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This paper introduces the virtual and real game concepts to investigate multi-criterion 
optimization for optimum shape design in aerodynamics. The constrained adjoint meth-
odology is used as the basic optimizer. Furthermore, the above is combined with the vir-
tual and real game strategies to treat single-point/multi-point airfoil optimization. In a 
symmetric Nash Game, each optimizer attempts to optimize one’s own target with ex-
change of symmetric information with others. A Nash equilibrium is just the compromised 
solution among the multiple criteria. Several kinds of airfoil splitting and design cases are 
shown for the utility of virtual and real game strategies in aerodynamic design. Successful 
design results confirm the validity and efficiency of the present design method. 
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1  Introduction 

Engineering design by its very nature is multi-objective, and often requires tradeoffs between 
disparate and conflicting objectives since improving one worsens the other[1,2]. So, the multi- cri-
terion optimization can be described as a methodology for the design of systems where the inter-
actions between several criteria must be considered, and where the designer is free to significantly 
affect the system performance in more than one objective. The pervasiveness of these tradeoffs in 
engineering design has given rise to a rich and vast array of methods and approaches for 
multi-objective and multi-criterion optimization. Examples include the weighted sum and com-
promise programming approaches[1], genetic algorithm-based approaches[2,3], game theory based 
approaches[4―9], Pareto point approximation methods[10], and some ‘brute force’ approaches such as 



 

parameter space investigation[11]. 
A straightforward approach to solve the multi-objective optimization problem is to aggregate the 

different criteria with different weights, and then minimize the resulting function. Three drawbacks 
exist in this method: (1) not all the solutions are found； (2) in a ‘penalty-function’ approach, the 
weights assigned to some criteria may not be suitable and the resulting function may lack signifi-
cance； (3) the linear combination is meaningless when multiple objectives are conflicting. Many 
researchers have studied the limitations of the weighted sum approaches to capture the Pareto set in 
non-convex problems[12]. Messac et al.[13] derived quantitative conditions for determining whether 
or not a Pareto point can be captured with a given objective function formulation. Das and Den-
nis[14] also examined the drawbacks of using weighted sums to find the Pareto set during 
multi-criterion optimization, noting that an evenly distributed set of weights fails to produce an 
even distribution of points in the Pareto set. Their observations led to the development of the 
Normal-Boundary Intersection (NBI) method to parameterize the Pareto set and generate an evenly 
distributed set of points in the Pareto set using an evenly distributed set of parameters[15]. 

Nowadays, Evolutionary Algorithms (EAs) benefit from its robustness in capturing convex, 
non-convex, discrete or discontinuous Pareto fronts of multi-objective optimization problems. So 
EAs and Pareto front concept are used more and more in solving practical design problems in the 
industry[3,16―19], and this new combination of EAs with Pareto front concept is called 
multi-objective evolutionary algorithms (MOEAs). But this evolutionary process is time con-
suming since a large number of evaluations of the objective functions, of the order of thousands, 
are necessary to obtain an acceptable solution. 

Wilson et al.[10] proposed a method that employs design of experiments (e.g., central composite 
designs, orthogonal arrays, and Latin hypercubes) and surrogate approximations (e.g., response 
surfaces and kriging models) to facilitate exploring and capturing the Pareto frontier. The surrogate 
approximations are used in lieu of the computationally expensive analysis to explore the 
multi-objective design space and identify a rich set of potential points along the Pareto frontier. 
Candidate points can then be used to obtain the actual (or near actual) Pareto frontier from the 
original analysis codes after identifying good designs for the multiple competing objectives. 

