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Abstract. Swarm Intelligence (SI) is an innovative distributed itiggint paradigm whereby the
collective behaviors of unsophisticated individuals iatging locally with their environment cause
coherent functional global patterns to emerge. In this pape model the scheduling problem for
the multi-objective Flexible Job-shop Scheduling ProldgifRISP) and attempt to formulate and
solve the problem using a Multi Particle Swarm OptimizaiiptiPSO) approach. MPSO consists of
multi-swarms of particles, which searches for the openati@er update and machine selection. All
the swarms search the optima synergistically and maintaibalance between diversity of particles
and search space. We theoretically prove that the multiraveynergetic optimization algorithm
converges with a probability of 1 towards the global optirie details of the implementation for
the multi-objective FJSP and the corresponding compurtatexperiments are reported. The results
indicate that the proposed algorithm is an efficient apgrdacthe multi-objective FISP, especially
for large scale problems.
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1. Introduction

Flexible job-shop scheduling problem is an extension ofdlassical JSP, which allows an operation
to be processed by any machine from a given set. It incorgeralt the difficulties and complexities
of its predecessor JSP and is more complex than JSP becatlse additional need to determine the
assignment of operations to the machines. The job shop ibl#éeke. there are multiple job routes. The
scheduling problem of a FISP consists of a routing sub-enobthat is, assigning each operation to a
machine out of a set of capable machines and the schedulngreblem, which consists of sequencing
the assigned operations on all machines in order to obtadasilfle schedule minimizing a predefined
objective function. It is quite difficult to achieve an optihsolution with traditional optimization ap-
proaches owing to the high computational complexity. Bus ibne of the most critical issues in the
planning and managing of manufacturing processes. Marstipahproblems have an underlying job-
shop structure, such as multiprocessor task schedulimgprerouting, robotic cell scheduling, project
scheduling, railway scheduling, air traffic control.

Particle Swarm Optimization (PSO) incorporates swarmiabaviors observed in flocks of birds,
schools of fish, or swarms of bees, and even human social ioeh&rom which the intelligence is
emerged [1, 2]. It has become the new focus of research ted¢dn#, 5, 6, 7, 8, 9]. As an algorithm,
its main strength is its fast convergence, which companesdhly with many other global optimization
algorithms. However, for some complex problems, it oftemdestrates faster convergence speed in the
first phase of the search, and then slows down or even stope asinber of generations is increased.
Once the algorithm slows down, it is difficult to achieve betlitness values. This state is called as
stagnation or premature convergence. It is found that trerraviends to collapse too fast when the
process converges. In this paper, a multi-swarm PSO istige¢sd for solving the multi-objective FISP.
We introduce multi-swarms of particles to map differentessdin the multi-objective FISP, in which
particles search for operation order update while otheaschefor machine selection. All swarms search
the optima synergistically and maintain the balance betvabeersity of particles and search space. The
details of implementation for the multi-objective FJSP #relcorresponding computational experiments
are reported in this paper.

The rest of the paper is organized as follows. Related wdrksitaFJSP is reviewed in Section 2.
We analyze the main factors of the multi-objective FISP anahdilate them in Section 3. In Section 4,
particle swarm models are introduced and the MPSO modekixithed in detail. In Section 5, we theo-
retically prove the properties related to the encodingasgntation and the convergence of the proposed
algorithm. Experiment settings, results and discussioagi®zen in Section 6. Finally Conclusions are
given in Section 7.

2. Related works

Flexible Job-shop Scheduling Problem has been drawingrefsers’ attention worldwide, not only be-
cause of its practical and theoretical importance, but blstause of its complexity. The FIJSP is a
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NP-hard optimization problem [10, 11, 12]. Different appebes have been proposed to solve this prob-
lem. Bruker and Schlie [13] illustrated a polynomial algion for solving flexible job shop scheduling
problems with two jobs. When the number of machines and thémmsm number of operations per job
are fixed, Janseet al. [14] provided a linear time approximation scheme. Maslraind Gambardella
[15] proposed some neighborhood functions for FISP. Becaluthe intractable nature of the problem
and its importance in both fields of practical applicatiod anmbinatorial optimization, it is desirable to
explore other avenues for developing heuristic and metatieualgorithms. Pezzellagt al. [16] clas-
sified them into two main categories: hierarchical approauth integrated approach. The hierarchical
approach attempts to solve the problem by decomposingitisequence of subproblems, with reduced
difficulty. Job routing and sequencing are usual studiedrseely [17, 18, 19, 20, 21, 22]. Most of them
solve the assignment problem using some dispatching raelsthen solve it using different tabu search
heuristics. Integrated approach is much more difficult twesobut in general achieves better results.
Hurink et al. [23] developed tabu search algorithms to solve the probRauzére-Pérés and Paulli [24]
extended the classical disjunctive graph model for job subeduling to take into account the fact that
operations have to be assigned to machines in the FISP. Basled extended disjunctive graph, a new
neighborhood structure is defined and a tabu search prazédprovided to solve the problem. Brandi-
marte [20], Mastrolilli and Gambardella [25], Saidi-Meheal and Fattahi [26] presented tabu search
algorithms that solve the flexible job shop scheduling mrobto minimize the makespan time.

