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The potential of using partial least square based uninformative variable elimination algorithm

(UVEPLS) on successive projections algorithm (SPA) for spectral multivariable selection was evaluated.

A case study was done on the visible and shortwave-near infrared (Vis-SNIR) spectroscopy for the

rapid and non-destructive determination of protein content in dried laver. Three calibration

algorithms, namely multiple linear regression (MLR), partial least square regression (PLS) and least-

square support vector machine (LS-SVM), were used for the model establishment based on the selected

variables of SPA, UVEPLS and UVEPLS-SPA, respectively. A total of 175 samples were prepared for the

calibration (n ¼ 117) and prediction (n ¼ 58) sets. The performances of different pretreatments were

compared. Both linear calibration algorithms of MLR and PLS and non-linear calibration algorithms

of LS-SVM with linear kernel and RBF kernel obtained similar results based on certain variable

selection strategies of SPA, UVEPLS and UVEPLS-SPA. The average improvement percentage of RPD

values of four calibration algorithms was 38.66% by calculating SPA on UVEPLS processed variables.

Therefore there was much improvement of using UVEPLS on SPA spectral multivariable selection with

both linear and nonlinear calibration algorithms in this case. Moreover, the RPD values of both linear

and non-linear models based on the thirteen selected variables of UVEPLS-SPA show that coarse

quantitative predictions of the protein determination in dried laver is possible based on Vis-SNIR

spectra. We hope that the results obtained in this study will help both further chemometric

(multivariate selection and calibration analysis) investigations and investigations in the sphere of

applied vibrational (Near infrared, Mid-infrared and Raman) spectroscopy of sophisticated

multicomponent systems.
1 Introduction

Visible-near infrared (Vis-NIR) spectroscopy has been widely

adopted for low-cost, nondestructive analysis of fruits, vegeta-

bles, and grains.1 It has the advantage of being rapid, low-cost,

and nondestructive. Vis-NIR spectroscopy has the ability to

predict multiple constituents and quality traits simultaneously. It

permits an on-line monitoring of the food and production

process and allows a fast intervention into the process when some

deviation in the product standard is observed. The spectral data

sets from the modern Vis-NIR spectroscopy instrumentations

with a high resolution, often contain hundreds or thousands of
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variables. Those mass variables can cause the spectral data to be

too complicated to be calibrated directly and make the calibra-

tion process time-consuming and inconvenient to fulfill the high

speed feature of spectroscopy. The elimination of irrelevant

variables can predigest calibration modeling and improve the

results in terms of accuracy and robustness. Therefore model

calibration process involves a selection on which wavelengths

should be used to establish an optimal model. Recently both

theoretical2 and experimental evidence3,4 have proved that

characteristic wavelengths instead of full spectra can improve

quantitative results.5,6 Specific regions can generate more stable

models with good interpretability.7 More stable models with

superior interpretability can be generated and this can produce

the lower prediction error. Therefore it is important to select

specific variables which contain useful information.

Successive projection algorithm (SPA) is a novel variable

selection algorithm to solve the collinearity problems. It employs

a simple projection operation in a vector space to select subsets of
This journal is ª The Royal Society of Chemistry 2011
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Table 1 Statistics of protein contents in dried laver

Data sets
Sample
number Maximum Minimum Mean

Standard
deviation

Calibration 117 34.20 27.60 31.76 1.62
Prediction 58 33.85 28.19 31.78 1.58
All 175 34.20 27.60 31.77 1.60
variables with minimum collinearity.8 Therefore its selected

variables are minimally redundant. SPA can provide more

reproducible results than genetic algorithm.9 However the SPA

operation is time consuming when the whole range spectra

(WRS) which usually have thousands of variables were consid-

ered. Moreover, its selected variables from WRS may contain

low signal noise ratio (S/N) which can affect the models perfor-

mance.10 Therefore the SPA calculation on the whole range

spectra sometimes might not obtain a good result. It might be

possible to improve the calibration model when SPA is followed

to select variables with minimum redundant information from

the informative variables with high S/N.

