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Abstract
This study describes the application of intelligent control systems in textile engineering 
and how to use these approaches for developing a spun yarn quality prediction system. 
The Multilayer Perceptron Neural Network(MLPNN), Support Vector Machines(SVMs), 
the Radial Basic Function Network(RBFN), the General Neural Network(GNN), the Group 
Method of Data Handling Polynomial Neural Network (GMDHPNN) and Gene expres-
sion Programming (GEP), generally called intelligent techniques, were used to predict the 
count-strength-product (CSP). Fiber properties such fibre strength (FS), micronaire (M), 
the upper half mean length (UHML), fibre elongation(FE), the uniformity index (UI), yel-
lowness (Y), grayness (G) and short fibre content (SFC) were used as inputs. The predic-
tion performances are compared to those provided by the classical Linear Regression (LR) 
model. The SVMs model provides good prediction ability, followed by the GEP and LR 
models, respectively. Graphs illustrating the relative importance of fibre properties for CSP 
were plotted. Fiber strength (FS) is ranked first in importance as a contributor to CSP by 
the five models, while fibre elongation (FE) ranks second. By means of the yarn strength 
learned surfaces on fibre properties, the study shows how to control  yarn quality using  
knowledge of fibre properties.  
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n	 Introduction
As yarn strength is the principle com-
ponent yarn quality and the most im-
portant index of spinning quality, pre-
dicting yarn strength is very important 
from a technological point of view. The 
relationship between fibre properties 
and yarn properties has been the focus 
of extensive research, and considerable 
success has been achieved. Many mathe-
matical models have been used to under-
stand and predict the complex relation-
ships between fibre parameters and yarn 
characteristics, and substantial research 
has been done to determine methods of 
predicting yarn properties. The classical 
linear regression (LR) approach has been 
used more intensively for the prediction 
of yarn strength. But it also has limita-
tions due to its inability to show how 
such fibre properties contribute to yam 
strength. In recent years, artificial intelli-
gent techniques have been widely used in 
mapping highly nonlinear and complex 

quality. The Multilayer Perceptron Neu-
ral Network (MLPNN), Support Vector 
Machines (SVM), the Radial Basis Func-
tion Network (RBFN), the General Re-
gression Neural Network (GRNN), the 
Group Method of Data Handling Poly-
nomial Neural Network (GMDHPNN), 
and Gene Expression Programming 
(GEP), generally called intelligent tech-
nique models, were used to predict the 
spun yarn strength from fibre properties, 
and their performances were compared 
to those of the Linear Regression (LR) 
model. We used these methods to de-
termine the relative importance of fibre 
properties for yarn strength. More details 

relationships in many areas of engineer-
ing. They have been used as model pre-
dictive control technologies and it was 
shown that they can calculate control 
variables where classical mathematical 
and statistical models have failed [1 - 6]. 
 However, their power performances are 
still questionable and many other stud-
ies have to be conducted in order to as-
sess the approximate power performance 
of each model. In textile engineering, 
some studies using those methods have 
been conducted and it was shown that 
they can lead to a quick convergence 
of the predefined quality specifications 
with a small number of trials and low 
cost [5,  6]. Moreover, multifunctional 
textile materials have been significantly 
developed, with such materials being 
mostly used for producing high-valued 
products. Furthermore engineers are 
strongly involved in the development of 
new advanced materials in order to sat-
isfy complex customer requirements and 
specifications. In this study, the strength 
of yarn was chosen as one of the most 
important qualities. As yarn strength de-
pends on fibre properties, it is very im-
portant to establish the relation between 
yarn strength and fibre properties. How-
ever, the nonlinear relationship between 
yarn strength and its components has 
complicated the problem. Therefore, the 
development of predictive modelling of 
yarn strength is still significant both in 
theory and in practice.

The main objective of this study was 
to explore the new intelligent technolo-
gies and attempt to use them as new 
approaches to predict and control yarn 

Table 1. Cotton fibre properties selected; 
*Measured by Uster AFIS. 

Variables Description of 
variables  Units

FS Fiber strength g/tex

UHML Upper half mean 
length mm

UI Uniformity index %
M Micronaire µg/mm
G Grayness Rd
Y Yellowness +b
E Elongation %

SFC Short fibre content* %by weight
YC Yarn count tex

Table 2. Spinning parameters.

Spinning parameter Values
Nominal yarn number, tex 19.68
Rotor speed, r.p.m. 55000
Opening roller speed, r.p.m. 6700
Draft (approximate) 198
Twist multiplier, t.p.m. 188.18
Yarn speed, m/min 53.31
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Figure 1. The relative importance of individual proper-
ties on CSP predicted by: a) MLPNN, b) GEP, c) SVMs,  
d) GRNN, e) RBF, f) GMDHNN, g) LR.

a) b)

c) d)

e) f)

g)

on the theory and applications of these 
new intelligent technologies can be found 
in a number of publications [8 - 15].