More researchers attempt to solve the FISP using genetidthlgs [16, 27, 28, 29]. Zhang and Gen
[30] proposed a multistage operation-based GA to deal Wwithproblem from a point view of dynamic
programming. Cheet al. [31] split the chromosome representation into two pahts first defining the
routing policy, and the second the sequence of operatioreaoh machine. Jiat al. [32] proposed a
modified GA able to solve distributed scheduling problemd ean be adapted for FIJSP. Ho and Tay
[33] proposed an efficient methodology called GENACE base@ cultural evolutionary architecture
for solving FISP with recirculation. Het al. [34] proposed an architecture for learning and evolving of
Flexible Job-Shop schedules to improve the computatiama &nd quality of schedules. Orgjal. [35]
applied the clone selection principle of the human immursesy to solve FISP with re-circulation.

In many real-world FJSP, it is often necessary to optimiaeisg criteria [36]. Minimization of
makespan, lateness, tardiness, flow time, machine idle imek such others are unusual the important
criteria in the problems. Kacemt al. [37, 38] study on modeling genetic algorithms for FISP.eVan
et al. [39] investigate an evolutionary algorithm-based apginoBor scheduling of customers’ orders
in factories of plastic injection machines (FPIM) as a cakesal-world flexible job shop scheduling
problem. They attempt to develop an efficient schedulingimeufor planning the assignment of the
submitted customers’ orders to FPIM machines. The resbitgireed for evolving a schedule of 400
customers’ orders on experimental model of FPIM indicaé the business delays in order of half-an-
hour can be achieved.

Recently, swarm intelligence and multiagent techniques latracted the attention of several re-
searchers from different application domains. Liouabal [40] proposed a hybrid algorithm based
on ant systems and local search optimization for FISP. BluinSamples [41] illustrated a neighbor-
hood structure for the problem by extending the well-knowighborhood structure derived by Nowicki
and Smutnicki [42] for the job shop scheduling problem. Thibe authors developed an ant colony
optimization approach, which uses a strong non-delay gaildor constructing solutions and which
employs black-box local search procedures to improve thetoacted solutions. Wu and Weng [43] pro-
posed a multi-agent scheduling method with job earlinegs@mliness objectives in a flexible job-shop
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environment. The computational experiments show that tbpgsed multi-agent scheduling method is
quite fast. By hybridizing particle swarm optimization asichulated annealing, Xia and Wu [44] de-
veloped a hybrid approach for the multi-objective flexildé-shop scheduling problem. Sha and Hsu
[45] applied Giffler and Thompson’s heuristic [46] to decalparticle position into a schedule. The
computational results show that their approaches canrobttier solutions. They also point out the
future works: (1) modify particle position representatfon better suitability to the problem; (2) design
other particle movement methods and particle velocity Hiermodified particle position representation.
As Baykasoglwet al [47] discussed, the most important issue in employing rhetaistics for combi-
natorial optimization problems is to develop an effectipedblem mapping” and “solution generation”
mechanism. If these two mechanisms are devised succgs#figh it is possible to find good solutions
to a given optimization problem in an acceptable time.

3. Problem and Formulation

We focus on flexible job-shop scheduling problems compos$éuedollowing elements:

e Jobs.J ={Jy,---,J,} is asetofn jobs to be scheduled. Each jdbconsists of a predetermined
sequence of operationg); ; is the operatiory of J;. All jobs are released at time 0.

e Machines.M = {M,--- , M,,} is a set ofm machines. Each machine can process only one op-
eration at a time. And each operation can be processed wititetruption during its performance
on one of the set of machines. All machines are availablere @.

¢ Flexibility. The multi-objective FISP usually is classifimto two types as follows:

— Total FISP (T-FJSP): each operation can be processed onaatyna of M .
— Partial FISP (P-FJSP): each operation can be processe@ ona@hine of subset aff.

e Constraints. The constraints are rules that limit the pdssissignments of the operations. They
can be divided mainly into following situations:

Each operation can be processed by only one machine at adisjigngtive constraint).
Each operation, which has started, runs to completion fmeamption condition).
Each machine performs operations one after another (dgEaristraint).

Although there are no precedence constraints among opesatf different jobs, the prede-
termined sequence of operation for each job forces eactatiperto be scheduled after all
predecessor operations (precedence/conjunctive coristra

— the machine constraints emphasize the operations can besgexd only by the machine from
the given set (resource constraint).

e Objective(s). Most of the research reported in the litematg focused on the single objective
case of the problem, in which the objective is to find a scheethét has minimum time required
to complete all operations (minimum makespan). Some othgctives, such as flow time or
tardiness are also important like the makespan. Currentiys been paid more attentions to
investigate the problem from a multiobjective perspectités desirable to generate many near-
optimal schedules considering multiple objectives.
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To formulate the objective, defin€; ;5. (i = 1,2,--- ,n;j = 1,2,--- ,a; k = 1,2,--- ;m) as the
completion time that the machind, finishes thej-th operationO; ; of job 4; > C), represents the time
that the machiné/;, completes the processing of all the assigning jobs. Défipg, = > ;- (> Cy)
as the flowtime, and,,,... = maz{>_ C}} as the makespan. The problem is thus to both determine an
assignment and a sequence of the operations on all machataninimize the criteria:

e The sum of the completion times (flowtime),,....

e the maximum completion time (makespan);, .. -

Let A(t) be the set of operations being processed at tiaed letr; ; , = 1 if operation; of job i is
assigned on machirieto be processed and; ., = 0 otherwise. Letl; ; denote the duration (processing

time) of operatiory of job i. The conceptual model of the multi-objective FISP can bmddated the
following way:

