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Based on the non-equilibrium thermodynamics, an internal- variable theory in thermo-viscoelasticity at finite deformation was 
proposed by Huang in 1999. In this theory, a modified stretch of the molecular chain was introduced, and hence the molecular 
network model in rubber elasticity was extended to take into account the viscous and thermal effects of the material. The vis-
cous dissipation of the material can then be described by means of these internal variables, which appear in the expression of 
the modified stretch. In order to give a clearer explanation on the physical implication of the internal variables, a connection 
between the internal-variable theory and theoretical formulation based on the multiplicative decomposition of the deformation 
gradient in existing literature is presented in this paper, which allows the above internal-variable theory to be more systematic. 
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1  Introduction 

It is well known that linear viscoelastic constitutive rela-
tions can be constructed according to the Boltzmann super-
position principle. By means of the introduction of the in-
ternal variables (or hidden variables), ref. [1–3] proposed 
the internal-variable theory in linear viscoelasticity under 
isothermal conditions. This theory can be intuitively mod-
eled by a combination of parallel and series connections of 
linear springs and linear dashpots. Therefore, the Helmholtz 
free energy (, E, m) in this theory can be expressed 
as a quadratic expansion in terms of E and m, where is 
the absolute temperature, E is the Lagrangian strain and m 
(m1, 2, …, M) is a set of internal variables. In order to 
extend the above theory to the case of finite deformation to 

consider the high deformability of polymers, several visco-
elastic constitutive models have been developed in the past 
several years. For instance, in the framework of finite de-
formation, the free energy was assumed to be a quadratic 
expansion in terms of internal variables [4–6]. However, as 
pointed out by Huang [7], this quadratic expansion is only a 
linear approximation of the theory proposed. 

It should be noted that the viscoelastic constitutive theory 
at finite deformation can also be formulated by means of the 
multiplicative decomposition of the deformation gradient 
(e.g., [8–11]). However, it seems that investigations of the 
connection between the internal-variable theory and the 
theory based on the multiplicative decomposition of the 
deformation gradient have not been reported in the litera-
ture. 

The mechanical behaviors of high polymers exhibit 
strong dependence on both strain rates and temperature near 
the glass transition temperature. In order to describe these 
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mechanical responses of polymeric materials, the following 
requirements are suggested to be satisfied in the formulation 
of the thermo-viscoelastic constitutive relations: firstly, it 
must be compatible with the second law of thermodynamics; 
secondly, under reasonable physical assumptions, it can be 
properly interpreted by micro- or meso- scopic deformation 
mechanisms; thirdly, it should be consistent with the classi-
cal theory of linear viscoelasticity when the deformation is 
infinitesimal; fourthly, material parameters (or material 
functions) should be as few as possible, and these parame-
ters can be determined by experiments and have clear phys-
ical meaning; and lastly,during sufficiently slow (or fast) 
deformation process, the constitutive relation can reduce to 
the one in thermo-elasticity at finite deformation. 

According to the above requirements, a set of internal 
variables is introduced in this paper, and hence the molecu-
lar network model in rubber elasticity is extended to include 
the viscous and thermal effects of the material. Furthermore, 
in order to give a more clear explanation on the physical 
implication of these internal variables, it is the first time that 
the connection between the internal-variable theory pro-
posed by Huang [7] and the theory based on the multiplica-
tive decomposition of the deformation gradient in the exist-
ing literature is discussed, which enables the above inter-
nal-variable theory to be more systematic. 

2  Helmholtz free energy in rubber elasticity 
based on the molecular network model 

It is well known that under small to moderate deformations 
the strain-energy function of incompressible rubbers can be 
derived on the basis of Gaussian statistical theory. At refer-
ence temperature , this strain-energy function can be 
written as: 

 0 0
1

1
( 3),

2
W I   (1) 

which is referred to as the neo-Hookean strain-energy func-
tion. In eq. (1), I1 is the first invariant of the right Cauchy- 
Green tensor C=U2, 0 is the ground-state shear modulus, 
which is a linear function of the absolute temperature . Eq. 
(1) can also be equivalently written as: 
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chain directed along a unit vector L0 in the reference con-
figuration, and this directional vector L0 may be expressed 
in the spherical polar coordinates ( , , )r    by ( , )   

with the components being (sin cos ,sin sin ,cos )      

in the rectangular Cartesian coordinate system. 0
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is the strain energy stored in a single chain and is given by 
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function of the chains in the spherical polar coordinates, 
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0 0d ( , )sin dh         

