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ABSTRACT

Consensus analysis and design problems of high-dimensional discrete-time swarm systems in directed networks with time delays and
uncertainties are dealt with by using output information. Two subspaces are introduced, namely a consensus subspace and a complement
consensus subspace. By projecting the state of a swarm system onto the two subspaces, a necessary and sufficient condition for consensus
is presented, and based on different influences of time delays and uncertainties, an explicit expression of the consensus function is given
which is very important in applications of swarm systems. A method to determine gain matrices of consensus protocols is proposed.
Numerical simulations are presented to demonstrate theoretical results.
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I. INTRODUCTION

In the past few years, the research on swarm systems has
attracted considerable attention from scientific communities.
This is partly due to broad applications of swarm systems in
various areas, such as physics (e.g., collective motion of particles
[1] and synchronization of networks [2,3]), engineering (e.g.,
formation control [4,5]), and biology (e.g., flocking [6]), etc.

In collective behaviors of swarm systems, consensus is one
of the most interesting behaviors. In swarm systems, a number of
agents can achieve an agreement over some variables of interest
by local interactions. This problem is usually called a consensus
problem. Actually, the motions of swarm systems consist of the
relative motions among agents and the absolute motion as a
whole. When the relative motions are asymptotically stable, then
consensus is achieved. The key issue of consensus is to design a
distributed control protocol for each agent based on information
of its neighbors such that the whole swarm system can achieve
consensus. Vicsek et al. [1] showed consensus behaviors of
swarm systems by numerical simulations. A theoretical frame-
work of consensus problems of swarm systems was presented in
[7] and [8]. Ren [9] relaxed the conditions for consensus in [7]
and [8], and pointed out that the communication topology having
a spanning tree is critical for a swarm system to achieve consen-
sus. In recent years, the study of consensus problems has
developed fast, and many research results have been obtained.
For example, consensus problems for swarm systems with
time delays and/or uncertainties were discussed in [10–17],
leader–follower consensus problems were dealt with in [18],

fractional-order swarm systems were addressed in [19] and [20],
stochastic consensus problems were investigated in [21] and
[22], and high-dimensional consensus problems were considered
in [23–35].

It is well-known that time delays and uncertainties may
degrade the performance of control systems. In a swarm system,
information delays appear naturally in the process of information
transmission among agents and uncertainties exist due to the
variations of the interaction strength. Based on linear matrix
inequality (LMI) techniques, consensus problems for swarm
systems with time delays and/or uncertainties are addressed in
[10–13], where it is assumed that the dynamics of each agent is
described by a first-order integrator. Wang et al. [23] give a
sufficient condition for consensus of high-dimensional linear
time-invariant (LTI) swarm systems with undirected communi-
cation topologies. A necessary and sufficient condition for con-
sensus is given in [24], where it is supposed that the consensus
function, which is the agreement state of each agent, is time-
invariant. In [25–30], high-dimensional LTI swarm systems with
time-varying consensus functions are dealt with.

In [23–30], all the states of neighboring agents are
required when constructing the consensus protocols, but there
exist the cases where each agent only obtains the outputs of its
neighbors. Ma and Zhang [31] deal with consensus analysis
and design problems via static output feedback consensus pro-
tocols. Dynamic output feedback consensus protocols are
applied in [32–35], where time delays and uncertainties are not
considered. Three important consensus problems are usually
concerned in the literature: (i) What are the conditions to
achieve consensus; (ii) How to determine consensus functions
if consensus is achieved; (iii) How to design gain matrices of
consensus protocols such that swarm systems achieve consen-
sus. To the best of our knowledge, for high-dimensional
discrete-time LTI swarm systems with dynamic output feed-
back consensus protocols including time delays and uncertain-
ties, the above three consensus problems have not been
investigated comprehensively.
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In the current paper, by using dynamic output feedback
consensus protocols, both consensus analysis and design prob-
lems for high-dimensional discrete-time LTI swarm systems with
time delays and uncertainties are studied and an approach is
given to determine consensus functions. Firstly, a complex Eucli-
dean space is decomposed into two subspaces with specific struc-
tures. By the state projection onto the two subspaces, consensus
problems are transformed into asymptotic stability problems of
reduced-order subsystems and a necessary and sufficient condi-
tion for consensus is given. Secondly, based on different influ-
ences of time delays and uncertainties, an explicit expression of
the consensus function is shown. Finally, consensus design prob-
lems are addressed and a sufficient condition for consensualiza-
tion is presented in terms of LMI techniques.