Partial least square regression (PLS) is an often-used calibra-

tion algorithm. Some researchers used loading weights and

regression coefficients of PLS to implement variable selections.7

However, these selections were manual and could weaken the

performance of the calibration model without prior experienced

knowledge about the spectra. Other researchers constructed PLS

to implement variable selections, like interval PLS (iPLS),

backward iPLS (biPLS) and synergy interval PLS (siPLS).11,12

These methods split the WRS into several equidistant regions,

and then establish PLS regression models for one or several sub-

intervals. The best sub-interval or the optimal sub-interval

combination is chosen based on its root mean square error of

cross-validation (RMSECV). However, these algorithms can

only consider one or a few wavelength intervals and the size of

the sub-interval can affect the result of variable selection. When

the sub-interval has fewer wavelength variables, its established

model may miss some useful information. When more wave-

length variables are considered in the sub-interval, they may

include some useless data and cause a longer calculation time.

Uninformation variable elimination is another variable selection

algorithm based on the stability analysis of PLS regression

coefficient (UVEPLS).
13 In UVEPLS process, the spectral data are

added with the artificial random variables as a reference. So

those spectral variables which have less important in the model

than the random variables are eliminated. UVEPLS can eliminate

the variables which have no more informative variables for

modeling than noise. The selected variables of UVEPLS can avoid

the model over-fitting and usually improve its predictive ability.

UVEPLS shows a better ability of variable selection than other

PLS based algorithms, such as iPLS, biPLS and siPLS.14

The performance of UVEPLS combined with SPA with

different linear and nonlinear calibration algorithms was evi-

denced by a case study to determine the protein content of dried

laver. Laver is a kind of edible seaweed with high proportions of

protein and mineral salt. Laver’s nutrition is influenced by

environmental factors but also has a strong genetic component.

To make enormous profits, dried lavers with low protein content

are sold at a high price. These behaviors badly infringe on the

rights and interests of consumers. Therefore the protein content

determination in dried laver is critically important to both

consumers and industries in public-health and economic terms.

Usually protein is determined by the Micro-Kjeldahl method,15

which is time-consuming and costly, and requires professional

operation. Efforts to monitor the protein content in dried laver

would be aided with nondestructive technologies that allow

consumers to select protein content at the same level of price.

Longwave near infrared (LNIR) spectroscopy has been
This journal is ª The Royal Society of Chemistry 2011
successfully used for the protein measurement.16–18 However,

compared to the LNIR spectroscopy (1100–2500 nm), visible-

shortwave near infrared (Vis-SNIR) spectroscopy (325–1100 nm)

can obtain single-beam data reliably which can reduce the

measurement time19 and has fewer effects from the water vibra-

tion.20 Moreover, Vis-SNIR spectroscopy instruments are

usually much cheaper than those of LNIR spectroscopy. To the

authors’ knowledge, the current study was the first to evaluate

the performance of UVEPLS-SPA for multivariable selection

based on different calibration algorithms and to use Vis-SNIR

spectroscopy to characterize laver and specifically for the protein

determination in laver.

The objective of this study was to evaluate the improvement

ability of using UVEPLS on SPA for the spectral multivariable

selection with different linear and nonlinear calibration algo-

rithms. Different spectral pretreatment algorithms, variable

selection algorithms and calibration algorithms were compared

for the protein determination in dried laver.

2 Materials and methods

2.1 Sample preparation and Vis-SNIR spectral measurement

In order to sample a broad range of protein content in laver, five

brands of dried laver, from Quanzhou (L1, Fujian Province),

Dongtou (L2, Zhejiang Province), Zhoushan (L3, Zhejiang

Province), Cangnan (L4, Zhejiang Province), Lijian (L5, Fujian

Province) respectively, were prepared on the basis of diverse

geographic locations of original collection. All of these brands

are popular in Chinese markets. Samples of one brand are from

five batches with three production times. The protein content was

determined by Kjeldahl method and the factor 6.38 was used to

convert the nitrogen values to protein. The descriptive statistics

for the protein contents are presented in Table 1.

A Vis-NIR spectrometer (USB4000 Miniature Fiber Optic

Spectrometer, the Ocean Optics, lnc., USA) was used to measure

Vis-SNIR reflectance spectra of dried laver samples. The spectral

measurement was made at ambient temperature of 18–20 �C.
Dried laver from each variety was fragmented and spread on

a paper. An iron plate was used to make fragment’s surface close

to smooth. The probe of the spectrometer was placed above the

surface of laver about 4 mm. The spectrum of each sample was

the average of 30 successive scans. Finally 175 samples of laver

samples were obtained. There were 37 samples for L1, 39 samples

for L2, 35 samples for L3, 29 samples for L4 and 35 samples for

L5. In order to obtain a 2 : 1 division of calibration/prediction

spectra, the four samples of every six samples were selected into

the calibration set. The calibration set contains 117 spectra and

another 58 spectra constitute the prediction set. A low signal to

noise ratio was in the spectra between 346 and 464 nm, and

between 1017 and 1050 nm. Therefore the spectra containing
Anal. Methods, 2011, 3, 1790–1796 | 1791



Fig. 1 Flow program of chemometric calculation process.
useful information was determined between 464 and 1017 nm

(2900 variables).