=1. If the material is assumed to be isotropic relative to the 
reference configuration, that is, the chains are randomly 

oriented in the natural state, we have 
1

( , ) .
4

h   


 

In the case of large deformation, the non-Gaussian statis-
tical theory should be utilized. For instance, by means of the 
Langevin function ( ) coth 1 / ,   L  the strain-  

energy function proposed by Arruda and Boyce [12] can be 
written as: 
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L  is 

the inverse Langevin function and ( 1,2,3)    are the 

principal stretches. The above constitutive model is referred 
to as the 8-chain model, which can capture the effect of the 
limiting extensibility of the chain stretch with the maximum 

extension ratio of molecular chains being n . In the full- 
network model, the chains are assumed to be randomly dis-
tributed in space and to deform in an affine manner, and the 
strain-energy function suggested by Wu and Van der Gies-
sen in ref. [13] is given by 
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Eqs. (1)–(4) are only applicable to incompressible rub-
bers. Although rubber materials are generally considered to 
be incompressible, in reality they are only nearly incom-
pressible, and the most accurate constitutive models should 
include compressibility of the materials. In the following, 
the strain-energy function for incompressible materials will 
be extended to include compressibility and thermal effect. 
For instance, if the compressibility of the neo-Hookean ma-
terial is considered, eq. (1) can be extended to be 

 ln0 0
1

1
( 3) ( ) ( ),

2
W I J J U J        

h  (5) 

where detJ  U , 0 and 0 are ground-state Lamé constants. 
In order to meet the third requirement in the introduction, 
material functions ( )Jh  and ( )U J  should be chosen to 

satisfy the conditions (1) (1) 0h h  , (1) 0h   and 
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(1) (1) 0U U   , (1) 1U    at 1J  . It is noted that there 

are infinitely many functions satisfying the above condi-
tions. Here the expression of ( )U J is given by considering 
the purely dilatational deformation, and is uniquely deter-
mined from the first term of the right hand side of eq. (5): 

 2/39 2
( ) 1 (ln ( )) ,

4 3
U J J J h J

      
 (6) 

Therefore only one fitting function ( )h J  in eq. (5) is 

required, which can be determined by the experiments in the 
pressure-volume relations. 

Next, the above expression will be extended to take into 
account the thermal effect. If the specific heat CE is as-
sumed to be a constant, the Helmholtz free energy can be 
written as [14]: 
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where , 0 and 0 are the mass density, internal energy and 
entropy at the reference temperature respectively, and 

0 0 0/ ( , ) ( , )W        E E  is a linear function of tem-

perature. Therefore, the problem will be reduced to deter-

mine W . In particular, at the reference temperature, the 

expression of W for the neo-Hookean material should be 
equal to W given by eq. (5). The effects of temperature 
variation can be considered as follows: firstly, according to 
the statistical theory of incompressible rubber elasticity, the 
free energy is entirely entropic in origin, and the 
ground-state shear modulus is proportional to the tempera-

ture. Hence in eq. (5) should be replaced by  0
0/   ; 

secondly, the contribution of the dilatational deformation  
caused by thermal expansion should be included. Here we 
assume that the material is thermally isotropic and the linear 
thermal expansion coefficient  is a constant. In such a 
case, eq. (5) can be modified with the following additional 
term: 
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From eqs. (6) and (8), the explicit expression of W  in 
eq. (7) can be written as: 
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Thus the Helmholtz free energy corresponding to the 
neo-Hookean material is obtained. 

3  Introduction of internal variables and the 
connection between internal-variable theory and 
the theory based on the multiplicative decompo-
sition of the deformation gradient 

Near the glass transition temperature the mechanical be-
havior of polymeric materials is known to be rate dependent 
due to the viscous dissipation. Based on the full-network 
model (eq. (4)), the viscoelastic behavior of incompressible 
polymers has been discussedin [15,16]. In this paper, ther-
mo-viscoelastic constitutive relations of compressible pol-
ymers will be constructed through the modification of eq. 
(9). 