In refs. [20, 21], we introduced a novel approach combining adjoint-variable technique with a 
formulation derived from game theory[5] to treat multi-point airfoil optimization problems. In a 
symmetric Nash game, each player attempts to optimize one’s own target with exchange of sym-
metric information with the others[5]. A Nash equilibrium is reached when each player, constrained 
by the strategies of the others, cannot further improve one’s own target[6,7]. Here, we follow the 
main idea developed in refs. [20, 21] and extend it into more practical multi-objective aerodynamic 
designs and provide detailed numerical implementation. Several kinds of airfoil splitting and de-
sign cases are shown for the virtual and real game strategies. Successful design results confirm the 
validity and efficiency of the present design methods. A method based on optimal control the-
ory[22―25], derived from the continuous Euler equations, to evaluate the gradient is used as the basic 
optimizer. As mentioned in refs. [23, 24], only relatively few constraints can be implemented in the 
adjoint method, but optimization with constraints is practical in aerodynamic design, such as 
minimization of the drag under fixed lift mode. Recently, we have developed the constrained ad-
joint method under the framework of control theory. All the constraints were satisfied implicitly 
and automatically in the design, and the boundary condition of adjoint equation and gradient ex-
pression of the constrained optimization problem were presented in details in ref. [26]. Here this 
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constraint implementation methodology is used in game strategies to treat constrained 
multi-objective optimization problem. 

2  General formulation of constrained adjoint approach for 
aerodynamic optimum-shape design 

In the practical aerodynamic design, a design usually has to satisfy a number of constraints. Here, 
we summarize the major conclusions of the constrained adjoint approach developed in ref. [26], 
where the constraint was satisfied implicitly and automatically. 

A typical shape optimization problem can be stated as follows: 
Let  be a subspace of Ω 2ℜ  or 3ℜ . Find the shape of cΓ , a boundary of  (see Figure 

1(a)), controlled by design variables b, such that the functional 
Ω
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computed on a boundary  (where and Γ Γ cΓ  can be different) is minimized (or maximized). The 
state variables are given over the domainw Ω by the PDE (governing equation of the flow field): 
 ( ), 0  inR w b = Ω      (2) 

with the boundary condition: ( ), 0
c

B w b
Γ
= . 

 
Figure 1  (a) Computational domain; (b) partial view of O-type mesh. 

 
In general, ( ),H w b is in the integral form in aerodynamics, such as lift or drag. Let us assume 

( ) ( ) ( ), , d ,
cc

cH w b w b w bϕ ϕ ,1
ΓΓ

= Γ =∫ . Here, the governing equation is the two-dimensional 

Euler equations. According to the control theory, two adjoint variables (Lagrangian multipliers) 
 and Ψ χ  are introduced . Then the optimization problem becomes 

 ( ) ( ) ( ) ( )( 2
, ,1 , , , , , ,

2c
J w b R w b B w b H w b HΦ Ψ χ ∗

Γ Ω Γ )Θ
= − + + −  (3) 

where is an arbitrary positive number andΘ ,⋅ ⋅ denotes an interior product. In order to eliminate 

the multiple flow field evaluations, control theory requires to solve the following adjoint equations: 
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where L is the linearized operator of R, and Ln is the spatial operator L projected on the boundaries. 

( ,x yn n  is the outward unit vector norm to the surface. Then, the gradient can be computed as 

follows: 

 ( ) ( )( ) ( ) ( )rad , , , ,1 , ,1 ,
c

T
b b b

RG B w b H w b H w b w b
b

χ ϕ Φ∗
ΓΓ Ω

∂
= ∂ + Θ − ∂ + ∂ −

∂
Ψ  (5) 

which is the function of state variables w, co-state variables Ψ, χ and design variables b. Once the 
gradient is established, any descent procedure can be used to obtain the design improvement, e.g. 
the steepest descent method. 

3  Nash game strategy for multi-criteria optimization problems 

Nash Equilibrium is a steady state solution concept which is a collection of strategies by various 
players such that no player can improve his outcome by changing only his own strategy. In this 
paper, we use the theory of Nash equilibrium to study the multi-objective optimum design in 
aerodynamics, especially in the designs where multiple critera are mutually conflicting. 
3.1  Definition of Nash Equilibrium 

Suppose that the multi-objective optimization problem can be stated as follows: 
 ( )Minimize (or Maximize) 1,..., ,iJ x i N=,      (6) 

where Ji are the cost functions, N is the number of objectives, x is a vector whose K components are 
the design or decision variables. 

For an optimization problem with objectives defined in formulation (6), a Nash strategy 
consists in having players with each optimizing his own criterion. However, each player has to 
optimize its criterion given that all the other criteria are fixed by the rest of the players. When no 
player can further improve his criterion, the system has reached a state of equilibrium called Nash 
Equilibrium. 

