� �
P 0;

Ak � Bk P 0;

AN
k hðN þ 1Þ � ANþ1

k hðNÞ ¼ AN
k

XNþ1

j¼1

Aj
k �

XN

j¼1

Bj
k

 !
� ANþ1

k

XN

j¼1

Aj
k �

XN�1

j¼1

Bj
k

 !

¼ AN
k

XNþ1

j¼1

Aj
k � ANþ1

k

XN

j¼1

Aj
k

 !
þ ANþ1

k

XN�1

j¼1

Bj
k � AN

k

XN

j¼1

Bj
k

 !
¼ AN

k Ak � BN
k

� �
þ AN

k ðAk � 1Þ
XN�1

j¼1

Bj
k P 0:
Thus, B(N + 1) � B(N) P 0. This implies:

Lemma 2. B(N) is nondecreasing in N.
According to Lemmas 1 and 2, an analytical expression for an optimal policy for minimizing A(N) or C1(N) can be got

through the study of B(N). Therefore, we have the following theorem:

Theorem 3. The optimal replacement policy N⁄ can be determined by
N� ¼minfNjBðNÞP 1g: ð20Þ
Furthermore, if B(N⁄) > 1, then the optimal policy N⁄ is unique.
Because B(N) is nondecreasing in N, there exists an integer N⁄ such that
BðNÞP 1() N P N�
and
BðNÞ < 1() N < N�:
Note that N⁄ is the minimum satisfying (20), and the policy N⁄ is an optimal replacement policy. Furthermore, it is easy to see
that if B(N⁄) > 1, then the optimal policy is also uniquely existent.

6. A numerical example

In this section, a numerical example for a deteriorating repairable system with three failure modes, including two repair-
able failure (non-catastrophic failure) modes and one unrepairable failure (catastrophic failure) mode, is given to illustrate
some theory results in which an optimal extended policy N⁄ is determined by minimizing C(N). According to Theorem 1 and
the Eq. (12), we have
EXn ¼ k
p1

a1
þ p2

a2

� �n�1

; k ¼
X3

i¼1

ki; n ¼ 1;2; . . . ;

EYn ¼ l p1

b1
þ p2

b2

� �n

; l ¼
X2

i¼1

li; n ¼ 1;2; . . . ;

A2 ¼
p1

a1
þ p2

a2

� ��1

; B2 ¼
p1

b1
þ p2

b2

� ��1

:

In fact, the Eq. (17) will become



Table 1
Some re

N

1
2
3
4
5
6
7
8
9

10

Table 2
Optima

a1

1.02
1.03
1.05
1.08
1.09
1.12
1.14
1.18
1.20
1.30
1.35
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CðNÞ ¼
cr
PN�1

j¼1
l

Bj�1
2

� cw
PN

j¼1
k

Aj�1
2

	 

pN þ

PN
l¼1 cr

Pl�1
j¼1

l
Bj�1

2

� cw
Pl

j¼1
k

Aj�1
2

	 

pl�1qþ C þ c0m

PN
j¼1

k
Aj�1

2

þ
PN�1

j¼1
l

Bj�1
2

	 

pN þ

PN
l¼1

Pl
j¼1

k
Aj�1

2

þ
Pl�1

j¼1
l

Bj�1
2

	 

pl�1qþ m

; ð21Þ
where k ¼
P3

i¼1ki; l ¼
P2

i¼1li; p ¼ p1 þ p2; q ¼ p3 and p + q = p1 + p2 + p3 = 1.
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Fig. 2. The plot of average cost rate C(N) against N.

sults obtained from the average cost rate C(N), where N = 7 is the optimal replacement policy with minimal average cost rate -41.3786.

C(N) N C(N) N C(N) N C(N)

16.0870 11 �39.1379 21 �29.5205 31 �20.7413
�23.9646 12 �38.2750 22 �28.5640 32 �19.9683
�34.4452 13 �37.3592 23 �27.6225 33 �19.2146
�38.6624 14 �36.4078 24 �26.6973 34 �18.4802
�40.5301 15 �35.4335 25 �25.7896 35 �17.7647
�41.2674 16 �34.4460 26 �24.9001 36 �17.0679
�41.3786 17 �33.4528 27 �24.0295 37 �16.3893
�41.1105 18 �32.4595 28 �23.1781 38 �15.7287
�40.5987 19 �31.4708 29 �22.3462 39 �15.0856
�39.9240 20 �30.4902 30 �21.5339 40 �14.4596

l N⁄ and C(N⁄) obtained for different values of ai and bi.

a2 b1 = 0.96, b2 = 0.94 b1 b2 a1 = 1.08, a2 = 1.05

N⁄ C(N⁄) N⁄ C(N⁄)