A viscoelastic medium is thought of as a network con-
sisting of M1 (m=0,1,2, …,M) kinds of chains. Different 
kinds of chains have different relaxation times. The me-
chanical response of m0 kind of chain is purely elastic. 
The viscous dissipation property of the mth (m1,2,…,M) 
kind of chain can be described by a second-rank symmetric 
tensor m called the mth internal variable [7]. Similar to eq. 
(2), for isotropic materials, the strain-energy function of the 
mth kind of chain can be written as: 
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where ( ) ( , , ; , )m
m mw J     depends not only on the stretch 

 of an individual chain directed along a unit vector L0 and 
the volume ratio J, but also on the effective stretch  

1
2 2

0 0( ( ) )m m    L U L  and 0 0( )m m    L L  for the 

mth kind of chains. Eq. (10) can be equivalently written as 
1
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m mW  E E  , where

1
( )
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are defined as the “engineering strain” and the mth “effec-
tive engineering strain” respectively. Therefore, the effect 
of the viscous dissipation can be included if the expression 

of W  in eq. (7) is replaced by 
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where W(0) and W(m) are the strain-energies of purely elastic 
chain and the mth kind of chain respectively. In the follow-
ing, the expression of W(m) will be assumed to have the 
form: 

 ( ) ( ) ( )( , ) ( , , ),m m m
v D m mW W J W   E   (12) 
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where ( )
1
m

DW  and 
( )

2
m

DW  are isotropic functions of their var-

iables. In addition, it is required that the stress derived from 
these functions must be rendered zero in the natural state. 

The physical interpretation of eq. (12) will be given as 
follows. For simplicity, the subscript m in the symbol will 
be omitted. 

Firstly, let us consider the polar decomposition of the 
deformation gradient F of the mth kind of chain, which is 
written as F=RU. Then we have the following spectral de-

composition 

3

1
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3
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 R l L , where 

 (1,2,3), L and l are the principal stretch, the Lagran-
gian principal direction and the Eulerian principal direction, 
respectively. 

Secondly, we imagine that the mth kind of chain is infi-
nitely fast unloaded from the current state with the defor-
mation gradient F to the stress-free state, which corresponds 
to an intermediate configuration. This rapidly unloading 
process can be considered as a purely elastic response with 
a deformation gradient 1

e
F . Hence, F can be multiplica-

tively decomposed into 

 ,e i F F F  (14) 

where Fi represents the deformation gradient of the mth 
kind of chain from the reference configuration to the 
stress-free intermediate configuration and Fe is the defor-
mation gradient from the intermediate configuration to the 
current configuration. The polar decomposition of Fi and Fe 

can be respectively written as: 

 ,    ,i i e e e   F R F R U  (15) 

where  and Ue are symmetric positive-definite tensors, Ri 
and Re are the rotation tensors from the reference configura-
tion to the intermediate configuration and from the interme-
diate configuration to the current configuration, respectively. 
The spectral representation of Ue is 
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where r is the unit principal direction of the right stretch 
tensor Ue corresponding the intermediate configuration. 

Note that R can be written as: 
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which indicate that  and U have the same principal direc-
tion L. Thus, e

  in eq. (16) can be written as: 
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If the mth kind of molecule network is thought as a non-
linear spring arranged in series with a dashpot or a Kel-
vin-Voigt element, the right stretch tensor of the nonlinear 
spring defined on the intermediate configuration can be 
written as: 

 T ,ee i i  U R U R  (19) 

where 
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is the right stretch tensor of the spring defined in the refer-
ence configuration. 

Now let us consider a unit directional vector L0 in the 
reference configuration. The relationship between L0 and a 
unit vector r0 in the intermediate configuration is given by 
r0RiL0. Hence the effective stretch of the nonlinear spring 
of the mth kind of chain can be defined by 

 
1 1

2 22 2
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Comparing eq. (21) with the definition of the effective 
stretch in terms of the internal variable in sect. 2, we have 

e U U . Therefore the internal variable  corresponding 

to the mth kind of chain can be expressed by 
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(; no 

summation over ). This means the principal direction L of 
the internal variable in eq. (22) is identical to that of the 
right stretch tensor U. 