2.2 Spectra pretreatment

Five spectral pretreatment algorithms, including Savitzky-Golay

(SG) smoothing,21 standard normal variate (SNV),22 multipli-

cative scatter correction (MSC),23 1st and 2nd derivatives (1-Der

and 2-Der)), were implemented using ‘‘The Unscrambler V9.7’’

(CAMO PROCESS AS, Oslo, Norway). Savitzky-Golay

smoothing is an averaging algorithm that fits a polynomial to the

data points. SNV is a row-oriented transformation which centers

and scales individual spectra. MSC is a transformation algorithm

used to compensate for additive and/or multiplicative effects in

spectral data. Derivative attempts to correct baseline drift in

spectra. The performances of these pretreatment algorithms were

compared based on PLS calibration. The spectral pretreatment

calculation was implemented by ‘‘The Unscrambler�9.7’’

(CAMO AS, Oslo, Norway).

2.3 Variable selection algorithms

In this paper, two variable selection algorithms were investi-

gated, namely partial least square regression based unin-

formation variable elimination (UVEPLS) and successive

projections algorithm (SPA).

2.3.1 Methodology of partial least square regression based

uninformation variable elimination. UVEPLS is based on the

stability analysis of PLS regression coefficient.13,24 The objective

of UVEPLS is to eliminate the variables which have no more

information for modeling than noise. In the UVE algorithm,

a PLS regression coefficient matrix b ¼ [b1,.bp] is calculated

through a leave-one-out validation; then the reliability of each

variable can be quantitatively measured according to its stability.

The stability of variable j can be calculated as:

sj ¼ mean(bj)/std(bj) (1)

where mean(bj) and std(bj) are the mean and standard deviation

of the regression coefficients of variable j. To estimate the

uninformative wavelength variables, an artificial random vari-

able matrix, with a range of approximately 10�5, is established

and appended to the spectral matrix. Then their Sj values, which

are stability of random variable matrix, are computed. If a vari-

able’s absolute value of Sj value is smaller than the maximum

absolute value of Sj values of random variable matrix, this

variable is considered to be an uninformative variable. The

process of UVEPLS was executed in MATLAB 7.6 (The Math

Works, Natick, USA).

2.3.2 Methodology of successive projections algorithm.

Successive projections algorithm (SPA) is a promising variable

selection algorithm. It can select variables with minimally

redundant to solve the collinearity problems. In SPA process,

a projection operation in a vector space is applied to select

subsets of variables with a minimum collinearity.8 In detail, the

spectral data are disposed in a matrix X (N � K) that the kth

wavelength variable xk corresponds to the kth column vector xk
˛ RN. Let M ¼ min(N � 1, K) be the maximum number of
1792 | Anal. Methods, 2011, 3, 1790–1796
selected variables. The first step consists of projections carried on

theXmatrix, which generate k chains ofM variables. The second

step consists of evaluating candidate subsets of variables selected

in the first step. A total of M � K subsets of variables are tested,

and the best variable subset is selected. For this purpose root

mean square error (RMSE) is adopted. The main feature of the

algorithm can be found in literature.25 The process of SPA was

operated in MATLAB 7.6 (The Math Works, Natick, USA).
2.4 Chemometric calibration algorithms

In this paper, three calibration algorithms were investigated,

namely partial least square regression, least-square support

vector machine and multiple linear regression. In order to show

how the chemometrics work, a flow program is shown in Fig. 1.

2.4.1 Methodology of partial least squares regression. Partial

least squares regression (PLS) analysis26 is widely used for cali-

bration in present chemometric analysis. It can establish

a regression model and perform the prediction of physiological

concentrations. PLS finds the fundamental relations between the

variable matrix Y (the properties of interest) and the variable

matrix X (the spectra). PLS is particularly suited when variables

are more than samples, and when there is multicollinearity

among X values. The calculation of PLS was implemented by

‘‘The Unscrambler�9.7’’ (CAMO AS, Oslo, Norway).