N
N

Let  be the search space for the i-th criterion, , an action iX 1 ,..., ,...,i iX X X X X⊂ = ⊗ ⊗ ⊗ N

iix X∈ . A strategy pair ( )1 2, ,..., Nx x x X∗ ∗ ∗ ∈  is said to be a Nash Equilibrium if and only if  i∀

 ( ) ( )1 1 1,..., ,..., inf ,..., , , ,..., .
i i

i i N i i i ix X
J x x x J x x x x x∗ ∗ ∗ ∗ ∗ ∗ ∗

− +∈
= 1 N

)

 (7) 

Alternatively, 

( 1 2, ,..., Nx x x x∗ ∗ ∗ ∗= is said to be a Nash equilibrium if and only if i∀ , ix∀ , 

 ( ) ( )1 1 1 1 1 1,..., , , ,..., ,..., , , ,...,i i i i N i i i iJ x x x x x J x x x x x∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
− + − +≤ N . (8) 

This alternative formulation of the definition points us to a (not necessary efficient) method of 
finding Nash Equilibrium: First calculate the best choice for each player at the present step, then 
exchange their decisions to repeat the decision making procedure[7]. 
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3.2  Algorithm implementation 

The following step consists of merging adjoint method and Nash strategy in order to give a com-
plete description on the procedure for building the Nash equilibrium between the confronted cri-
teria in multi-objective aerodynamics optimization. Here, players are optimizers who are com-
petitive with the others. So, at first we split the design variables into as many subsets as the targets. 
Each subset is associated with a player. The splitting of design variables depends on the physics of 
aerodynamics. Then allocate design targets to the players. According to the definitions in (7) and 
(8), each player optimizes his own criterion by modifying his own subset (design variables) while 
keeping the other subsets unchanged with exchange of information with others[4,20,21]. 

Let us consider players optimizing a set of objectives N N ( )1 2, ,... NJ J J . The optimization 

variables are distributed among the players in such a way that each player handles a subset of the 
set of optimization variables. Let ( 1,... N )x x  be the optimization variables (each ix can be a vector 

or scalar variable), where x X∈  and , 1 2 ... NX X X X= ⊗ ⊗ ⊗ i ix X∈ . We further assume that 
all the targets are minimization problem for convenience. Player i is responsible for Ji by modifying 
xi, so the design problems can be explained as follows: 
 Player i : ( )1 2min , ... ,   1,2,... ,

i i
i Nx X

J x x x i N
∈

=  (9) 

where xi is the free design variable of cost function Ji, all kx , k i≠  are fixed in Player i and come 
from the result of Player k. 

The Nash/Adjoint will then work by using a same starting point, say ( )0 0 0
1 ,..., Nx x x= . The first 

player will optimize x1 using criterion J1 while the other variables are fixed by the other players. 
The second player will optimize x2 using criterion J2 while the other variables are fixed by the other 
players, and so on. Each player sends his best choice to the others at the end of every Nash design 
cycle. Say, the starting point at m step is the ( )1 1

1 ,...,m m m
Nx x x 1− −= − , where 1m

ix −  is the best design 

found by Player i at  step. 1m −

Then Player i optimizes ix  starting from 1m
ix −  by using 1m

kx − , 1,2,...,k N= , , and the 
best solution of player at step m is 

k i≠

i

 ( ) ( )1 1 1 1 1 1 1
1 1 1 1 1 1,..., , , ,..., inf ,..., , , ,..., .

i i

m m m m m m m m m
i i i i N i i i i Nx X

J x x x x x J x x x x x− − − − − − − −
− + − +∈

= 1

)

 (10) 

At the end of the Nash design cycle, each player sends his best solution to produce the best 
global solution of m step ( 1 ,...,m m m

Nx x x= . Nash Equilibrium is reached when no player can fur-

ther improve his criterion. 

In general, for any [ ], 1,i j N∈  if i jJ J J= =  or deal with a subset of J ′  such that 
1

N
ii

J
=

′ =∑  

J wher , we call the above game the Virtual Game; if 0iJ ′ > [ ], 1,i j N∃ ∈  such that  when 

, we call the above game the Real Game. With this definition, the game theory can also be 
used to capture the optimum solution for a single point design problem using a virtual game ap-
proach. This potential ability is further demonstrated below by numerical experiments. Lastly, it is 
observed that the traditional penalty method is of delicate use in multi-objective design with con-
flicting targets. The present approach provides an easy way to organize the concurrency of criteria 

iJ J≠ j

i j≠
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in a multi-objective design, as demonstrated below in the practical test cases. 