It is seen from the above discussion that the strain-energy 
function of the nonlinear spring can be expressed in terms 
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of Ue (or eU ) or U (or EUI). Therefore, apart from 

the contribution of the purely dilatational deformation, the 
strain-energy function of the mth kind of chain can be writ-
ten as ( )m

DW  given on the right hand side of eq. (12). For a 

Maxwell element, that is, a nonlinear spring in series with a 
dashpot, the corresponding strain-energy function is 

( ) ( )
1=m m

D DW W ; if the nonlinear spring is arranged in series 

with a Kelvin-Voigt element, the strain-energy of this Kel-
vin-Voigt element ( )

2
m

DW  given on the right hand side of eq. 

(13) should also be included in the expression of the total 
strain-energy function of the mth kind of chain. 

4  A simple example of the thermo-viscoelastic 
constitutive theory 

In the above discussion, the strain-energy function of a vis-
coelastic material is formally written in eq. (11). In this sec-
tion, an illustrative example of the derivation of a ther-
mo-viscoelastic constitutive relation for an isotropic materi-
al will be given as follows. 

Firstly, in order that the strain-energy function of the 
material can be interpreted from the microscopic defor-
mation mechanism, the Gaussian statistical theory or the 
non-Gaussian statistical theory should be employed. In the 
former case, the strain-energy function of the material can 
be given by the neo-Hookean strain-energy function in the 
rubbery state at relatively high temperature. If the material 
compressibility and thermal effects are considered, this 
strain-energy function can be replaced by the Helmholtz 
free energy given in eq. (9). In the following, we assume the 
strain-energy function of purely elastic molecular chain in 
the viscoelastic material has the similar form as that given 
in eq. (9). However, it should be noted that the elastic mod-
ulus of the materials near the glass transition temperature is 
much higher than that in the rubbery state and the depend-
ence of the elastic modulus on the temperature also differs 
from that in the Gaussian statistical theory. In view of this 
consideration, (0)W in eq. (11) can be assumed to have the 
following form: 
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In the above equation, and k are, respectively, the 
ground-state shear and bulk moduli of the m=0 kind of mo-

lecular chain without viscous dissipation. Both are linear 
functions of the temperature . In particular, at the reference 
temperature , we have 0

0 0 0( )    and 0
0 0 0( )k k  .  

in eq. (24) is the linear thermal expansion coefficient, 
( )h J can be determined by the experimental pressure-  

volume data at the reference temperature . 
Secondly, we can assume the strain-energy function of 

the mth kind of molecular chain with viscous dissipation has 
the similar form as given in eq. (23) and ( )h J  will ap-

proximately be taken as zero. We can further assume that 
the purely dilatational deformation and the thermal expan-
sion do not cause any viscous dissipation. Hence ( )m

vW  and 
( )m

DW  in eq. (12) can be written as: 
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where Um=EmI, mJ =det(Um). In the above equations, 

m and km) are linear functions of , with 
0 0

0 0( ) , ( )m m m mk k     . 

Eq. (26) can be regarded as the strain energy stored in the 
nonlinear spring in a Maxwell element. It should be noted 
that in order the stress is zero in the natural state, a term 
lnJm in eq. (26) is necessary even if the material is incom-
pressible. Moreover, it can be seen from the following dis-
cussion that the evolution of the internal variable can only 
be adequately described if this additional term lnJm is in-
cluded in eq. (26) as pointed out in ref. [15]. From eqs. (11) 
and (23)–(26), the engineering stress which conjugates to 
the engineering strain can be written as: 
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0

.
mM

m

W
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The ground state shear and bulk moduli of the material 

are given by 
0

( )
M

m
m
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0

( )
M

m
m
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 , respectively. 

In order to complete the above constitutive formulation, 
the evolution equations of internal variables are needed. 
Here we assume the evolution equation of the mth internal 
variable m obeys the Onsager-Casimir reciprocal relation 
and can be written in an uncoupled form as: 
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( )( )   (no summation over ),
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m
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W
m 

 
  


A


 (28) 

where m=1,2,…,M and m is the mth viscous coefficient, 
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L L       and L  is 

the Lagrangian spin defined by eq. (2.144) in ref. [14]. 
From eq. (26), the above evolution equation can be written 
as: 
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where ( )

( )
( )  ( 0)

2 ( )
m

m
m

 
 

 
   is the mth relaxation time. 