Compared with the existing works about consensus for
high-dimensional LTI swarm systems, the current paper has the
following three novel features. Firstly, in the current paper, both
the consensus and disagreement parts are determined simulta-
neously, and a necessary and sufficient condition for consensus
is presented. In [23], only the disagreement part was deter-
mined and a sufficient condition for consensus was given,
where time delays and uncertainties were not dealt with. Sec-
ondly, the current paper shows an explicit expression of the
consensus function and determines the impacts of the disagree-
ment part on the consensus part. The approaches in [23] cannot
do that when topologies are directed and time delays are con-
sidered. In [27], we proposed an initial state projection method
to determine the consensus function, but this method cannot
reveal the impacts of time delays and uncertainties on the
consensus function. Thirdly, the current paper presents LMI
criterions to determine the gain matrices of dynamic output
feedback consensus protocols. The eigenvalue analysis appro-
aches were used to determine the gain matrices of dynamic
output feedback consensus protocols in [34] and [35], but these
approaches were no longer valid when time delays and uncer-
tainties were considered.

This paper is organized as follows. In Section II, some
basic definitions and results in graph theory are presented, and
the problem description is given. In Section III, a necessary and
sufficient condition for consensus is shown. In Section IV, an
approach to determine the consensus function is presented. A
method to consensualize swarm systems is given in Section V.
Numerical simulations are shown in Section VI. Finally, conclud-
ing remarks are stated in Section VII.

Notation.

In the current paper, for simplicity of notation, 0 is applied
to denote zero matrices of any size with zero vectors and zero
number as special cases and also to denote subspaces consisting
of zero matrices. In symmetric block matrices, an asterisk (*) is
used to represent a term which is induced by symmetry. The
superscript H stands for the Hermitian transpose of a matrix. Let
diag{G1, G2, . . . , Gn} denote a diagonal block matrix with diago-
nal blocks G1, G2, . . . , Gn respectively.

II. PRELIMINARIES AND
PROBLEM DESCRIPTION

In this section, first some basic concepts and results in
graph theory are briefly summarized, then the problem descrip-
tion is presented.

2.1 Basic concepts and results in graph theory

A directed graph G consists of a node set V ( )G =
{ , , , }v v vN1 2 � , an edge set E( ) {( , ) : , ( )}G v v v v Gi j i j⊆ ∈V and
a weighted adjacency matrix �W wij

N N= [ ]∈ ×R with wij � 0. If
(vi, vj) is an edge of G, vi and vj are defined as the parent and child
nodes, respectively. If wji > 0, then ( , ) ( )v v Gi j ∈E . Moreover, it
is assumed that wii = 0 for all i ∈ {1, 2, . . . , N}. The set of
neighbors of vi is denoted by N Ei j j iv G v v G= ∈ ∈{ ( ) : ( , ) ( )}V .
The in-degree of vi is defined as deg ( )in i j ijv wi= ∑ ∈N . Let �D
be the degree matrix of G, which is defined as a diagonal
matrix with the in-degree of each node along its diagonal. The
Laplacian matrix of G is defined as L D W= −� � . A directed path
from vi to vj is a sequence of ordered edges of the form
( , ), ( , ), , ( , )v v v v v vi i i i i jl1 1 2 � , where v G k lik ∈ =V ( ) ( , , , ) 1 2 � .
A directed graph having a spanning tree means that there
exists at least one node having a directed path to all the other
nodes. More details on graph theory can be found in [39]. The
following lemmas show some basic properties of the Laplacian
matrix L.

Lemma 1 [9]. Let L be the Laplacian matrix of a directed graph
G and 1 = [1, 1, . . . , 1]T ∈ RN, then:

1. L at least has one zero eigenvalue, and 1 is the associated
eigenvector; that is, L1 = 0;

2. If G has a spanning tree, then 0 is a simple eigenvalue
of L, and all the other N-1 eigenvalues have positive real
parts.

2.2 Problem description

Consider a swarm system with N agents which interact
with each other via local information exchanges. A directed
graph G(k) can be used to describe the communication topology
of the swarm system. For i, j ∈ {1, 2, . . . , N}, the node
vi in a directed graph G(k) represents agent i, the edge
( , ) ( ( ))v v G ki j ∈E corresponds to the information channel from
agent i to agent j, and the nonnegative adjacency element wji

denotes the transmitting strength of the channel (vi, vj).
Assume that all the agents share a common state space

Rd1 , and x k i Ni
d( ) ( { , , , })∈ ∈R 1 1 2 � denotes the state of agent

i which needs to be coordinated, then the dynamics of agent i can
be described by

x k Ax k Bu k

y k Cx k
i i i

i i

( ) ( ) ( ),

( ) ( ),

+ = +
=

⎧
⎨
⎩

1
(1)
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where A d d∈ ×R 1 1, B d m∈ ×R 1 , C q d∈ ×R 1, ui(k) is the consensus
protocol, and yi(k) is the measured output. Based on the theory
of dynamic output feedback control, the following consensus
protocol is proposed:

z k K z k K w w k

y k y k

u

i A i B ij ij

v

j i

i

j i

( ) ( ) ( ( ))

( ( ) ( )),

(

+ = + +

− − −
∈
∑1 Δ

N

τ τ
kk K z k K w w k

y k y k

z k

C i D ij ij

v

j i

i

j i

) ( ) ( ( ))