4  Numerical implementation 
4.1  Implementation of adjoint method in Nash game strategies 
Different from the global gradient computation in single-objective optimizations, the Nash game 
needs the partial gradient of the cost function with respect to the partial design variables. In section 
2, we gave the global gradient computation by Adjoint method, and the partial gradient is just the 
global gradient projected onto the corresponding subspace. The projection matrix is the same as 
that of the global design variable space projected onto the subspace of the partial design variables. 

For example, the -dimensional global design variable space is and its -dimensional sub-
space is , where . The projection matrix from to 

n X m
X ′ m n≤ X X ′  is m nA × , where m nA ×  satisfies 

. Then the relation between global gradient  and partial gradient  is (sup-
pose cost function is J) 

m nX A X×′ = radG radG′

 rad rad rad rad, , , ,m n
J JG A G G x X G x X X X
x x

.δ δ
δ δ×′ ′ ′ ′= = ∈ = ∈

′
           ′ ⊂  (11) 

4.2  Distributed computing and numerical procedure 
4.2.1  Distributed computing.  One important concern related to the multi-objective optimum 
aerodynamic shape design is the computational effort demand because we have to analyze multiple 
flow fields and adjoint fields at each design point. Distributed computing on multiple processors is 
the underlying technology which makes an integrated design system possible by providing the 
computational resource necessary to achieve acceptable execution time. In a symmetric Nash game, 
the players make simultaneous and independent decisions, no player is informed of the choice of 
another prior to making a decision. Moreover, each player must be concerned only with its in-
stantaneous payoff and ignore the effects of his current action on the other players’ future behavior. 
Hence, each player (optimizer) can make his decision in a separate processor. After the number of 
design cycles is equal to the frequency of information exchange (i.e. K in Figure 2), each player has 
optimized the design variables corresponding to his own criterion, and is prepared to exchange 
information with others. The process is continued until no player can improve his outcome by 
changing only his own strategy. Then we say the equilibrium point of the game has been reached. 
This equilibrium point is the solution of the multi-objective optimization problem and the design 
procedure stops. 

4.2.2  Numerical procedure.  Suppose for the dual criterion optimization problem, we have two 
design points and two cost functions J1 and J2, and both are minimization problems. So we have 
two players, Player1 is responsible for J1, and Player2 is responsible for J2. A numerical procedure 
of Nash/Adjoint method is described below: 

Step 0 (Initialization).  Specify Nash strategy and split the design variables X according to the 
physics of the optimization problem and the flow field characteristics. For example, , 
and Nash strategy is as follows: 

1 2X X X= ⊗

Player1: ( )
1

1 1 1 2min ,
X

J J X X= ,  Player2: ( )
2

2 2 1 2min ,
X

J J X X= . 

Optimization starts from an initial guess . old old old
1 2X X X= ⊗

Do loop for Nash strategy cycles. 
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Figure 2  Flowchart of numerical procedure for Nash/Adjoint strategies in distributed computing environment. 

 
Load each player’s optimization task on an independent processor, and run at its own design 

point. For player i, adjust  to minimize ,iX iJ 1,2i = , simultaneously. 
Do loop for adjoint optimization iterations, from 1,2,...,k K= . 
Step 1.  Run the CFD solver, outputs being , and the flow field variables. lC dC
Step 2.  Run the adjoint solver. 
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Step 3.  Compute the global gradient. 
Step 4.  Project the global gradient onto the corresponding subspace. 
Step 5.  Modify the partial design variables to get a tentative updated aerodynamic shape. 
End of Adjoint iterations. 
Get new partial design variables . new

iX
Step 6.  Exchange information symmetrically, and construct new global design variables 

, then update the global aerodynamic shape. new new new
1 2X X X= ⊗

End of Nash cycles 
Step 7.  If the Nash equilibrium is reached, then stop; otherwise, old newX X= , and go to the 

beginning of Nash cycle. 
Technical details of the above procedure (discrete state equations, discrete adjoint equations and 

discrete computation of the gradient can be found in refs. [21, 27]. The flowchart of this procedure 
with two players is shown in Figure 2. 