Minimize  f(Crazs Csum) 1)
subject to :
Ci,j,k < Ci,j+17k — di,j+1~ j=1,---,a—1. (2)
Z rije <1, ke M;t>0. 3)
JEA(?)
Cijk>0, i=1,-.,n. 4

Minimizing C,.,, asks the average job finishes quickly, at the expense oftpedigiob taking a long
time, whereas minimizing’,,...., asks that no job takes too long, at the expense of most jklrgta long
time. Minimization of C,,., would result in maximization of’;,.,,. The weighted aggregation is the
most common approach to the problems. According to thiscambr, the objectives; = min{Cyy, }
and fo = min{C},,4, }, are summed to a weighted combination:

f = min(wy fi + w2 f2) ©))

where) is the scaling factor, which is the average number of mastee operationiy; andw, are non-
negative weights, and, + w, = 1. These weights can be either fixed or adapt dynamically duhia
optimization [48]. The fixed weighted aggregatidn'%) is used in the paper. Alternatively, the weights
can be changed gradually according to the Eqgs. (6) and (@ vahation for different values af; and
ws (R = 200) are illustrated in Fig. 1.

wi(t) = |sin(27t/R)| (6)

wa(t) =1 —wi(t) (7

Definition 3.1. A flexible job-shop scheduling problem can be definedps- (J,0, M, f). The key
components are jobs, operations and machines. For the takepify, the scheduling problem also be
represented in triplé® = (J,0, M).
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Figure 1. Dynamic weight variation.

The complexity of FISP increases with the number of comiramposed and the size of search
space employed [49]. Except for some highly restrictedigpeases, very simple special cases of FISP
are already strongly NP-hard. For the FISP, the size of lsesrace ign!)™, and for this reason, it
is computationally infeasible to try every possible sauati This is because the required computation
time increases exponentially with the problem size. In fitac many real-world FJSPs have a larger
number of jobs and machines as well as additional conssramd flexibilities, which further increase its
complexity. For the same number of machines and jobs, th@3®Rks more difficult to solve than the
T-FJSP. Therefore, the P-FJSP is transformed to the T-FJ@Bding ‘infinite processing times’ to the
unused machines and to solve the latter instead in [37]. Mexyvelthough the P-FJSP is a generalization
of the T-FJSP, Het al. illustrated the distinguish between the problem typesBI$P and P-FISP [34].

4. PSO algorithms for FISP

For applying the particle swarm algorithm successfullydoy problem, one of the key issues is how to
map the problem solution to the particle space, which afféstfeasibility and performance [50]. We

introduce a novel multi-swarm approach to explore the bstikutions for the FISP. In this section, we
firstly review PSO briefly and discuss how to solve the FISRgusiulti-swarm algorithms.

4.1. Review of standard PSO

The standard PSO model consists of a swarm of particles maviad-dimensional search space where
the fitnessf can be calculated as a certain quality measure. Each pahnthsl a position represented by
a position-vectorz; (i is the index of the particle), and a velocity represented bglacity-vectord;.
Each particle remembers its own best position so far in aoveggtand itsj-th dimensional value ig; ;.
The best position from the swarm thus far is then stored inctove™, and itsj-th dimensional value
is pj. During the iteration time, the update of the velocity from the previous velocity isetietined by
Eq. (8). Subsequently, the new position is determined bystime of the previous position and the new



H. Liu et al./ Multi-swarm approach to Multi-objective FISP 7

velocity by Eq. (9).

v () = wv; j(t — 1) +err1(pij(t — 1) — x5t — 1)) ®)
+ CQTQ(p}((t — 1) — xi,j(t — 1))

i j(t) = wij(t — 1) + v 5(t) ©)

wherer; andr, are the random numbers, uniformly distributed within thieiwal [0,1] for thej-th
dimension ofi-th particle. ¢; is a positive constant termed as the coefficient of the selbgnition
componentg; is a positive constant termed as the coefficient of the seo@iponent. The variable

is the inertia factor, for which value is typically setup tary linearly from 1 to O during the iterated
processing. From Eq. (8), a particle decides where to moxe oensidering its own experience, which
is the memory of its best past position, and the experienite nfost successful particle in the swarm. In
the particle swarm model, the particle searches the solitiothe problem space within a ranges, s]

(If the range is not symmetrical, it can be translated to tireesponding symmetrical range.) In order to
guide the particles effectively in the search space, theémmax moving distance during one iteration is
clamped in between the maximum velodityv,,qz , Umaz ] given in Eq. (10), and similarly for its moving
range given in Eq. (11):

vij = sign(vi;)min(|vi;l , vmaz) (10)
ij = sign(z;;)min(|zi ;| , Tmas) (11)