( ( ) ( )),

( )

= + +

− − −
=

∈
∑ Δ

N

τ τ
0 kk � 0,

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

(2)

where i, j ∈ {1, 2, . . . , N}, z ki
d( ) 2∈R denotes the state variable

of the protocol, KA, KB, KC and KD are constant matrices with
appropriate dimensions, t is a constant delay with 1� �τ τ
where τ �1 is a positive integer, and Dwij(k) is the time-
varying uncertainty of wij satisfying |Dwij(k)| � wij(i � j) and
Δ Δw k w kii m m i

N
im( ) ( ),= −∑ = ≠1 . One can see that the uncertainty

matrix DL of L satisfies that DL1 = 0. Let v k x ki i( ) [ ( ),= T

z k i Ni
d( )] ( , , , )∈ =T T R 1 2 � with d = d1 + d2 and v k v k( ) [ ( ),= 1

T

v k v kN( ), , ( )]2
T T T� , then the dynamics of a swarm system with

protocol (2) can be described by

v k I A v k L L B v k k

v k k k
N( ) ( ) ( ) (( ) ) ( ), [ , ),

( ) ( ), [

+ = ⊗ − + ⊗ − ∈ ∞
= ∈ −
1 0Δ τ
φ τ ,, ],0

⎧
⎨
⎩

(3)

where j(k) is a vector-valued function on k ∈ [-t, 0],

A
A BK

K
A BKC B

BK C

K C
BKC

A
A
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A

D

B
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⎤
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I
C

I
C

C

K
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K
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B

0

0

0 0

0

0

0 0
τ

KKA

⎡
⎣⎢

⎤
⎦⎥
.

Definition 1. Under a given protocol (2), system (3) is said to
achieve consensus if for any given bounded initial condition,
there exists a vector-valued function c(k) dependent on the initial
condition such that limk→•(v(k) - 1 ƒ c(k)) = 0, where c(k) is
called a consensus function.

Definition 2. System (3) is said to be consensualizable by
protocol (2) if there exists K such that it achieves consensus.

The following consensus problems of system (3) are inves-
tigated: (i) what are the conditions of consensus for a given K; (ii)
how to determine the consensus function; and (iii) how to design
K such that system (3) achieves consensus.

Remark 1. For a given swarm system, Dwij(k) ≡ 0(i, j = 1, 2,
. . . , N) means that the communication topology is fixed.

Otherwise, the communication topology is time-varying. Espe-
cially, if Dwij(k) = -wij(k), then the communication topology is
switching.

III. CONDITIONS FOR CONSENSUS

In this section, first system (3) is decomposed into two
subsystems by a linear transformation. Then based on state pro-
jection, a necessary and sufficient condition for consensus is
presented.

Let U u U N N= ∈ ×[ , ]1 C with u1 = 1 and U u uN= [ , , ]2 � be
nonsingular and U U− =1 [ , ]υH H H� . Since (L + DL)1 = 0, one can
deduce

U L L U
U

L L u U
L L U

U L L U
− + = ⎡

⎣⎢
⎤
⎦⎥

+ =
+
+

⎡
⎣⎢

⎤
⎦⎥

1
1

0

0
( ) ( )[ , ]

( )

( )
Δ Δ

Δ
Δ

υ υ
� � ..

(4)

Let � � � � �v k U I v k v k v k v kd N( ) ( ) ( ) [ ( ), ( ), , ( )]= ⊗ =−1
1 2
H H H H.

By (4), system (3) can be transformed into

� � � �v k I A v k
L L U

U L L U
B v kN( ) ( ) ( )

( )

( )
(+ = ⊗ −

+
+

⎡
⎣⎢

⎤
⎦⎥
⊗⎛

⎝⎜
⎞
⎠⎟

−1
0

0

υ Δ
Δ

ττ ).

(5)

Let ς( ) [ ( ), , ( )]k v k v kN= � � �2
H H H, then system (5) can be

rewritten as follows

� �v k

k

A

I A

v k

k

v L
N

1

1

11

1

0

0

0

( )

( )

( )

( )

(

+
+

⎡
⎣⎢

⎤
⎦⎥
=

⊗
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

−
+

−ς ς
ΔΔ
Δ
L B

U L L B

v k

k

Av k

I AN

)

( )

( )

( )

( )

(

⊗
+ ⊗

⎡
⎣⎢

⎤
⎦⎥

−
−

⎡
⎣⎢

⎤
⎦⎥

=
⊗−

0

1

1

1

�
�

�

τ
ς τ

)) ( )

( ( ) ) ( )

( ( ) ) ( )
;

ς
ς τ
ς τk

v L L B k

U L L B k

⎡
⎣⎢

⎤
⎦⎥
−

+ ⊗ −
+ ⊗ −

⎡
⎣⎢

⎤
⎦⎥

Δ
Δ�

that is,

� �v k Av k L L U B k1 11( ) ( ) ( ( ) ) ( ),+ = − + ⊗ −υ ς τΔ (6)

ς ς ς τ( ) ( ) ( ) ( ( ) ) ( ).k I A k U L L U B kN+ = ⊗ − + ⊗ −−1 1
� Δ (7)

Consider d linear independent vectors cj ∈ Rd ( j = 1, 2,
. . . , d). The following two subspaces of CNd are introduced.