2.4.2 Methodology of least-square support vector machine

(LS-SVM). LS-SVM is an evolution of the standard support

vector machine.27 With the capability for both linear and non-

linear multivariate calibration, the LS-SVM can solve the

multivariate calibration problems in a relatively fast way. To

obtain the support vectors, a linear set of equations is used

instead of a quadratic programming problem.28 To evaluate the

performances of different kernel functions, linear kernel and

RBF kernel were compared, respectively. The linear kernel type

is the simplest and most efficient kernel to perform similarity

calculation. RBF kernel is a nonlinear function and a more

compact supported kernel. It can reduce the computational

complexity of the training procedure while giving good perfor-

mance under general smoothness assumptions. Two important

kernel parameters of LS-SVM need to be considered. gam(c) is

a regularization parameter for both linear kernel and RBF

kernel. sig2(r2) represents the bandwidth in the case of the RBF

kernel.29 We employed grid-search technique and leave-one-out

cross validation to find out the optimal parameter values. In grid-

search process, RMSECV was calculated and the optimum
This journal is ª The Royal Society of Chemistry 2011



values of two parameters were selected when they produced

smaller RMSECV. Details of the LS-SVM algorithm can be

found in the literature.18 LS-SVM toolbox (LS-SVM v 1.5,

Suykens, Leuven, Belgium) was applied withMATLAB to derive

all of the LS-SVM models.

2.4.3 Methodology of multiple linear regression (MLR).MLR

is a commonly used calibration algorithm with features of being

simple and easy to be interpreted. However it fails when the

variable number is more than sample number and can be easily

affected by the collinearity problems.30 In this study the number

of whole Vis-SNIR spectral wavelength variables is larger than

sample number. Therefore it is not possible to run MLR directly

on the WRS variables. Therefore the effective variable selection

is necessary before MLR model establishment. Moreover, the

selected variables with less collinearity would be helpful to

improve the MLR model. The calculation of MLR was imple-

mented by ‘‘The Unscrambler�9.7’’ (CAMO AS, Oslo,

Norway).
2.5 Model evaluation standard

In this study, the performances of all established spectral models

were evaluated in terms of the root mean square error of cali-

bration (RMSEC) for the calibration set and root mean square

error of prediction (RMSEP) and residual predictive deviation

(RPD) for the prediction set. The large difference between

RMSEC and RMSEP means that the model is overfitting. The

coefficients of determination (r2) were used for the evaluation of

both calibration (rcal
2) and prediction (rpre

2) process. RPD is the

standard deviation of reference data for the prediction samples

divided by the standard error of prediction (SEP) and provides

a standardization of the SEP.31 Generally, a good model should
Table 2 Prediction results of protein content in dried laver using vis-SNIR vp