The value ofv,,.; iS p x s, with 0.1 < p < 1.0 and is usually chosen to bei.e. p = 1. The pseudo-
code for particle-search is illustrated in Algorithm 1. Tparticle swarm algorithm can be described
generally as a population of vectors whose trajectoriedllagcaround a region which is defined by
each individual’'s previous best success and the successr# ether particle. Bergh and Engelbrecht
[51] overviewed the theoretical studies, and extend thasdies to investigate particle trajectories for
general swarms to include the influence of the inertia terheyTalso provided a formal proof that each
particle converges to a stable point. It has been shown lieatrajectories of the particles oscillate as
different sinusoidal waves and converge quickly. Liu andaklam [52] analyze the chaos and effects of
the change in the velocities of particles. Eberhart and Kdyrtalled the two basic methods abést
model” and Tbest model” [1]. In thébest model, particles have information only of their own #reir
nearest array neighbors’ best, rather than that of the wdvadem. Namely, in Eq. (8)ybest is replaced
by Ibest in the model. Thibbest model allows each individual to be influenced by somdlemraumber of
adjacent members of the population array. The particlestsl to be in one subset of the swarm have
no direct relationship to the other particles in the othdgimeorhood. Typicallylbest neighborhoods
comprise exactly two neighbors. When the number of neighbwreases to all but itself in tHeest
model, the case is equivalent to thieest model. Unfortunately there is a large computationat tm
explore the neighborhood relation in each iteration. Ingihest model, the trajectory for each particle’s
search is influenced by the best point found by any membereoétiire population. The best particle
acts as an attractor, pulling all the particles towards dm8 previous studies has been shown that the
trajectories of the particles oscillate in different sioigkl waves and converge quickly in thebest
model” algorithm [53, 54]. During the iteration, the paltids attracted towards the location of the best
fithess achieved so far by the patrticle itself and by the lonatf the best fitness achieved so far across
the whole swarm [55, 56].
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Algorithm 1 Particle Swarm Algorithm

01. Begin

02. Parameter settings and initialize swarm
03. Evaluation

04. Locate leader

05. t=1

06. While (the end criterion is not met) do
07. For each particle
08. Update velocity
09. Update position
10. Evaluation

11. Updatepbest

12. EndFor

13. Update leader

14. t++

15. End While

16. End

4.2. Encoding Representations and Decoding Alignment

Encoding representation can be extremely important whengtrto find solutions to a problem in a
heuristic or metaheuristic algorithm. The data structusash as the particle position, plus the algorithm
combine to make efficient programs. Better efficiency of gearan be achieved by modifying the
encoding representation and its related operators so anale feasible solutions and avoiding the use
of a repair mechanism. A bad encoding representation caease the size of the search space or slow
down the algorithm if too many repair operators are needethsore the representation is valid.

Chenget al. [27], Kleeman and Lamont [36] introduced the taxonomy afilitAs represent job-shop
problems. These representations can be classified as diteetly encoded approaches or indirectly
coded approaches. With a direct approach, a schedule islethdoto the chromosome. The EA then
operates on these schedules in an effort to find the bestdehdgor direct approaches, there are five
different ways the EA can be encoded:

e Operation-based
Job-based
Job pair relation-based

Completion time-based
e Random keys

Indirect approaches are chromosome representationsaimat directly encode the schedule into the
chromosome. There are four indirect approaches:

e Preference list-based
e Priority rule-based
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Table 1. An example of the P-FJSP.

M, M, M3
7 O1.1 4 5 XXX
O12 9 2 2
O1 5 XXX 6 3
J Oa.1 6 5 XXX
Oss 3 3 5

¢ Disjunctive graph-based
¢ Machine-based

For encoding representations, we have to consider time pacescomputational complexity, the
need to maintain solution feasibility. To solve the FIS&dhare the three important factors:

e Flexible
e Length
¢ Availability

There are an fixed sequence for operations in each job (@mececdconstraints). But there are no
precedence constraints among operations of different jbthe job and the operations are ordered
beforehand, there is not enough flexible between jobs. gbah [57] proposed a perfect method: they
name all operations for a job with the same symbol (for examitie corresponding job index) and
then interpret them according to the order of occurrencabdrsequence of a given chromosome. All
permutations of the chromosome yield a valid schedule. Tinensosome length i$";" | a;, wheren is
the number of jobs andg; is the number of operations in jablt is possible for this kind of representation
to cause some invalid candidate solutions after crossovbmatation operators. For example, one initial
chromosome{0, 1,0, 1,0}, is valid for the problem in Table 1 (Os denote the operatiming,, and 1s
denote the operations d§). A mutation operator bring out a invalid onf), 1,1,1,0} or {0,1,0,1,1}.

In the new chromosome, the number of the candidate symbigl]éss than the number of operations in
J1. And the number of the candidate symbol, 1, is more than theoeun of operations ids. It would also

be confronted with another difficulty: how to check effeetivwhich machine can process the assigning
operations when it deals with P-FJSP. For the same numberdfiimes and jobs, Kacest al. [37]
transformed the P-FJSP to the T-FJSP by adding ‘infinitegagiag times’ to the unused machines and to
solve it. Some individuals would be evaluated to ‘infinit€his increases the overall time complexity due
to the presence of redundant assignments.etl. [34] proposed a new chromosomal representation,
which has two components: operation order and machineteeie©peration order component is similar
to Gen's method. Each individual is obtained from this scihedy replacing each operation by the
corresponding job index. By reading the data from left tdntrignd increasing operation index of each
job, a feasible schedule is always obtained. The machieets@h component consists of a chromosome
of size}"" | a;. Each allele of the chromosome is a sub-chromosome, whiththie preference which
machine would process the operation. For the problem ineTabbne possible encoding is shown in
Fig. 2. This method inherits the advantages of both the ¢iperaased chromosome representation and
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Figure 2. Operation-Order-Machine-Selection reprediama

the preference list-based representation. The chromokgth is) """ | a; + > ., a; * bj, wheren is

the number of jobsy; is the number of operations in jabb; is the number of machines which operation
0, ; can be assigned on. This chromosome representation hassideothe availability of machines that
process operations so that the decoding processing rethecesarch space size. But it is possible that
one operation is assigned on more than one machine aftesomersand mutation operators. Therefore,
a repair mechanism to maintain feasibility is required. didiion, this representation is complex and
redundant for the T-FJSP, since the machine selection coempeeems too long.