Definition 3. Let p u c j i d m i Nj i m= ⊗ = − + =( ( ) ; , , , ;1 1 2 �
m d= , , , )1 2 � . A consensus subspace (CS) is defined as the
subspace C( )U spanned by p1, p2, . . . , pd and a complement
consensus subspace (CCS) as the subspace C( )U spanned by
pd+1, pd+2, . . . , pNd.

Note that any vector in C( )U has the form 1⊗ �c , where �c
is a d-dimensional vector. One sees that consensus is achieved if
and only if v(k) converges to a vector in C( )U as k → •. This is
the reason why C( )U is called a consensus subspace.
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Since pj (j = 1, 2, . . . , Nd) are linear independent, the
following lemma can be obtained.

Lemma 2. C C C( ) ( ) .U U Nd⊕ =

The following theorem presents a necessary and sufficient
condition for system (3) to achieve consensus.

Theorem 1. For a given protocol (2), system (3) achieves con-
sensus if and only if subsystem (7) is asymptotically stable.

Proof. By Lemma 2, the state v(k) of system (3) can be uniquely
projected onto C( )U and C( )U ; that is,

v k v k v kC C( ) ( ) ( ),= + (8)

where v k k pC j
d

j j( ) ( )= ∑ =1α and v k k pC j d
Nd

j j( ) ( )= ∑ = +1α . Due to
�v k U I v kd( ) ( ) ( )= ⊗−1 , one has

ς( ) [ , ]( ) ( ).( )k I U I v kN d d= ⊗−
−0 1

1
(9)

Since u c U I e ci m d i m⊗ = ⊗ ⊗( )( ), where i ∈ {1, 2, . . . ,
N}, m ∈ {1, 2, . . . , d}, and ei ∈ RN has a 1 as its ith component
and 0 elsewhere, by (8), one can obtain that

( ) ( ) ( )( )

( )( )( )

U I v k k e c

k e c

d m m

m

d

i d m i m

m

d

i

−

=

− +
==

⊗ = ⊗

+ ⊗

∑

∑

1
1

1

1
12

α

α
NN

∑ .
(10)

It can be obtained by (9) and (10) that

ς α( ) [ , ] ( )( ).( ) ( )k I k e cN d i d m i m

m

d

i

N

= ⊗− − +
==
∑∑0 1 1

12
(11)

Due to

v k U I k e cC d i d m i m

m

d

i

N

( ) ( ) ( )( ),( )= ⊗ ⊗− +
==
∑∑ α 1

12

it can be shown by (11) that

v k U I kC d( ) ( )[ , ( )] .= ⊗ 0 ςH H
(12)

Necessity. We prove the conclusion by contradiction.
Assume that subsystem (7) with ς(s) being not identical to 0 for
s ∈ [-t, 0] is not asymptotically stable, then by (10), the limit
of v kC ( ) as k→• does not exist or is nonzero. Since system
(3) achieves consensus, by the structure of pj (j = 1, 2, . . . , d)
and (8), there exist bj(k) ∈ R(j = 1, 2, . . . , d) such that
v k k p UC j

d
j j( ) ( ) ( )→∑ ∈=1β C as k → •. Since v k UC ( ) ( )∈C

and C C( ) ( )U U∩ = 0, one has lim ( )k Cv k→∞ = 0. A con-
tradiction is obtained. Therefore, it is necessary that subsystem
(7) is asymptotically stable.

Sufficiency. If subsystem (7) is asymptotically stable, then
lim ( )k Cv k→∞ = 0 by (12). According to the structure of pj ( j = 1,

2, . . . , d) and (8), system (3) achieves consensus. The proof of
Theorem 1 is completed.

Remark 2. From the proof of Theorem 1, vC(k) and v kC ( )
are the state projection of v(k) onto C( )U and C( )U . Hence,
from Lemma 2, vC(k) and v kC ( ) describe the agreement and
disagreement parts of system (3) respectively.

IV. CONSENSUS FUNCTIONS

If system (3) achieves consensus, then states of all agents
tend to be a common function; that is, the consensus function,
which describes the absolute motion as a whole. In this case, a
very interesting and challenging problem is how to determine the
consensus function.

Let G k Ak( ) = and P U UC C( ), ( ) be an oblique projector onto
C( )U along C( )U . The following theorem presents a method to
determine the consensus function.