1.01 9 �46.2339 0.99 0.97 8 �43.0953
1.02 8 �45.1335 0.98 0.96 8 �42.4548
1.04 7 �43.1261 0.97 0.95 7 �41.9241
1.05 7 �41.3786 0.96 0.94 7 �41.3786
1.07 6 �40.1379 0.95 0.93 6 �40.8436
1.09 6 �38.3400 0.92 0.90 6 �39.5002
1.12 6 �36.6022 0.88 0.88 5 �38.3215
1.16 5 �34.2973 0.85 0.84 5 �37.0583
1.20 5 �32.6943 0.80 0.79 4 �35.5000
1.25 4 �29.1721 0.75 0.73 4 �34.0620
1.30 4 �27.2885 0.72 0.70 4 �33.1905
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We study the numerical example with the following parameter values: a1 = 1.08, a2 = 1.05, b1 = 0.96, b2 = 0.94, p1 = 0.49,
p2 = 0.49, q = p3 = 0.02, cw = 100, cr = 15, c0 = 5, m = 8, k1 = 16, k2 = 18, k3 = 4, l1 = 12, l2 = 8 and C = 4500. Substituting the
above values into the Eq. (21), we can obtain these results presented in Fig. 2 and Table 1. It is easy to find that
C(7) = �41.3786 is the minimum of the average cost rate of the system. In other words, the optimal policy is N⁄ = 7, and
we should replace the system when the extended policy reaches 7. We can see from Fig. 2 or Table 1 that the optimal ex-
tended policy N⁄ is unique.

To study the influence of the ratios of the geometric process on the optimal solution, we tabulate the optimal replacement
policy N⁄ and the minimum C(N⁄) for different values of ai, bi (i = 1,2) in Table 2, respectively.

In Table 2, when bi (i = 1,2) and other parameters are fixed, then N⁄ is nonincreasing in ai (i = 1,2), but C(N⁄) is increasing
in ai (i = 1,2); when ai (i = 1,2) and other parameters are fixed, then N⁄ is nondecreasing in bi (i = 1,2), but C(N⁄) is decreasing
in bi (i = 1,2). According to Table 2, it is easy to find that the optimal replacement policy N⁄ and the minimum C(N⁄) are sen-
sitive to the tiny change of ai or bi (i = 1,2), when the other parameters are fixed. At the same time, we can see that the opti-
mal solution (N⁄ and C(N⁄)) is uniquely existent for every group of parameters.

7. Discussion

For the repair model proposed in this paper, we can arrive at the following comparisons.

(1) According to Theorem 2, the repair model in this paper is a general monotone process repair model for a deteriorating
system with multi-failure modes. Obviously, the general monotone process repair model will become a renewal pro-
cess repair model for a repairable system with one failure mode when all ai = bi = 1.

(2) When p = 1 (i.e. q = 0), the repair model in this paper will reduce a general monotone process repair model for a dete-
riorating system with k distinct repairable failure modes. Thus, the Eq. (17) will become the Eq. (18).
If C1(N) denotes the long-run expected profit per unit time of the system, and let cr, cw, C, c0, Ak and Bk in the Eq. (18) be
c2; c1; c4; c3;

1
Ak

and 1
Bk

, respectively, then the Eq. (18) will become the Eq. (20) in Zhang et al. [28].
(3) When q = 1 (i.e. p = 0), the system in this paper will be replaced as soon as it fails, namely the optimal policy is not

considered. Thus, we can see that the different q will change the optimal solutions (N⁄ and C(N⁄)) of the system. In
practice application, how to select q(0 < q < 1) is also very important for the deviser and manager of system
engineering.

(4) When p = 1 and a1 = a2 = � � �=ak , a; b1 = b2 = � � � = bk , b; there is only one repairable failure mode, i.e. i = 1, then the
general monotone process repair model for the deteriorating system in this paper will become a geometric process
repair model. According to the Eq. (7), when n = 1 we have
F1ðtÞ ¼ PðX1 6 tÞ ¼ U1ðtÞ � FðtÞ:

When n = 2 we have

F2ðtÞ ¼ PðX2 6 tÞ ¼
X1

a1¼0

U1ðatÞpa1
1 ð1� p1Þ

1�a1 ¼ U1ðatÞ � FðatÞ:

Generally, we have

FnðtÞ ¼ PðXn 6 tÞ ¼
Xn�1

a1¼0

U1ðan�1tÞ ðn� 1Þ
a1!½ðn� 1Þ � a1�!

pa1
1 ð1� p1Þ

ðn�1Þ�a1 ¼ U1ðan�1tÞ � Fðan�1tÞ:

Similarly, using Eq. (8) we have

GnðtÞ ¼ PðYn 6 tÞ ¼ V1ðbn�1tÞ � Fðbn�1tÞ:

Thus, the geometric process repair model is a special case of the general monotone process repair model in this paper.
Here

Ak ¼
Xk

i¼1

pi

ai

 !�1

¼ a; Bk ¼
Xk

i¼1

pi

bi

 !�1

¼ b:

Then the Eq. (17) or (18) will become

CðNÞ ¼
cr
PN�1

j¼1
l

bj�1 � cw
PN

j¼1
k

aj�1 þ C þ c0mPN
j¼1

k
aj�1 þ

PN�1
j¼1

l
bj�1 þ m

: ð22Þ

If the replacement time is negligible, and let cr, cw and C in the Eq. (22) be C,1 and C2 respectively, then the Eq. (22) will
become the Eq. (5.1) in Lam [7].
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(5) Further, we can obtain the following conclusion: when p = 1, the general monotone process repair model for a dete-
riorating system with multi-failure modes is equivalent to the geometric process repair model of a one-failure-mode
system. The successive working times of the one-failure-mode system X 0n; n ¼ 1;2; . . .