Due to the continuous characters of the positions of pagiah standard PSO model, its encoding
scheme cannot be directly adopted for the FISP. So one ofdakeimportant problems in applying PSO
to FISP is to find how to map the problem solution to the pattith our PSO algorithms, the position
representation of the particles also has two componen&atpn order and machine selection. But it is
with a variable length strategy.

The first part, operation order component provides the arsfleperations. For convenience, we will
decompose all the jobs to atomic operations, and all opasfor a job is signed with the corresponding
jobindex. Then we map all the operations and jobs to thegbestipositions. The positions are ranked to
the corresponding job index by incorporating Ranked Oraddud/(ROV) rule [58] based on the Smallest
Position Value (SPV) encoding rule [59]. In the ROV rule, thist SPV(s) of a particle is handled and
assigned a smallest rank value 1(s). Then, the SPV(s) willdmelled and assigned a rank value 2(s).
With the same way, all the position values will be dealt withconvert the position information of a
particle to a job permutation. There are two jobs, three atpmrs in job 1, and two operations in job
2 as shown in Table 1 to illustrate the rank rule. In the instafp = 2, p; = 3, p2 = 2), position
information isX; = [2.9,0.6,3.7,1.8,1.2]. Becauser; 2, z; 5, x; 4 iS the first three SPV of the particle,
they are handled firstly and assigned rank value 1 as the gxiof job 1, then the remain SPY; ;
andz; 3 are assigned rank value 2 as the job index of job 2. Thus, theatpn order is obtained, i.e.,
{0271, 0171, 0272, 0172, 0173} as shown in Flg 3.

The second part, machine selection component is variabgheaccording to the problems. If the
Average number of Machines per Operation (AMO) is largenttiee half of number of machines, we
encode each dimension with a random number in the intéryal + 1). Each dimension of the particle’s
position maps one operation, and the value of the positiditates the machine number to which this
task/operation is assigned during the course of particirswalgorithm. So the value of a particle’s
position should be integer. But after updating the veloeityl position of the particles, the particle’s
position may appear real values such as 1.4, etc. It is mglasi for the assignment. Therefore, in



H. Liu et al./ Multi-swarm approach to Multi-objective FISP 11

Operation Order Component

lg »l
% »

Initial order Oy 043 013 031 Oy

Position value

Ranked order 2 1 2 1 1

Job code J N ) B I
Y

051 01y Oy 053 Oy

Operation order

-

Figure 3. Representation of position values and the cooredipg operation order.

the algorithm we usually round off the real optimum valuetémiearest integer number. In this part, the
sequence of the operations will be changed during theiib@ratcording to the first part, operation order
component. The feasible different sequence schedule abfkeations between different jobs comes
from the operation order. If AMO is less than or equal to thié dlenumber of machines, we extend it to
feasible machine representation. According to the opmratider, each operation has a sub-sequence for
machine selection, which lists the preference which machiould process the operation. The first SPV
of the sub-sequence is assigned a rank value 1, other(s) areedcorresponding machine is selected
if its value is 1. Since the AMO of the P-FJSP in Table 1 is Zadgér than 1.5, its machine selection
component can be encoded as shown in Fig. 4. Only for denaiostr we also use the same sample to
illustrate our encoding representation as shown in Fig.He Variable length representation allows the
algorithm to maintain a balance between the flexibility c6PJnd search space, and to converge on the
better results effectively.

I\'Iladline Selection Component

| | | | | |
Operation order {0341 { 011§ 022 | 012 013

Position value

Ranked order 2 1 2 3 3

Figure 4. Representation of position values and the cooretipg single-machine selection.

The standard PSO algorithm uses a swarm of particles. Iretnels process, particles are supposed
to follow the best particle from the swarm. As above rememiteperformance deteriorates as the di-
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Machine Selection Component

Operation order

Position value

Ranked order 0 1 0 1 0 1 (L 1] 0 1 0 1

¥ 4
Machine selection § M, M, Mlims M,

Figure 5. Representation of position values and the cooretipg multi-machine selection.

mensionality of the search space increases, especialliiganulti-objective FISP involving large scale.
PSO often demonstrates faster convergence speed in thehfarse of the search, and then slows down
or even stops as the number of generations is increased. thamedgorithm slows down, it is difficult
to achieve better scheduling solutions. Bergh and Engdtib{é0] investigated effects of swarm size on
cooperative particle swarm optimizations. They proposeuiti-swarm cooperative particle swarm op-
timizer, which takes the-dimensional solution vector and breaks it intone-dimensional components.
Each component is then optimized by a separate PSO. Theigbjamction is evaluated using a vector
formed by concatenating the components fromrttsgvarms to again form am-dimensional vector. The
algorithm forms solution vectors by combining differenttas from different swarms, effectively cre-
ating more diversity out of fewer particles. There is mortadyebalance between the dimension and the
number of iterations. Grosagt al. [4] divided the swarm of PSO into multiple independent sularms

so as to obtain multiple different points for the geometrjdace problems. By considering different
sub-swarms, the number of solutions which can be obtainétteaénd of the search process might be
at most equal to the number of sub-swarms. The algorithmdsessful to solve the geometrical place
problems. Since our encoding representation consists @ctwnponents, we split the swarm of par-
ticles into two independent sub-swarms for the FISP. Theatipa order component is mapped to the
first sub-swarm, which takes thedimensional solution vectob(= >, a;). The second sub-swarm
deals with the machine selection component. The two sulbrssvaearch the optima cooperatively and
maintain the balance between diversity of particles antchespace.