Pretreatment
Variable selection
algorithm

Variable
number Calibration

L
v

/ / / 2900 PLS 7
SG
smoothing

/ / 2900 PLS 7

SNV / / 2900 PLS 8
MSC / / 2900 PLS 8
1st D / / 2900 PLS 5
2nd D / / 2900 PLS 2
SNV / / 2900 LS-

SVMRBF

/

SNV / / 2900 LS-SVMlin /
SNV / SPA 9 PLS 7
SNV / SPA 9 LS-

SVMRBF

/

SNV / SPA 9 LS-SVMlin /
SNV / SPA 9 MLR /
SNV UVEPLS / 217 PLS 7
SNV UVEPLS / 217 LS-

SVMRBF

/

SNV UVEPLS / 217 LS-SVMlin /
SNV UVEPLS SPA 13 PLS 8
SNV UVEPLS SPA 13 LS-

SVMRBF

/

SNV UVEPLS SPA 13 LS-SVMlin /
SNV UVEPLS SPA 13 MLR /

This journal is ª The Royal Society of Chemistry 2011
have higher rcal
2, rpre

2 and RPD value, and lower RMSEC and

RMSEP values.
3 Results and discussion

3.1 Choosing the best pretreatment algorithm

WRS-PLS models were established based on different pretreat-

ment algorithms (Table 2). The SG smoothing, 1st D and 2nd D

with the segment sizes of 35, 45 and 55, were calculated. The best

results were obtained when the segment sizes were 35, 35 and 45

for SG smoothing, 1st D and 2nd D respectively (only the best

results are shown in Table 2). After the SG smoothing, the result

was not improved compared to that of WRS-PLS models with

original spectra. Therefore SG smoothing was not considered to

be combined with other pretreatment algorithms. This is due to

the original spectra having less noise, which proved that the

USB4000 Miniature Fiber Optic Spectrometer can obtain the

spectra of dried laver with high quality. The best result was

obtained based on the pretreatment of SNV. Its rpre
2 was 0.8020,

RMSEP was 0.7316, and RPD was 2.1507. The results of WRS-

SNV-PLS model, MSC-WRS-PLS model and 1st D-WRS-PLS

model were similar. The RPD values of MSC-WRS-PLS model

and 1st D-WRS-PLS model were 98.25% and 97.21% that of the

WRS-SNV-PLS model. The result of the 2nd Dmodel was worse

than that of other pretreatments. This is because the 2nd D

enlarged some hidden feature peaks but also induced much noise

into of the spectra of dried laver. Therefore, further analysis was

done based on the spectra pretreated by the best pretreatment

algorithm of SNV.

LS-SVM is a powerful spectral nonlinear calibration algo-

rithm. To compare the result obtained by PLS, we calculated the

SNV pretreated spectra based on LS-SVM model with linear
ectroscopy with chemometrics (available range of protein: 27.60–34.20%)

atent
ariables

Calibration Prediction

r2cal RMSEC r2pre RMSEP RPD

0.7486 0.8093 0.7227 0.8438 1.8690
0.7488 0.8089 0.7233 0.8426 1.8728

0.8413 0.6430 0.8020 0.7316 2.1507
0.8411 0.6434 0.7971 0.7445 2.1130
0.8148 0.6945 0.7934 0.7489 2.0908
0.7246 0.8470 0.6334 0.9624 1.6314
0.8993 0.5237 0.8163 0.6819 2.3161

0.9857 0.1986 0.7820 0.8620 1.8205
0.7812 0.7550 0.7139 0.9728 1.6894
0.8071 0.7097 0.7305 0.9223 1.7753

0.7824 0.7531 0.7219 0.9479 1.7304
0.7831 0.7517 0.7183 0.9710 1.6883
0.8619 0.5999 0.8344 0.6536 2.4036
0.9039 0.5032 0.8523 0.6178 2.5467

0.8937 0.5278 0.8466 0.6345 2.4813
0.8718 0.5778 0.8321 0.6589 2.3958
0.8781 0.5649 0.8410 0.6385 2.4585

0.8752 0.5706 0.8300 0.6667 2.3568
0.8761 0.5680 0.8292 0.6756 2.3320

Anal. Methods, 2011, 3, 1790–1796 | 1793



kernel (LS-SVMlin) and LS-SVM model with RBF kernel (LS-

SVMRBF). The result is shown in Table 2. Compared to the result

of SNV-WRS-PLS model, SNV-WRS-LS-SVMRBF model’s

RMSEC decreased 18.55%, RMSEP decreased 6.79%, while

RPD increased by 7.69%, showing that LS-SVMRBF model was

better than PLS model. However, when linear kernel was used,

LS-SVM model’s result became poorer than LS-SVMRBF model

and PLS model. Compared to the result of SNV-WRS-PLS

model, SNV-WRS-LS-SVMlin model’s RMSEP increased

17.82% while RPD decreased by 15.35%. When the absolute

difference values between RMSEC and RMSEP were calculated,

the values of 0.1582 and 0.6635 were obtained for LS-SVMRBF

model and LS-SVMlin model, respectively. However the value of

PLS model was 0.0886, only 56.01% and 13.35% compared to

those of LS-SVMRBF model and LS-SVMlin model. The result

shows that LS-SVMRBF model and LS-SVMlin were more

overfitting than PLS model. Therefore when WRS were consid-

ered, LS-SVMRBF might be able to obtain better result but PLS

model was more robust in this study.
3.2 SPA calculation based on the WRS

SPA was carried out for selecting effective wavelength variables

from the WRS. Fig. 2 shows the RMSE scree plot obtained by

SPA. Fig. 2 was used for the explanation of the selection

procedure by SPA, and the distribution of selected variables in

the spectral curve plot. As can be seen, the trends of RMSE

curves become marginal in the starting part as the numbers of

selected variables were from 1 to 6. Then a sharp fall is shown

when the numbers of selected variables were from 6 to 7. The

curve tends to level off after the determination of selected

variables by F-test criterion with a ¼ 0.25.9 The solid circle

shows the selected variable number of nine. Therefore nine

variables (RMSE ¼ 0.83614) variables were selected. The

selected wavelength variables were set as the input variables of

MLR, PLS, LS-SVMRBF and LS-SVMlin models, respectively.