� �
form a geometric process

with rate Ak P 1, the harmonic mean of a1, a2, . . . , ak while the consecutive repair times of one-failure-mode system
Y 0n; n ¼ 1;2; . . .
� �

constitute a geometric process with rate 0 < Bk 6 1, the harmonic mean of b1, b2, . . . , bk. In other
words, the general monotone process repair model for a system with multi-failure modes can be interpreted as an
equivalent geometric process repair model for a one-failure-mode system in the sense that they have the same
objective function for the average cost rate C(N) and the same optimal policy N⁄. The only difference would be the
parameter values.

8. Concluding remarks

In this paper, a repair model for a deteriorating system with k + 1 failure modes including one unrepairable failure
mode and k repairable failure modes, corresponding k distinct types is studied. Under the extended replacement policy
N, the optimal policy N⁄ is theoretically obtained by minimizing the average cost rate C1(N). We also provide an example
shown in Fig. 2, Tables 1 and 2 to illustrate not only the uniqueness of the optimal policy N⁄ but also the optimal policy N⁄

and the minimums C(N⁄) are sensitive to the tiny changes of ai and bi(ai = bi – 1; i = 1,2), when the other parameters are
fixed.

This paper shows that the repair model proposed is a general monotone process repair model, and it is a generalization of
existing models, including the geometric process repair model and the general monotone process repair model without cat-
astrophic failure. Therefore, the repair model in this paper should have not only interesting in reliability theory, but also
valuable in reliability engineering.
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Appendix

Proof of Theorem 1. According to the Eqs. (7) and (8), when n = 1 we have
F1ðtÞ ¼ PðX1 6 tÞ ¼
Xkþ1

i¼1

UiðtÞ;

G1ðtÞ ¼ PðY1 6 tÞ ¼
Xk

i¼1

ViðtÞ:
To start with, let
EX1 ¼
Z 1

0
tdF1ðtÞ ¼ k; EY1 ¼

Z 1

0
tdG1ðtÞ ¼ l:
Then by using the Eq. (7), we have
EðXnÞ ¼
Z 1

0
tdFnðtÞ ¼

Xkþ1

i¼1

X
Pk

j¼1
aj¼n�1

ðn� 1Þ!
a1!a2! . . .ak!

� pa1
1 pa2

2 . . . pak
k

Z 1

0
tdUiðaa1

1 aa2
2 . . . aak

k tÞ

¼
Xkþ1

i¼1

X
Pk

j¼1
aj¼n�1

ðn� 1Þ!
a1!a2! . . .ak!

� pa1
1 pa2

2 . . . pak
k

aa1
1 aa2

2 . . . aak
k

Z 1

0
udUiðuÞ

¼
Xkþ1

i¼1

ki

X
Pk

j¼1
aj¼n�1

ðn� 1Þ!
a1!a2! . . .ak!

p1

a1

� �a1 p2

a2

� �a2

. . .
pk

ak

� �ak

¼ k
p1

a1
þ p2

a2
þ � � � þ pk

ak

� �n�1

; n ¼ 1;2; . . . :
Therefore, the Eq. (9) is derived. Similarly, we can obtain the Eq. (10).
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Proof of Theorem 2. Using the distribution function of Xn and the property of the multinomial distribution, we have
PðXnþ1 6 tÞ ¼
Xkþ1

i¼1

X
Pk

j¼1
aj¼n

Ui aa1
1 aa2

2 � � � a
ak
k t

� �
� n!

a1!a2! . . .ak!
� pa1

1 pa2
2 � � � p

ak
k

¼
Xkþ1

i¼1

X
Pk

j¼1
aj¼n

Xk

l¼1

ðn� 1Þ!al

a1!a2! � � �ak!
� pa1

1 pa2
2 � � � p

ak
k Ui aa1

1 aa2
2 � � � a

ak
k t

� � !

¼
Xkþ1

i¼1

X
Pk

j¼1
aj¼n

ðn� 1Þ!
ða1 � 1Þ!a2! . . .ak!

� pa1�1
1 pa2

2 . . . pak
k p1Uiða1aa1�1
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ak
k tÞ

þ
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X
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k p2Uiða2aa1

1 aa2�1
2 . . . aak
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þ
Xkþ1

i¼1

X
Pk

j¼1
aj¼n

ðn� 1Þ!
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k pkUi akaa1
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X
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� pa1
1 pa2

2 . . . pak
k
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plUi ala
a1
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2 . . . aak
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1 pa2

2 . . . pak
k
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plUi aa1
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2 . . . aak
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X
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ðn� 1Þ!
a1!a2! . . .ak!

� pa1
1 pa2

2 . . . pak
k Ui aa1

1 . . . aak
k t

� �
¼ PðXn 6 tÞ:
Therefore, we have P (Xn > t) P P (Xn+1 > t). Similarly, we can prove P(Yn > t) 6 P(Yn+1 > t).
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