In our encoding representations, we can consider pagiglesition encoding as the binary repre-
sentation of an integer. And the step size is equal to 1,the.dimension of the search space is then
1. In practice, when the binary string is too long for a largals problem, it has too high dimension
for us to use it as an integer. It is time-consuming for eaetatton. So we split it into a small number
(say H) of shorter binary strings, each one is seen as an integem e dimension of the problem is
not anymore 1, bulf. The swarm algorithm with two strategies is so called as Bfrios Binary PSO.
Fig. 6 illustrates the direct encoding representation. Aigl 7 illustrates the compositive encoding
representation.

Since the particle’s position indicates the potential deites the position can be “decoded” to the
scheduling solution. It is to be noted that the solution Wil unfeasible if it violates the sequence
constraint (2). The operations must be started only afeectimpletion of the previous latest operation
in the sequence operation. The best situation is the sigobimt of the operation in alignment with the
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Figure 7. Bi-metrics Binary Representation - Compositineasling.

ending point of its previous latest operation. After all thygerations have been processed, we get the
feasible scheduling solution and then calculate the cotsteofolution.

4.3. Multi-Swarm PSO

To employ a multi-swarm the solution vector is split amorgstdifferent populations according to some
rule; the simplest of the schemes does not allow any overdwden the spaces covered by different
populations. To find a solution to the original problem, esantatives from all the populations are
combined to form the potential solution vector, which, imtus passed on to the error function. This
adds a new dimension to the survival game: cooperation leetdiferent populations [51, 63, 64].

The different individual is separated into different gragpmap the operation order and machine
selection respectively, which is favorable and reasonalematch the two component characteristics,
we introduce a multi-swarm search algorithm for them. Inatlgorithm, all particles are clustered spon-
taneously into two different groups of the whole swarm. Omenapped to the operation order, and
another to the machine selection. Each group consists dipteusub-swarms. In the same group, every
particle can connect more than one sub-swarm, and a crasseigihborhood topology is constructed
between different sub-swarms. The particles in the samewalbm would carry some similar functions
as possible and search their optimal. Each sub-swarm weplcach to its appropriate position (solu-
tion), which would be helpful for the whole swarm to keep ina@d balance state. Fig. 8 illustrates a
multi-swarm topology. In the swarm system, a swarm with 3@igas is organized into 10 sub-swarms,
which one consists of 5 particles. Particles 3 and 13 haventhémum membership level, 3. During the
iterated process, the particle updates its velocity fdlgwby the location of the best fithess achieved so
far by the particle itself and by the location of the best hachieved so far across all its neighbors in
all sub-swarms it belongs to. We consider the multi-swamgo@thm more about operation order update
and others for machine selection in the multi-objectivexiBlie Job-shop Scheduling Problems. The
multi-swarm algorithm for FISP is illustrated as follows:

Step 1 Given s swarms,n particles in each swarm, encode the figgR swarms according to the
operation order, and encode other swarms according to ticeingaselection. Initialize the positions
and the velocities for all the particles randomly. Initzaliother parameters.
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Step 2 For the operation order swarms and machine selectionsuhipla sub-swarms are organized
respectively into a crossover neighborhood topology. Aigarcan join more than one sub-swarm.
Each particle has the maximum membership lévahd each sub-swarm accommodates default number
of particlesm.

Step 3 Decode the positions and evaluate the fitness for eacltleatrti

Step 4 Find the best particle in the swarm, and find the best onedn sab-swarms. If the “global best”
of the swarm is improvedyoimprove = 0, otherwisenoimprove = 1. Update velocity and position
for each particle at the iteration

4.01 Form = 1 to subs

402 p*= argmmf“[fm(f(ﬁk(t — 1)), f(#1(1)),
4.02  f(£2(t)),--- Ti(t)), s f (Tsubs (1))
403 Forss=1to subsm

404 Gi(t) = argmin(f (Gt — 1)), F(@®);

4.05 Ford=1toD

4.06 Update thé@-th dimension value of’; and®;

4.06 according to Egs. (8), (10), (9), and (11);
4.07 Nextd

4.08 Nextss

4.09 Nextm

Step 5 If noimprove = 1, goto Step 2, the topology is re-organized. If the end ¢dieis not met, goto
Step 3. Otherwise, output the best solution, the fitness.

5. Algorithm analysis

For analyzing the convergence of the multi-swarm algorjthwa first introduce the definitions and lem-
mas [65, 66, 67], and then theoretically prove that the #&lyorconverges with a probability 1 or strongly
towards the global optimal.

Xu, et al [68] analyzed the search capability of an algebraic craamstwough classifying the in-
dividual space of genetic algorithms, which is helpful tangrehend the search of genetic algorithms
such that premature convergence and deceptive problenhs¢6fl be avoided. In this subsection,
we also attempt to theoretically analyze the performanddeinulti-swarm algorithm with crossover
neighborhood topology. For the sake of convenience, letsower operatof. denote the wheeling-
round-the-best-particles process.