5  Optimization examples and results 

In accordance with the above design optimization methods described in sections 2, 3 and 4, the 
following experiments were performed to confirm the validity and efficiency of the methods. All 
the flow fields were analyzed on a128 38×  mesh with 4864 cells, which has an O-topology illus-
trated in Figure 1(b). The surface of airfoil was parameterized using 28 Hicks-Henne bell-shaped 
functions, 14 of them for the upper surface and 14 for lower surface (see details in ref. [21]). 

5.1  Single-objective airfoil reconstruction in transonic regime via a virtual game strategy 
Here, we introduce the concept of virtual game to treat a single point inverse design problem, and 
regard the single-objective design problem as a special case of multi-objective optimization, where 
the multiple cost functions are exactly the same. The cost function for an airfoil reconstruction 
design is defined in eqs. (12) and (13) via Virtual Games with 2 and 3 players. The low drag airfoil 
in transonic regime (defined in ref. [3]) is chosen as the target. The design conditions are 

, 0.75M∞ = 1α = ° . Starting with the initial geometry of a NACA0012 airfoil, the shape evolves 
with iterations to reconstruct the target pressure distribution. Figures 3 and 4 show the splitting and 
optimization strategies of virtual games with 2 and 3 players, respectively. Each player optimizes 
the same cost function but only modifies the partial portion of shape as follows: 
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where , , are design variables of upper and lower surfaces of airfoil respectively. The 
resulting designed airfoils of the two games are in good agreement with target (see Figure 5), but 
the efficiency is quite different: the calculation is more efficient with a larger number players (see 
Figure 6). 

u
ib l

ib 1,...,14i =

 
Figure 3  Splitting and optimization strategies (2 players). Exchange of information: every 10-10 design iterations. 

 
Figure 4  Splitting and optimization strategies (3 players). Exchange of information: every 5-5-5 design iterations. 

 
Figure 5  Comparison of designed results with target. 

 

5.2  Single point airfoil drag reduction via virtual game strategy 
Here, the concept of virtual game strategy is introduced to deal with the single point optimization 
problem defined as 

 TANG ZhiLi et al. Sci China Ser E-Tech Sci | Nov. 2008 | vol. 51 | no. 11 | 1939-1956 1947 



 

 
( )21

initial 2

initial

min d ,
2

subject  to ,

d
c

l l

J p p s

C C

Ω⎧ = − + Ω⎪
⎨
⎪ =⎩

C

                    

∫  (14) 

where the weighting functions , and . The initial profile is RAE2822 airfoil, 

 is the pressure distribution on initial airfoil. Design conditions are , 
1 0.1Ω = 2 2.9Ω =

initialp 0.73M∞ = 2.0 .α = °  
Three design strategies and their results are presented as follows. 

 
Figure 6  Convergence histories. 

 

5.2.1  Results of front/rear splitting with two players.  The splitting and optimization strategies in 
this experiment are illustrated in Figure 7. In mathematics, we define 
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where Player1 and Player2 optimize the same cost function (defined in (15)), but modify the different 
portion of design variables. Design variables are split into two sets because there are two players in 
the game. The first set is responsible for the modification of front portion (20% of chord length from 
leading edge) of the airfoil by Player1, the second set is responsible for the modification of rear  

 
Figure 7  Splitting and optimization strategies. Exchange of information: every 3-3 design iterations. 
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portion (80% of chord length from the trailing edge) of the airfoil by Player2. Each player makes his 
decision on a separate processor simultaneously, meanwhile keeps the opponent’s design variables 
unchanged, then exchanges the information every 3-3 design iterations. A Nash equilibrium is 
reached after 80 Nash cycles, see Figure 8(b). Figure 8(a) shows the results of this design optimiza-
tion. The numerical results show significant improvements in Cd, the resulting Cd decreased by 
67.4% from 0.0092 to 0.0030 after 240 design cycles, while the lift slightly increased by 3.33%. 

 
Figure 8  (a) Comparison of final results with the initial ones; (b) Nash Equilibrium establishment procedure. 