The results are shown in Table 2. SNV-SPA-LS-SVMRBF model

obtained the best result. Its rpre
2 was 0.7305, RMSEP was

0.9223, and RPD was 1.7753. However, the other three algo-

rithms obtained similar results too. The RPD values of SNV-

SPA- LS-SVMlin model, SNV-SPA-PLS model and SNV-SPA-

MLR model were 97.47%, 95.16% and 95.10% of that of

SNV-SPA-LS-SVMRBF model.
Fig. 2 RMSE scree plot of SPA operated based on the whole range

spectra.
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After the variable selection using SPA, although the variable

numbers were much reduced (9 vs. 2900), the performances of

PLS, LS-SVMRBF and LS-SVMlin calibration models became

worse (MLR cannot be established based on the WRS). SNV-

SPA-LS-SVMRBF model had a RPD value of 1.7753, 23.35%

decrease compared to that of SNV-WRS-LS-SVM model. The

SNV-SPA-LS-SVMlin model had a RPD value of 1.7304,

a 4.95% decrease compared to that of SNV-WRS-LS-SVMlin

model. SNV-SPA-PLS model had a RPD value of 1.6894,

21.45% decrease compared to that of SNV-WRS-PLS model. It

might be because SPA was operated on the whole spectra which

have the low S/N.10 Moreover, the SPA operation based on the

whole spectra with thousands of variables is time-consuming.

Thus it might be possible to improve the SPA performance and

reduce the calculation time by eliminating uninformation vari-

ables before SPA.

3.3 UVEPLS calculation based on the WRS

Fig. 3 shows the stability of each wavelength variable based on

UVEPLS with 10 LVs. Wavelength variables are on the left of the

vertical line, while random variables are on the right side. The

two horizontal lines are the lower and upper cutoffs. The variable

whose stability is within the cutoff lines is treated as uninfor-

mative and be eliminated. Finally 217 wavelength variables were

selected from 2900 WRS variables. That means 92.52% of the

WRS variables were eliminated. The selected wavelength vari-

ables were used to establish the PLS, LS-SVMRBF and

LS-SVMlin models, respectively. The result of SNV-UVEPLS-LS-

SVMRBF model was the best. Its rpre
2 was 0.8523, RMSEP was

0.6178 and RPD was 2.5467. The other two algorithms obtained

similar results. The RPD values of SNV-UVEPLS-LS-SVMlin and

SNV-UVEPLS-PLS models were 97.43% and 94.38% of that of

SNV-UVEPLS-LS-SVMRBF model.

UVEPLS has improved the prediction result compared to that

based onWRS.When PLS was used as the calibration algorithm,

the RPD value of SNV-UVEPLS-PLS model was 2.4036, 11.76%

higher than that of the SNV-WRS-PLS model. When LS-

SVMRBF was used as the calibration algorithm, the RPD value of

SNV-UVEPLS-LS-SVMRBF model was 2.5467, 9.96% higher

than that of SNV-WRS-LS-SVM model. When LS-SVMlin was

used as the calibration algorithm, the RPD value of SNV-

UVEPLS-LS-SVMlin model was 2.4813, 36.30% higher than that
Fig. 3 Stability of each variable by UVEPLS with 10 LVs. Two hori-

zontal lines indicate the lower and upper cutoff.
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of SNV-WRS-LS-SVM model. The average improvement

percentage was 19.34%. Moreover, 92.52% of the WRS variables

were eliminated after the process of UVEPLS algorithm. There-

fore, variables with no more information for modeling than noise

were eliminated after UVEPLS analysis.

3.4 SPA calculation based on UVEPLS selected spectra

Although over ninety percent of WRS variables were eliminated

after UVEPLS process, there were still more than one hundred

variables remaining. In order to obtain fewer variables and to

make the model more simple and interpretable, SPA was used to

further select the effective variables based on the selected vari-

ables of UVEPLS. Based on the same F-test criterion, thirteen

variables were selected. The selected thirteen wavelength vari-

ables were set as the inputs of the MLR, PLS, LS-SVMRBF and

LS-SVMlin models, spectively. The results are shown in Table 2.