Theorem 2. If system (3) achieves consensus, then subsystem
(6) determines the consensus function c(k), and

lim( ( ) ( ( ) ( ) ( ))) ,
k

c k c k c k c k
→∞

− + + =0 0τ Δ

where

c k G k I P v

G k i LU B i

d U U

i

k

0

0

0 0 0

1

( ) ( )[ , , , ] ( )

( )( ) ( )

( ), ( )=

− − − ⊗
=

� C C

υ ς
−−

∑
1

,

c k G k i LU B i i
i

k

τ υ ς τ ς( ) ( )( )( ( ) ( )),= − − − ⊗ − −
=

−

∑ 1
0

1

c k G k i LU B i
i

k

Δ Δ( ) ( )( ) ( ).= − − − ⊗ −
=

−

∑ 1
0

1

υ ς τ

Proof. Due to �v k U I v kd( ) ( ) ( )= ⊗−1 , one obtains

�v k I U I v kd d1
10( ) [ , ]( ) ( ).= ⊗−

(13)

Since e v k v k1 1 1 0⊗ =� �( ) [ ( ), ]H H, from (8) and (13), one has

v k U I v k v kC d( ) ( )[ ( ), ] ( ).= ⊗ = ⊗� �1 10H H 1 (14)

By Theorem 1, if system (3) achieves consensus, then

lim( ( ) ( )) .
k

Cv k c k
→∞

− ⊗ =1 0 (15)

It is clear by (14) and (15) that

lim( ( ) ( )) ;
k

v k c k
→∞

− =�1 0 (16)

that is, subsystem (6) determines the consensus function. By (6),
one has
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c k G k v G k i L L U B i
i

k

( ) ( ) ( ) ( )( ( ) ) ( ).= − − − + ⊗ −
=

−

∑�1
0

1

0 1 υ ς τΔ (17)

By Lemma 2, one can obtain that v P vC U U( ) ( )( ), ( )0 0= C C .
Hence, it can be shown by (12) that

� �v I P vd U U1 0 0 0 0( ) [ , , , ] ( ).( ), ( )= C C (18)

From (16) to (18), one can obtain that

lim( ( ) ( ( ) ( ) ( ))) .
k

c k c k c k c k
→∞

− + + =0 0τ Δ

The proof of Theorem 2 is completed.

In Theorem 2, c0(k) is said to be a nominal consensus
function, which describes the consensus function of a swarm
system without the time delay and uncertainties. ct(k) and
cD(k) describe the impacts of time delays and uncertainties
respectively.

Remark 3. It is well-known that the motions of swarm systems
with N agents consist of the relative motions of N-1 order among
agents and the absolute motion as a whole, which describe
microscopic and macroscopic properties of these systems
respectively. Consensus is achieved if and only if the relative
motions of N-1 order are asymptotically stable, and the consen-
sus function determines the absolute motion. Hence, under a
given consensus protocol, the key of consensus is to transform
the consensus problem into a stability problem. In [11], the state
error method was used to convert consensus problems for swarm
systems into stability problems of reduced-order subsystems,
while the method cannot determine the absolute motion as a
whole. The state projection method can describe both the relative
motions and the absolute motion of swarm systems with time
delays and uncertainties.

Remark 4. The consensus function describes the absolute
motion of swarm systems, which is very important when analyz-
ing and designing swarm systems. The c-consensus problem was
proposed to determine the consensus functions in [8], where the
assumption that the communication topology is balanced and
strongly connected was required. In [13], we presented an
explicit expression of the consensus function based on the dif-
ferent impacts of delays and uncertainties. In [8] and [13], it was
assumed that the dynamics of each agent is a first-order integra-
tor, and their methods are no longer valid to deal with high-
dimensional swarm systems. In [27], we presented an initial state
decomposition method to determine consensus functions of
high-dimensional swarm systems, but this method cannot be
used to deal with the cases where delays and uncertainties are
involved. Theorem 2 shows the influences of delays and uncer-
tainties on the consensus function.

V. CONDITIONS FOR
CONSENSUALIZATION

From the proof of Theorem 1, one can see that it is not
related to the choice of U for system (3) to achieve consensus,
which means that the choice of U is not unique. If U is a
complex matrix, then the calculation complexity will be
increased when solving LMIs. Therefore, it is assumed that
U e e eN= [ , , , ]2 3 � . The following lemmas are useful to obtain
the conditions of consensualization.

Lemma 3 [12]. Let D be a 0–1 matrix with rows and columns
indexed by the nodes and edges of G, and E be a 0–1 matrix
with rows and columns indexed by the edges and nodes of G,
defined as

D
v e G

ve =
⎧
⎨
1

0

, ,

, .

if the node is the child node of the edge of

otherwise⎩⎩

E
v e G

ev =
⎧1

0

, ,

, .

if the node is the parent node of the edge of

otherwise
⎨⎨
⎩

Let L = diag{m1, m2, . . . , mk} where mm (m = 1, 2, . . . , k)
are the weight of the mth edge of G, and k is the number of the
edges of G. Then L can be denoted by L = DL(DT-E).