Consider the problemR) as
(P) =min{f(¥): ¥ € D} (12)

wherez = (x1,z2,--- ,7,)T, f(Z) : D — R s the objective function and is a compact Hausdorff
space. Applying our algorithm the problerR) it can be transformed t&’ as

(P') = {mmf(f) (13)

7eQ=][-s,s"
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wheref is the set of feasible solutions of the problem. A swarm istavggich consists of some feasible
solutions of the problem. Assunteas the encoding space bf. A neighborhood function is a mapping
N : Q — 22, which defines for each solutiof € Q a subsetV(S) of 2, called a neighborhood. Each
solution inN(S) is a neighbor ofS. A local search algorithm starts off with an initial solutiand then
continually tries to find better solutions by searching hbigrhoods [15]. Most generally said, in swarm
algorithms the encoding typesof particles in the search spageare often represented as strings of a
fixed-lengthL over an alphabet. Without loss of generalitycan be described as

S=2zp X X2zn (14)

where z,,, is a finite field about integer numbermod m. Most often, it is the binary alphabeig.
m = 2.

Proposition 5.1. If k alleles are ‘O’s in the nontrivial ided?, i.e. L — k alleles are uncertain, theiy,
partitions< into 2* disjoint subsets as equivalence classes correspondingltanid’s schema theorem
[70, 71],i.e. each equivalence class consists of some ‘1’'s whialieles in2 with ‘0’ are replaced by
‘1's. Let A € S/0q, then there is an minimal elememt of A under partial orde(S, v, A, =), such that
A={mVz|xe}

Theorem 5.1. Let A, B, C are three equivalence classestn wheredq, is the congruence relation
aboutQ. 3z € A,y e B,andz |,y € C,thenC = {z |,y | z € A,y € B}.
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Proof:
Firstly, we verify that for anyl;,ds € Q,if x | y € C, then(z V dy) |. (y V d2) € C. In fact,

(xVd)le (yVde) =(xVdi)cV (yVde)e
(xeVye) V (die V dac) (15)
(z|cy) V (dicV dac)
Obviously,(dycV dye) € Q,s0(xVdy) | (yVd2) = (z | y)( mod 0g),i.e. (xVd)|. (yVds) € Q.
Secondly, from Proposition 5.8m, n, ds,ds € Q of A, B, suchthatt = mVds,y =nVds. Asa
result of analysis in Eq.(15); |. y = (m |. n)( mod 0gq),i.e,m |.n € C.
Finally, we verify thatm |. n is @ minimal element of and(m |. n) Vd = (m Vv d) |. (nV d). As
a result of analysis in EQ.(15),d, = d2 = d, thenm |, nV d = (m V d) |. (nV d). Thereforem |. n
is a minimal element of’.
ToconcludeC = {(m |.n)Vvd|deQ}={x|.y|x € A,y € B}. The theorem is proven. O

Proposition 5.2. Let A, B are two equivalence classes 6f, and there exist € A, y € B, such
thatz | y € C, then,z |. y makes ergodic searall while z andy make ergodic searcA and B,
respectively.

Definition 5.1. (Convergence in terms of probability)
Let&,, a sequence of random variables, gralrandom variable, and all of them are defined on the same
probability space. The sequengeconverges with a probability &f if

lim P(§, — ¢l <e)=1 (16)
for everye > 0.

Definition 5.2. (Convergence with a probability of 1)

Let&,, a sequence of random variables, gradlrandom variable, and all of them are defined on the same
probability space. The sequenggeconverges almost surely or almost everywhere or with pritibabf

1 or strongly towardg if

P(jim & =)= 1 a7)
or

P(ﬁ U g ¢l ze]) =0 (18)

n=1k>n
for everye > 0.

Theorem 5.2. Let #* is the global optimal solution to the probler?’), and f* = f(&*). Assume that
the clubs-based multi-swarm algorithm provides positienesz;(t) (i = 1,2,--- ,n) at timet by the
iterated procedurez* is the best position among all the swarms explored sa.éar,

7(0) = arg min (£ (¢~ 1), S (1) (19)
Then,
P(tlggo 1 (1) = f*> 1 (20)
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Proof:

Let
Dy ={z € Q|f(@) — " <e} (21)
D1 =0 \ DO

for everye > 0.

While the different swarm searches their feasible solgtibyp themselves, assundep is the dif-
ference of the particle’s position among different club swa at the iteration timé. Therefore—s <
Ap < s. Rand(—1,1) is a normal distributed random number within the interval1}. According
to the update of the velocity and position by Eqgs.~@), Ap belongs to the normal distributiong.
Ap ~ [—s, s]. During the iterated procedure from the tih ¢ + 1, let ¢;; denote thaf’(t) € D; and
Z(t + 1) € D;. Accordingly the particles’ positions in the swarm coulddbassified into four states:
900 qo1, 10 andgp1. Obviouslygoo + go1 = 1, q10 + ¢11 = 1. According to Borel-Cantelli Lemma and
Particle State Transference [56], proving by the same ndetlag; = 0; goo = 1; ¢11 < c € (0,1) and
q10 > 1—c€(0,1).