 

5.2.2  Results of front/middle/rear splitting with three players.  The splitting and optimization 
strategies of this experiment is illustrated in Figure 9. Mathematically, we define 
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There are three players in the game, so the design variables are split into three sets. The three 
players modify different portions of the airfoil (see Figure 9). The frequency of information ex-
change is every 4-4-1 design cycles. Figure 10 shows the results of design and Nash equilibrium 
establishment procedure. The numerical results show significant improvements in Cd, the resulting 
Cd decreased by 66.3% from 0.0092 to 0.0031 after 31 Nash cycles, while the lift slightly increased 
by 3.16%. 

5.2.3  Results of alternation splitting with two players.  In this case, we use the alternation split-
ting illustrated in Figure 11. The mathematical definition of optimization strategy is the same as in 
eq. (15), but blue

cΓ  and Γ  are corresponding to the portions marked in Figure 11. Player1 
works with the design variables with odd number and Player2 works with the even numbered 

red
c
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Figure 9  Splitting and optimization strategies. Exchange of information: every 4-4-1design iterations. 

 
Figure 10  (a) Comparison of final results with the initial ones; (b) Nash equilibrium establishment procedure. 

 
Figure 11  Splitting and optimization strategies. Exchange of information: every 3-3 design iterations. 

 

design variables. Exchange of information is at every 3-3 design iterations. Figure 12 shows the 
results and Nash equilibrium establishment procedure. The numerical results also show remarkable 
improvements in Cd, the resulting Cd decreased by 66.3% from 0.0092 to 0.0031 after 82 Nash 
cycles, while the lift slightly increased by 3.81%. 

If the number of players is increased, e.g. 4 or 5, we can find that the optimization is more effi-
cient with the increase of the sub-tasks by splitting the design task into multiple sub-tasks and dis-
patching each sub-task to a separate processor (see Figure 13). This is an important merit of the 
Virtual Game strategy in distributed computing environment for single-point optimization problem. 
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Figure 12  (a) Comparison of final results with the initial ones; (b) Nash Equilibrium establishment procedure. 

 
Figure 13  (a) Comparison of drag histories computed by different numbers of players with different splitting; (b) convergence 
behavior of each player in the virtual Nash game strategies with 4 players. 

 

5.3  Two-point airfoil drag reduction via real game strategy 
We attempt to reduce the drag of an airfoil at two transonic points. This multi-objective optimiza-
tion problem is defined as follows: 
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 (17) 

where the initial airfoil is still RAE2822, and the two weighting functions still are , and  1 0.1Ω =

2 2.9Ω = . Firstly, we evaluate a transonic Euler flow at  and 0.70M∞ = 5.0α = °  on RAE2822,  

and calculate the pressure ; secondly, we evaluate the other transonic Euler flow at 1dp M∞ =  

0.75 and 2.0α = ° , and calculate the pressure . We try to modify the RAE2822 airfoil        
to reduce both drags simultaneously under fixed lift mode in the two design conditions. Two op- 

2dp
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timization strategies and their results are presented as follows. 

5.3.1  Results of front/rear splitting with two players.  In this case, Player1 and Player2 minimize 
simultaneously the airfoil drag at the two independent transonic points. Each player works at one 
design point by modifying the different portion of design variables illustrated in Figure 14. 
Mathematically, we define 
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Figure 14  Splitting and optimization strategies. Exchange of information: every 2-2 design iterations. 

 

The frequency of information exchange is 
every 2-2 design iterations. Nash equilibrium 
is reached when no player can improve his 
outcome by changing only his own design 
variables (see Figure 15). Figure 16 shows 
the results of this case, which indicate that 
Euler optimization procedure produces the 
weaker shock at both design points. The 
numerical results show the significant im-
provement in Cd at each design point. The 
resulting Cd of Player1 is decreased by 26.0% 
from 0.0501 to 0.0371 after 140 design cy-
cles while the lift is slightly decreased by 
7.51%; Cd of Player2 decreased by 80.3% 

from 0.0223 to 0.0044 while the lift slightly increased by 1.03%. 

 
Figure 15  Convergence history of the design procedure and the 
Nash Equilibrium establishment. 

5.3.2  Results of alternation splitting with two players.  Different from the above design case, the 
alternation splitting is used in this experiment (see Figure 17). The mathematical definition of 
optimization strategy is the same as in eq. (18), but blue

cΓ  and red
cΓ  correspond to the portions 

marked in Figure 17. That is to say, Player1 works with the odd numbered design variables, Player2  
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Figure 16  Comparison of final results with the initial ones at two design points. 