By Lemma 3, the uncertainty matrix DL of L can be written
as ΔL DF k E= ( ) , where E N∈ ×Rκ and F(k) is a diagonal matrix
whose diagonal elements are uncertainties of the edges. Since
|Dwij(k)|/wij � 1(i, j ∈ {1, 2, . . . , N}, i � j), it is assumed that
FT(k)F(k) � Ik ("k) without loss of generality.

Lemma 4 [36]. Given matrices Q = QT, H and Z, for all F(k)
satisfying FT(k)F(k) � I, Q + HF(k)Z + ZTFT(k)HT < 0 if and
only if there exists a g > 0 such that Q HH Z Z+ + <−γ γT T1 0.

Lemma 5 [38]. Let R and Q be real symmetric matrices and
assume that Q is invertible, then

R Y

Y Q

Q

R YQ YT T−
⎡
⎣⎢

⎤
⎦⎥
< ⇔

>
+ <

⎧
⎨
⎩ −0

0

01

,

.

The following theorem presents a criterion for system (3)
to achieve consensus, which includes both LMI and matrix
equality constraints, and an algorithm is given to check the
criterion and determine the gain matrix K.

Theorem 3. For any τ τ∈[ , ]1 , system (3) can be consensual-
ized by protocol (2) if there exist R = RT > 0, Q = QT > 0,

S = ST > 0, P P1 1 0= >T , P P2 2 0= >T , M
M M

M
= ⎡
⎣⎢

⎤
⎦⎥

11 12

22

0
*

� ,

X, Y and K satisfying
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Ξ

Ξ Ξ Ξ Ξ
Ξ Ξ Ξ Ξ

Ξ
Ξ

=
−

−
−

−

11 12 13 14

22 23 24 25

1 36

1
2 46

0 0

0

0 0

0

*

* *

* * *

* * * *

P

Pτ
II

I

0

0

* * * * *

,

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

< (19)

Ψ =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

M M X

M Y

S

11 12

22 0*

* *

,� (20)

RP I SP I1 2= =, , (21)

where

Ξ11 11= − + + + +R Q X X Mτ τT ,

Ξ12 12= − + +X Y MT τ ,

Ξ13 1= ⊗−( ) ,I AN
T

Ξ14 1= ⊗ −−( ) ,I A IN
T

Ξ22 22= − − − +Q Y Y MT τ ,

Ξ Ξ23 24= = − ⊗( ) ,�ULU B T

Ξ25 = − ⊗( ) ,EU B T

Ξ Ξ36 46= = ⊗�UD I .

Proof. First discuss the stability of subsystem (7). Define

ς ς η( ) ( ) ( ),k k k+ = +1 (22)

then one can see that

η ς ς ς
ς τ

( ) ( ) ( ) ( ) ( )

( ( ) ) ( ).

k k k I A I k

U L L U B k

N= + − = ⊗ −
− + ⊗ −

−1 1

� Δ (23)

Consider the following Lyapunov function candidate

V k V k V k V k( ) ( ) ( ) ( ),= + +1 2 3 (24)

where

V k k R k1( ) ( ) ( ),= ς ςT

V k i Q i
i k j

k

j

2
1

1

1

0

( ) ( ) ( ),=
= − +

−

=− +
∑∑ ς ς

τ

T

V k i S i
i k j

k

j

3
1

1

1

0

( ) ( ) ( ).=
= − +

−

=− +
∑∑ η η

τ

T

In (24), R, Q and S are positive definite symmetric matrices
to be determined. Define DV = V(k+1)-V(k), along the solution
of subsystem (7), one has

Δ ΞV k k k k R k1 0 1 0( ) ( ) ( ) ( ) ( ),= −ξ ξ ς ςT T� (25)

ΔV k k Q k i Q i k Q k

k
i k

k

2

1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

= −

− −
= −

−

∑τς ς ς ς τς ς

ς τ
τ

T T T

T

�

QQ kς τ( ),−
(26)

Δ ΞV k k S k i S i k k

i

i k

k

3 0 2 0

1

( ) ( ) ( ) ( ) ( ) ( ) ( )

(

= −

−

= −

−

∑τη η η η ξ ξ

η

τ

T T T

T

� �

)) ( ),S i
i k

k

η
τ= −

−

∑
1 (27)

where

ξ ς ς τ0( ) [ ( ), ( )] ,k k k= −T T T

� �
�

Ξ Δ
Δ

1 1

1

= ⊗ − + ⊗
⊗ − + ⊗

−

−

[ , ( ) ]

[ , ( ) ],

I A U L L U B

R I A U L L U B

N

N

T

� �
�

Ξ Δ
Δ

2 1

1

= ⊗ − − + ⊗
⊗ − − + ⊗

−

−

τ [ , ( ) ]

[ , ( ) ].