n	 Collection of data 
Fiber and yarn data, along with detailed 
explanations of equipment and proce-
dures were collected from the cotton crop 

study data of 1997 published by the In-
ternational Textile Center [7]. Eight cot-
ton fibre properties measured by a High 
Volume Instrument (HVI) and Uster 
AFIS were selected, given in Table  1. 
All the spun yarns were produced on an 
open-end spinning machine with 30/1 
yarn counts (YC) in tex. The spinning 
machine parameters and their values are 

given in Table 2. The rotor speed, open-
ing roller speed and twist multiplier were 
held constant during the processing. The 
skein method was used to test the yarn 
strength. A set of 34 samples was used to 
train and test the models. Since multiple 
yarn sizes were spun from each cotton 
bale sampled, the yarn count (YC) was 
also included as an input variable. 
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ear regression (LR) model in order to 
have a concrete idea of the performance 
power of each model. The training results 
are given in Table 5. However, the final 
comment on overall prediction perform-
ances should made by analysing the test 
results. After the training, the models 
were subjected to unseen testing data. 
Results from the LR statistical analysis 
are summarised in Tables 3 and 4, and 
the resulting expressions generated - LR 
and GEP are given by Equations 5 and 6, 
respectively: 

LR: CSP = 42.54 × FS + 364.42 × 
× UHML + 29.03 × UI - 71.21 × M + 

+ 5.59 × G + + 23.20 × Y - 20.16 × FE +
+ 2.87 × SFC - 34.88 × YC - 954.75

 (5)

GEP: CSP = (((SFC+ (18.258451 × Y)) +
- (10.502118 × G)) + (UHML +    (6)

+ ((FS - 10.05878) × G))) - (-1193.8948) 

A comparison of the validation results is 
in Table 6. We can now look at the dif-
ferences in the results obtained by the 
different methods. The lowest values of 
RMSE, MAE and MAPE were provided 
by the support vector machines (SVMs) 
model, followed by gene expression 

n	 Methods
For implementation, commercially 
available predictive modeling software, 
namely Decision Tree and Regression 
(DTREG) [16] was used to execute both 
of the models. The prediction perform-
ance of each method was evaluated using 
the following statistical metrics, namely, 
the Mean Squared Error (RMSE), Mean 
Absolute Error (MAE) and Mean Abso-
lute Percentage Error (MAPE). RMSE 
and MAE are measures of the deviation 
between the actual and predicted val-
ues. The smaller the values of RMSE 
and MAE, the closer the predicted CSP 
values are to the actual CSP values. All 
these methods of comparison are defined 
as follows:
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where n is the number of pairs; Oi and 
Op are i-th desired output and calculated 
output, respectively. 

As a validation method, the ten-cross 
validation method was used for all meth-
ods, except for GEP and GRNN. With the 
ten-cross validation method, one subset 
was chosen for testing, and the remaining 
nine subsets were used for training. The 
process was repeated until all the subsets 
were chosen for testing. 

For the GRNN method, the leave one 
out method was used for validation. The 
process of removing unnecessary neu-
rons is an iterative process. Leave-one-
out validation was used to measure the 
error of the model with each neuron re-
moved. The neuron that caused the least 
increase in error (or possibly the largest 
reduction in error) was then removed 
from the model. The process was repeat-
ed with the remaining neurons until the 
stopping criterion is reached. 

For the GEP model, fitness was based 
on how well the individual modelled the 
data. As the target variable had continu-
ous values, the fitness was based on the 
difference between predicted values and 
actual values. Evolution stopped when 
the fitness of the best individual in the 
population reached a certain limit that 

was specified for the analysis or when a 
specified number of generations had been 
created or a maximum execution time 
limit was reached. After the generation 
of the population, the individual fitness 
value was computed using the following 
expression:

100( ( ))F M C T
M n

= − −
×∑    (4)

where M is the range of selection; C 
denotes the value returned by the target 
gene; T is the target value, and n is the 
population size.

Thus each chromosome has a fitness 
value. The greater the fitness value, the 
better it describes the data. More details 
can be found in [14]. 

n	 Results and discussion
Comparison analysis of the 
performances of different models
The goal of this part of the research is to 
compare the prediction results provided 
by SVMs, RBFN, GMDHNN, MLPNN, 
GRNN and GEP, generally called intel-
ligent techniques, as well as by the lin-

Table 3. Summary of the results from LR statistical analysis.

Fibre properties Coefficient Std. Error t P(t)
FS 42.54 8.82 4.82 0.00006

UHML 364.42 333 1.09 0.28477
UI 29.03 20.7 1.40 0.17320
M -71.21 56.8 -1.25 0.22224
G 5.59 6.19 0.90 0.37491
Y 23.20 21.7 1.07 0.29527

FE -50.16 28.9 -1.74 0.09556
SFC -2.87 5.72 -0.50 0.62013
YC -34.88 66 -0.53 0.60223

Constant -954.71 2945 -0.32 0.74859

Table 4. Anova and F statistics (validation).

Source DF Sum of squares Mean square F value Prob (F)
Regression   9 602762.8 66973.64 2.451 0.038450

Error 24 655683.5 27320.14
Total 33 1258446

Table 5. Comparison analysis of the training results of the seven models. 