 
Figure 17  Splitting and optimization strategies. Exchange of information: every 2-2 design iterations. 

 
works with the even numbered design vari-
ables. The frequency of information ex-
change is still every 2-2 design iterations. 
Figure 18 gives the procedure of Nash equi-
librium establishment. Figure 19 shows the 
results of this optimization. Numerical results 
show significant improvements in Cd at each 
design point. The resulting Cd at first design 
point is decreased by 32.9% from 0.0501 to 
0.0336 by Player1 after 140 design cycles 
while the lift slightly is decreased by 4.33%, 
and the resulting Cd at second design point 
decreased by 65.6% from 0.0223 to 0.0077 
by Player2 while the lift slightly decreased by 
4.07%. The numerical results in this section is different from that in the above subsection. This is 
due to the fact that different Nash equilibrium can be reached by different territory splitting in real 
game strategy. 

 
Figure 18  Convergence history of the design procedure and the 
Nash Equilibrium establishment. 
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Figure 19  Comparison of final results with the initial ones at two design points. 

 

5.4  Two-point airfoil lift maximization/drag minimization design via real game strategy 

In this section, we will treat the confronted multi-objective optimum design problem to show 
further the flexibility and efficiency of the game theory, where the traditional multi-objective op-
timization methods exhibit their inherent shortcoming because it is difficult to organize the design 
problem under conflict. The test case is defined as follows: 

 ( )

1

21
2 2

initial

max at 0.35,  8.0 ,

min d
2 at 0.75,  2.0 ,

subject  to  

l

d d
c

l l

J C M

J p p s C
M

C C

α

α

∞

∞

= =⎧
⎪ Ω ⎫⎪ = − + Ω⎨ ⎪

= °

= = °⎬⎪
⎪⎪ = ⎭⎩

∫

  

                                     

 

                  

 (19) 

where  and Ω = , the initial airfoil is still RAE2822.  is the pressure distribution 

on RAE2822 at and 
1 0.1Ω = 2 2.9 dp

0.75M∞ = 2.0α = ° . Design aims at making a proper modification on initial 
shape and achieving a better lift performance in subsonic flow, with shock wave drag in transonic 
flow as low as possible. 

The splitting and optimization strategies are illustrated in Figure 20. The mathematical defini-
tion of the strategy is 
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∫  (20) 

Player1 and Player2 maximize lift/minimize drag of an airfoil simultaneously at the two different 
design points by modifying the separate portions of airfoil. Each player works on a separate 
processor independently. After 3 design iterations, players exchange their latest design variables to 
construct a new airfoil. Repeat this process until no player can improve his outcome by changing 
only his own design variables. The numerical results show remarkable improvement in Cl at sub-
sonic design point and significant improvement in Cd at transonic design point. Because the re-
sulting Cl of Player1 is increased by 6.38% from 1.1436 to 1.2166 after 80 design iterations, 
meanwhile, the resulting Cd of Player2 is decreased by 34.5% from 0.0223 to 0.0146 (see Figure 
21). Figure 22 gives the histories of lift and drag at each design point, which indicate that the Nash  
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Figure 20  Splitting and optimization strategies. Exchange of information: every 3-3 design iterations. 

 
Figure 21  Comparison of final results with the initial ones for two design points. 

 
Figure 22  Convergence history of the optimization procedure. 

 

Equilibrium is reached because all of them do not change any more information as the number of 
design iteration increases. 

6  Conclusion 

In this paper, a novel approach described in ref. [21] is used successfully in more practical aero-
dynamic optimization to treat multi-point design problems. A Nash Equilibrium is reached when 
each player, constrained by the strategies of the others, cannot improve further his own target. 
Specific virtual and real symmetric Nash games are introduced and implemented to set up an op-
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timization strategy for design under conflict. 
For the single point design, the optimization process can be accelerated by splitting the design 

task into multiple sub-tasks and distributing each subtask to a separate processor. Moreover, the 
calculation is more efficient with a larger number of sub-tasks. This is an important merit of the 
game approach in parallel computing. 
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