I A I U L L U B

S I A I U L L U B

N

N

T

The following equation can be obtained by (22),

Ω1 0

1

2 0= ⎡
⎣⎢

⎤
⎦⎥

− − −⎛
⎝⎜

⎞
⎠⎟
=

= −

−

∑ξ ς ς τ η
τ

T( ) ( ) ( ) ( ) .k
X

Y
k k i

i k

k

(28)

For any appropriately dimensioned matrix

M
M M

M
= ⎡
⎣⎢

⎤
⎦⎥

11 12

22

0
*

� , one has

Ω2

1

0 0 0 0

1

0 0

= −

=

= −

−

= −

−

∑ ∑
i k

k

i k

k

k M k k M k

k M

τ τ
ξ ξ ξ ξ

τξ ξ

T T

T

( ) ( ) ( ) ( )

( ) (kk k M k
i k

k

) ( ) ( ) .−
= −

−

∑ ξ ξ
τ

0 0

1

0T �
(29)

From (24) to (29), one can obtain

Δ Δ Δ Δ Ω Ω

Ξ Ξ Ξ

V k V k V k V k

k k

( ) ( ) ( ) ( )

( )( ) ( )

�

�

1 2 3 1 2

0 0 1 2 0

+ + + +

+ + −ξ ξT � � � ξξ ξ
τ

1 1

1
T( , ) ( , ),k i k i

i k

k

Ψ
= −

−

∑ (30)

where �Ξ
Ξ Ξ

Ξ0
11 12

22

= ⎡
⎣⎢

⎤
⎦⎥*

and ξ ξ η1 0( , ) [ ( ), ( )]k i k i= T T T. By the

Schur complement (Lemma 5), � � �Ξ Ξ Ξ0 1 2 0+ + < is equivalent to
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�

� �
� � � �

Ξ

Ξ Ξ Ξ Ξ
Ξ Ξ Δ Ξ Δ

=
− ⊗ − ⊗

−

11 12 13 14

22 23 24* ( ) ( )

* *

U LU B R U LU B S

R

T Tτ
00

0

* * *

,

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
<

τ S
(31)

where �Ξ13 1= ⊗−( )I A RN
T , � �Ξ23 = − ⊗( )ULU B RT , �Ξ14 =

1⊗ −−τ ( )I A I SN
T and � �Ξ24 = − ⊗τ ( )ULU B ST . Since ΔL =

DF k E( ) , by the properties of Kronecker products, one obtains

� �U LU B UD I F k I EU BΔ ⊗ = ⊗ ⊗ ⊗( )( ( ) )( ). (32)

Then it can be shown that (31) is equivalent to

�ΞΔ + ⊗ + ⊗ <H F k I Z Z F k I H( ( ) ) ( ( ) ) ,T T T 0 (33)

where

H UD I R UD I S= ⊗ ⊗[ , , ( ) , ( ) ] ,0 0 � �T T Tτ

Z EU B= − ⊗[ , , , ],0 0 0

�

� �
� �

Ξ

Ξ Ξ Ξ Ξ
Ξ Ξ Ξ

Δ =
−

−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

11 12 13 14

22 23 24

0

*

* *

* * *

.
R

Sτ

Due to FT(k)F(k) � Ik, one has (F(k) ƒ I)T(F(k) ƒ I) � Ikd.
By Lemma 4, (33) holds if and only if there exits a g > 0 such that

�ΞΔ + + <−γ γHH Z ZT T1 0. (34)

Replacing gR, gQ, gS, gM, gX, and gY with R, Q, S, M, X,
and Y respectively and using the Schur complement, (34) is
equivalent to

Φ

Ξ Ξ Ξ Ξ
Ξ Ξ Ξ Ξ

Ξ
Ξ

=
−

−

11 12 13 14

22 23 24 25

36

46

0 0

0

0 0

0

� �
� �

�
�

*

* *

* * *

* * *

R

Sτ
**

* * * * *

,

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

<

I

I

0

0 (35)

where � �Ξ36 = ⊗R UD I( ) and � �Ξ46 = ⊗τ S UD I( ). From (30) to
(35), one can see that if F < 0 and Y � 0, then subsystem (7) is
asymptotically stable.

Pre- and post-multiplying the left and right sides of F by
diag{ , , , ( ) , , }I I R S I I− −1 1τ , one obtains (19) and (21). By
Theorem 1, if (19)–(21) are feasible, then system (3) can be
consensualized by protocol (2). The proof of Theorem 3 is
completed.

Due to (21), the conditions in Theorem 3 are not strict
LMIs. However, the nonconvex feasibility problem can be solved

by a cone complementarity linearization approach, whose basic
principles and characteristics were addressed in detail in [37].
This method can convert the original problem into the following
nonlinear minimization problem:

min ( )

( ), ( ),

, , , , ,

tr

sbuject to

RP SP

R Q S P P M

1 2

1 2

19 20

0 0 0 0 0 0

+

> > > > > � ,, (36)

R I

I P

S I

I P1 2

0, 0.
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

� � (37)

The algorithm in [37] is applied to solve the above non-
linear problem.