Statistical parameter SVMs RBFN GMDHNN MLPNN GRNN GEP LR
RMSE 75.56 65.12 62.85 81.97 59.48 93.07 82.27
MAE 44.34 50.41 45.55 62.32 43.37 75.57 64.85

MAPE   2.24  2.55   2.30   3.18   2.19   3.84   3.29

Table 6. Comparison analysis of the validation results of the seven models. 

Statistical parameter SVMs RBFN GMDHNN MLPNN GRNN GEP LR
RMSE 120.03 208.44 425.17 162.73 148.82 124.52 138.86
MAE   82.87 131.63 180.05 100.91   89.65   93.69   97.73

MAPE     4.07     6.39     9.31     4.89     4.28     4.70     4.84
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programming (GEP) and linear regres-
sion (LR), respectively. These results are 
acceptable for test data, indicating the 
ability of the three models to generalise 
training data well for the prediction of 
new conditions. Hence, the results imply 
the acceptable prediction ability of the 
models. The highest values of RMSE, 
MAE and MAPE were provided by GM-
DHNN, followed by RBFN, MLPNN 
and GRNN, respectively. These models 
do not generalise the training data in this 
study.

Importance of individual properties  
of fibres for CSP
In this section, we analyse the impor-
tance of individual properties of fibre 
for CSP. The models determine the most 
important variables. Graphs represent-
ing the order of importance of individual 
properties of fibre for the CSP obtained 
by each method are shown in Figure 1 
(see page 23). From Figure 1 we can see 
that the CSP is influenced, to a greater or 
lesser degree, by fibre properties. Fibre 
strength (FS) is ranked first in importance 
as a contributor to CSP by five models: 
MLPNN, GEP, SVMs, GRNN, RBF and 
LR. This is in agreement with previous 
observations in textile literature. Fibre 
elongation (FE) ranks seconds, and the 
remaining fibre properties may contrib-
ute to CSP to a lesser degree.

CSP quality control decision by 
learned surface analysis
In order to qualitatively study the effects 
of fibre properties on yarn strength, re-
sponse surfaces plots were generated 
using the relationships obtained. The 
surface viewer provides a 3-dimension-
al view of the relationship between the 
two inputs and the output of the system, 
which allows to check the behaviour of 
the output across the entire range of pos-
sible input combinations. The surface 
viewer shows the entire output surface 
of the system, which is the entire span of 
the output set based on the entire span of 
the input set. Hence a three dimensional 
output surface can be generated where 
any two inputs vary while the others 
must be held constant. Figures 2 and 3 
show the learned surfaces for two fibre 
properties with all other fibre proper-
ties held constant. This surface would 
be an initial estimate of the presence 
of nonlinearity. Since a combination of 
two fibre properties has a positive im-
pact on yarn strength, the yarn strength 
learned surface is smoothly continuous 

in an upward direction, for example the 
learned surface on fibre strength and the 
uniformity index (Figure 2). However, 
when a combination of two fibre prop-
erties has a negative impact on yarn 
strength, the resulting surface exhibits 
discontinuity, as is shown in the case of 
the combination of micronaire and fibre 
strength (Figure 3). This type of analy-
sis uses different combinations of fibre 
properties that assure the quality control 
desired in the CSP. 

n	 Conclusions
This work gives new approaches for 
predicting yarn quality, specifically the 
application of the new intelligent tech-
niques to model spun yarn strength pre-
diction. The Multilayer Perceptron Neu-
ral Network(MLPNN), Support Vector 
Machines(SVMs), the Radial Basis Func-
tion Network(RBFN), the General Neu-
ral Network(GNN), the Group Method of 
Data Handling Polynomial Neural Net-
work (GMDHPNN) and Gene expression 

Figure 2. Response surfaces for yarn strength in terms of fibre strength and micronaire with 
all other fibre properties held constant.

Figure 3. Response surfaces for yarn strength in terms of fibre strength and micronaire with 
all other fibre properties held constant.
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Programming(GEP), generally called 
intelligent techniques, were used to pre-
dict the count-strength-product (CSP).

Fibre properties such fibre strength (FS), 
micronaire (M), the upper half mean 
length (UHML), fibre elongation (FE), 
the uniformity index (UI), yellowness 
(Y), greyness (G) and short fibre content 
(SFC) are used to predict the CSP. The 
prediction performances have been com-
pared to those provided by the classical 
Linear Regression (LR) model. Graphs 
illustrating the relative importance of fi-
bre properties for CSP have been plotted. 
Fiber strength (FS) was ranked first in 
importance as a contributor to CSP by the 
five models, fibre elongation (FE) ranks 
second, and the remaining fibre proper-
ties do not contribute significantly to CSP. 

In order to qualitatively study the effects 
of fibre properties on yarn strength, re-
sponse surfaces plots were generated us-
ing the relationships obtained. The com-
parison with conventional methods indi-
cated that these new approaches worked 
better in the prediction of yarn strength. 
The study has synthetised all the main 
new intelligent methods in order to evalu-
ate and compare their performances. This 
will facilitate engineers, with respect to 
the type of the data, in choosing an ap-
propriate and powerful model. 
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