Thus the thermo-viscoelastic constitutive relations based on 
the Gaussian statistical model are obtained. 

As an illustrative example, the mechanical response of a 
thermo-viscoelastic material (high-density polyethylene) 
under shear deformation with different strain rates will be 
discussed. The material parameters used in the simulation at 
room temperature (23°C) are as follows: the Young’s mod-
ulus: 5.04×102 MPa, the Poisson’s ratio: 0.41, the mass den-
sity: 0.953 g/cm3, the specific heat capacity: 1.256 J/(g K), 
and the viscous coefficient: 1010 Pa [17,18]. For simplicity 
and without losing the key features of the viscoelastic prop-
erties of the material, we only consider the simplest case of 
M=1 in eq. (27). Namely, there are only two kinds of mo-
lecular chains used in the simulation, one is purely elastic 
and the other is viscoelastic corresponding to a Maxwell 
element. These two kinds of elements are connected in par-
allel. The shear moduli of the elastic one and the viscoelas-
tic one are assumed to be e 0.05 ( )    and v   

0.95 ( )  , respectively, where ( )   is the total shear 

modulus of the material. Moreover, it can be assumed that 
the material can expand freely under a purely thermal action 
and therefore the stress caused by thermal expansion can be 
ignored. 

Now the material coordinates { }AX  and the spatial co-

ordinates { }ix  are chosen to coincide with rectangular 

Cartesian coordinates with base vectors 1 2 3( , , )e e e . Con-

sider a shear deformation = ( )x X  defined (in terms of the 

components in the Cartesian coordinates) by 

1 1 0 2x X d X  , 2 2x X , 3 3x X , 

where 0d  is the shear strain. Detailed geometrical descrip-

tions of this shear deformation can be referred to ref. [16]. 
The shear stress-shear strain curves corresponding to dif-

ferent strain rates in isothermal condition (the temperature 
of the material equals the ambient temperature) are shown 
in Figure 1. For simplicity, the viscous coefficient and the  

 

Figure 1  Shear stress T12 versus shear strain d0. 

Young’s modulus are assumed to be constants during the 
shear deformation. It can be seen that the present theory can 
be used to describe the strain rate effect of polymeric mate-
rials in the glass transition region to show the viscoelastic 
properties of the materials. In general, at low strain rate, the 
deformation can be considered as a quasi-static one so that 
there is enough time to exchange the heat energies with the 
ambient conditions. Therefore, this is nearly an isothermal 
process with the temperature of the material being the ref-
erence temperature. Conversely, in the case of high strain 
rates, the deformation can be considered as an adiabatic one, 
since there is not sufficient time to exchange heat energies 
with the ambient conditions. It should be noted that the 
temperature rise will significantly influence the mechanical 
response of the material because of the temperature de-
pendence of the shear modulus and viscosity of the material 
(see WLF equation, [16]). Hence the temperature variation 
caused by energy dissipation has a major role in the 
rate-dependent mechanical behavior of the materials. To 
sum up, the thermo-mechanical coupling effect can be ne-
glected at low strain rates but should be carefully investi-
gated at high strain rates. A detailed discussion of the latter 
can be referred elsewhere [16]. 

4  Conclusion 

Based on five requirements for constructing the viscoelastic 
constitutive relations, a new constitutive formulation in fi-
nite thermo-viscoelasticity is presented. The Gaussian sta-
tistical model is used as an example to show the effective-
ness of the present formulation. The internal-variable theory 
in thermo-viscoelasticity at finite deformation proposed [7] 
is further developed. As pointed out by Huang [7], a quad-
ratic expansion of the free energy in terms of internal varia-
bles (such as eq. (53), [6]) is only a linear approximation of 
the present theory. In order to give a more clear explanation 
on the physical implication of the internal variables, the 
relationship between the constitutive theory based on inter-
nal-variables and that based on the multiplicative decompo-
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sition of the deformation gradient in existing literature is 
discussed. This allows the physical meaning of the internal 
variables to be rendered clearer. Moreover, only a few ma-
terial parameters (functions) are needed in the present con-
stitutive formulation, therefore the internal-variable theory 
given in this paper can be widely applied to many practical 
problems. 
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