Algorithm.

Step 1. Find a feasible set of R, Q, S, P1, P2, X, Y, M, K satisfying
(19), (20), (36) and (37). Set k = 0.
Step 2. Solve the following LMI problem

min tr

subject to and

( )

(19), (20), (36), (37
1, 1 2, 2RP R P SP S Pk k k k+ + +

)).

Let Rk+1 = R, Sk+1 = S, P1,k+1 = P1, and P2,k+1 = P2.
Step 3. If LMIs (20) and (35) are feasible for the K obtained
in Step 2, and |tr(RP1 + SP2) - 2(N - 1)d| <d for some
sufficiently small scalar d > 0, then stop and output the
feasible solutions R, Q, S, P1, P2, X, Y, M, K.
Step 4. If k > Nmax where Nmax is the maximum number of
iterations allowed, then stop.
Step 5. Set k = k + 1 and go to Step 2.

Remark 5. Although the LMI tool cannot give the explicit
expression of the controller gain, it is valid for dealing with
stability and stabilization problems of time-delayed uncertain
systems and has been extensively applied in the literature (e.g.,
[36,40,41] for isolated systems and [10–13,33] for swarm
systems). Lin and Jia [10] addressed average consensus problems
for swarm systems with a single constant delay. Sun and Wang
[11] dealt with swarm systems with multiple time delays, where
uncertainties were not considered and the consensus function,
which describes one of the important consensus properties, is
difficult to determine by their methods. Swarm systems with
time delays and uncertainties were considered in [12], where the
consensus function is the average of states of all agents. In [13],
we addressed the influences of both time delays and uncertainties
on consensus properties. In [10–13], it was supposed that the
dynamics of each agent is given by a first-order integrator. Liu
et al. [33] discussed consensus problems for high-dimensional
swarm systems with external disturbances in terms of LMIs,
while their methods cannot be used to deal with the case where
the consensus function is not the average of states of all agents.
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The current paper deals with high-dimensional swarm systems
with time delays and uncertainties, and an explicit expression of
the consensus function is shown based on the impacts of time
delays and uncertainties.

VI. NUMERICAL SIMULATIONS

In this section, a numerical example is given to illustrate
the effectiveness of the theoretical results shown in previous
sections.

Suppose that a swarm system consists of five agents with
the dynamics of each agent described by (1), where

A B C= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

0 5 0 4

0 1
 

1 0

2 1
 

0 81 0

0 1

. .
, ,

.
.

A directed communication graph G of the system is shown
in Fig. 1. The edges (v4, v2), (v1, v2), (v1, v3), (v5, v3), (v3, v5),
(v4, v1), (v1, v4), (v5, v1), (v1, v5), (v5, v4) and (v4, v5) are labeled
from 1 to 11 respectively. For simplicity, the adjacency matrix of
G is set to be a 0-1 matrix. Uncertainties are described by
ΔL DF k E= ( ) where E D E= −0 5. ( )T , D and E can be obtained
according to Lemma 3, and F(k) = diag{0.2sin(k), 0.3, 0.4sin(k)
cos(k), 0.4, 0.35sin(k), 0.6cos(k), 0.02, 0.01, 0.15sin(k),
0.35cos(k)}. The time delay is chosen as t = 5. The initial con-
dition is set as f(k) = [8, -6, 0, 0, -2, 3 0, 0, 4, 6, 0, 0, -8, 5, 0,
0, 5, -7, 0, 0]T (k ∈ [-t, 0]

By using the iterative algorithm given in Section 5 to solve
(19)–(21) in Theorem 3 with τ =10, one can obtain

K =
− −
⎡

⎣

⎢
0 0045 0 0056 0 0

0 0036 0 0030 0 0 0001

0 0 0 5559 0

0 0 0 0 5561

. .

. . .

.

.

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.

Fig. 2 shows the state trajectories of the swarm system, and
one can see that the system achieves consensus. The nominal
consensus function is denoted by circle markers in Fig. 2. The
state trajectories deviate from the one formed by circle markers,
which means that the time delay and uncertainties impact the
consensus function as shown in Theorem 2.

VII. CONCLUSIONS

Based on the dynamic output feedback consensus proto-
col, consensus problems of high-dimensional discrete-time
swarm systems with time delays and uncertainties were investi-
gated. By projecting the state of a swarm system onto the con-
sensus subspace and the complement consensus subspace, a
necessary and sufficient condition for the system to achieve
consensus was given, and an explicit expression of the consensus
function was presented. An approach to consensualize the system
was shown. Numerical simulations were given to illustrate the
effectiveness of theoretical results.

Fig. 1. Directed communication graph G.
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Fig. 2. State trajectories of the swarm system.
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