ForVe > 0, letp, = P{|f(p*(k)) — f*| > ¢}, then

0 ifare{1,2,--- ,k},p(T)e D
=3 . { } (T) 0 (22)
Pk pr(t)¢D01t:1)2aak
According to Patrticle State Transference Lemma,
Pr = P{p*(t) ¢ Do, t =1,2,--- k} = ¢&, <~ (23)
Hence,
ko C
ZPkSZc —1_C<oo. (24)
k=1 k=1
According to Borel-Cantelli Lemma,
P(ﬂ U 1) — 7] > s) 0 (25)
t=1k>t

As defined in Definition 5.2, the sequen¢ép*(t)) converges almost surely or almost everywhere or
with probability 1 or strongly towardg*. The theorem is proven. O

6. Experiment Settings, Results and Discussions

The algorithm procedure described in Section 4 has beereimgited on Intel Cofe Duo™ CPU
1.73 GHz processor with 1G memory. To illustrate the effectess and performance of the proposed
algorithm, three representative instances based on gahctata have been selected. Three problem
instancegJ8, 027, M38), (J10,030, M 10) and(J15, 056, M 10) are taken from Kaceret al. [37, 38,
72]. In our experiments, the algorithms used for comparisene GA (Genetic Algorithm) [76, 77],
SPSO (standard PSO) [1], and MPSO (Multi-swarm PSO). Thigggithms share many similarities.
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Table 2. Parameter settings for the algorithms.

Algorithm Parameter name Value
Size of the population (even)(int)(10 + 2 * sqrt(D))
GA Probability of crossover 0.8
Probability of mutation 0.01
Swarm size (even)(int)(10 + 2  sqrt(D))
Self coefficient; 0.5+ log(2)
PSO(s) Social coefficient 0.5+ log(2)
Inertia weightw 0.91
Clamping Coefficienp 0.5

GA is powerful stochastic global search and optimizatiorthoés, which are also inspired from the
nature like the PSO. Genetic algorithms mimic an evolutipmeatural selection process. Generations
of solutions are evaluated according to a fitness value alydioose candidates with high fitness values
are used to create further solutions via crossover and iomtptocedures. Both methods are valid and
efficient methods in numeric programming and have been graglm various fields due to their strong
convergence properties. Specific parameter settingsdalgorithms are described in Table 2, whére
is the dimension of the position. For the small scale probfemexample(J8, 027, M8), the maximum
number of iterations i200 in each trial. For other problems, the maximum number oéttens is 200.
Each experiment (for each algorithm) was repeated 10 tinithsdifferent random seeds. The average
fitness values of the best solutions throughout the optimizaun were recorded. The averaggd (
and the standard deviationst{) were calculated from the 10 different trials. The standdediation
indicates the differences in the results during the 10 iiffetrials. Usually another emphasis will be to
generate the schedules at a minimal amount of time. So theleton time for 10 trials were used as
one of the criteria to improve their performance.

Figs. 9, 10 and 11 illustrate the performance for the thrgerdhms during the search processes
for the three FIJSPs. Empirical results are illustrated inld8&. In general. MPSO could be an ideal
approach for solving the large scale problems when otherittigns failed to give a better solution.

Table 3. Comparing the results for FISPs.

Instance Items GA SPSO MPSO
Best 221 200 161
(J8,027, M8) average 246.6999 226.6999 180.3999
std +20.8856 +10.8263 +9.4148
Best 139 133 74
(J10,030, M 10) average 153.8000 142.1999 97.5000
std +8.1092 +6.8818 +12.7220
Best 276 231 168
(J15,056, M 10) average 292.2000 251.3999 196.1000
std +10.0677 +12.2572 +13.9316
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7. Conclusions

Particle swarm optimization algorithm has exhibited goedigrmance across a wide range of real world
applications but not much work has been reported of its usagmlve the multi-objective Flexible
Job-shop Scheduling Problems (FISP) very well. Initidialifty consists of how to map the problem
solution to the particle space. In other words, encodingessmtation can be extremely important when
trying to find solutions to the problem in the metaheuristgodathm. The data structures, such as the
particle position, plus the algorithm combine to make effitiprograms. Better efficiency of search can
be achieved by modifying the encoding representation aneliated operators so as to generate feasible
solutions and avoiding the use of a repair mechanism. A badd#ng representation can increase the
size of the search space or slow down the algorithm if too nrapgir operators are needed to ensure
the representation is valid. We have to be confronted wighstttond difficulty of how to ensures a good
trade-off between exploration and exploitation in the &thm.

In this paper, we modeled the scheduling problem for theirobjective Flexible Job-shop Schedul-
ing Problems (FJSP) and make an attempt to formulate an@ s$loé/ problem using a multi-swarm
approach. We extend the representations of the positionelndity of the particles in PSO. In our PSO
algorithms, the position representation of the partickestivo components: operation order and machine
selection, and it is with a variable length strategy. In cwagling representations, we considered parti-
cle’s position encoding as the binary representation ofitager. Bi-metrics Binary encoding approach
is used efficiently. The different individual is separatatbidifferent group to map the operation order
and machine selection respectively, which is favorable radonable. To match the two component
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characteristics, we introduce a multi-swarm search algori In the algorithm, all particles are clustered
spontaneously into two different groups of the whole swabme is mapped for the operation order, and
another for the machine selection. Each group consists tifgleusub-swarms. In the same group, every
particle can connect to more than one sub-swarm, and a egrsseighborhood topology is constructed
between different sub-swarms. The particles in the samessalbm would carry some similar func-
tions as possible and search for their optimal. Each sulbrswauld approach its appropriate position
(solution), which would be helpful for the whole swarm to gdr a good balance state. The proposed
multi-swarm PSO algorithm is illustrated theoreticallytbat it converges with a probability of 1 towards
the global optimum. The details of the implementation fa thulti-objective FISP are provided and its
performance was compared using computational experim€&hesempirical results have shown that the
proposed algorithm is an available and effective approacthfe multi-objective FISP, especially for
large scale problems.
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