SNV-UVEPLS-SPA-LS-SVMRBF model obtained the best

result. Its rpre
2 was 0.8410, RMSEP was 0.6385, and RPD was

2.4585. The other three calibration algorithms obtained similar

results. The RPD values of SNV-UVEPLS-LS-SVMlin, SNV-

UVEPLS-SPA-PLS model and SNV-UVEPLS-SPA-MLR model

were 95.86%, 97.45% and 94.85% of that of SNV-UVEPLS-SPA-

LS-SVM model.

The uninformation variable elimination by UVEPLS was useful

to improve the results of SPA (Table 2). When MLR was used as

the calibration algorithm, the RPD value of SNV-UVEPLS-SPA-

MLR model was 2.3320, 38.13% higher than that of SNV-SPA-

MLR model. When PLS was used as the calibration algorithm,

the RPD value of SNV-UVEPLS-SPA-PLS model was 2.3958,

41.81% higher than that of SNV-SPA-PLS model. When LS-

SVMRBF was used as the calibration algorithm, the RPD value of

SNV-UVEPLS-SPA-LS-SVMRBF model was 2.4585, 38.48%

higher than that of SNV-SPA-LS-SVMRBF model. When LS-

SVMlin was used as the calibration algorithm, the RPD value of

SNV-UVEPLS-SPA-LS-SVMlin model was 2.3568, 36.20% higher

than that of SNV-SPA-LS-SVMlin model.

3.5 Discussion

Our results show that UVEPLS can improve the results of SPA

based on all four calibration algorithms in this case (Fig. 4).
Fig. 4 Comparison of the evaluation parameters of different models

based on UVEPLS-SPA and SPA respectively.
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When SPAwas calculated directly on theWRS, the average RPD

value of the models based on three calibration algorithms was

1.7208. That means the model can only discriminate between low

and high values of the response variable.32 However when

UVEPLS was used to eliminate uninformation variables and the

retained variables were selected by SPA, the average RPD value

was 2.3858, and shows that coarse quantitative prediction is

possible.32 It can be seen that the average improvement

percentage of RPD was 38.66% by calculating SPA on UVEPLS

processed variables. Also the average increased rate of rcal
2 and

rpre
2 of SNV-UVEPLS-SPA-MLR model was 13.66%, and the

average decreased rate of RMSEC and RMSEP was 27.43%,

compared to those of SNV-SPA-MLR model. The average

increased rate of rcal
2 and rpre

2 of SNV-UVEPLS-SPA-PLS model

was 14.08%, and the average decreased rate of RMSEC and

RMSEP was 27.87%, compared to those of SNV-SPA-PLS

model. The average increased rate of rcal
2 and rpre

2 of SNV-

UVEPLS-SPA-LS-SVMRBF model was 11.96%, and the average

decreased rate of RMSEC and RMSEP was 25.59%, compared

to those of SNV-SPA-LS-SVMRBF model. The average increased

rate of rcal
2 and rpre

2 of SNV-UVEPLS-SPA-LS-SVMlin model

was 13.42%, and the average decreased rate of RMSEC and

RMSEP was 26.95%, compared to those of SNV-SPA-LS-

SVMlin model. Therefore it was proved that there was much

improvement of using UVEPLS on SPA spectral multivariable

selection with both linear and nonlinear calibration algorithms in

this case.

Both linear calibration algorithms of MLR and PLS and non-

linear calibration algorithms of LS-SVMRBF and LS-SVMlin

obtained similar results based on all variable selection strategies

of SPA, UVEPLS and UVEPLS-SPA. LS-SVM did not obtain

better results compared to other linear calibration algorithms in

this study, although other papers show that LS-SVM usually can

obtain better results than PLS andMLR.4,18,33MLR and PLS are

simpler for use in practice than LS-SVM. They were suggested to

be used for the spectral calibration in this study. MLR would be

more preferred when SPA and UVEPLS-SPA are used for the

variables selection which can make the number of variables less

than the number of samples, and can make MLR available for

the calibration. Therefore, for different applications, both linear

and non-linear calibration algorithms should be analyzed to

choose the best one.
4 Conclusions

The improvement ability of using UVEPLS on SPA for the

spectral multivariable selection was evaluated for the rapid and

non-destructive determination of protein content in dried laver.

Different spectral pretreatment algorithms (SG smoothing,

SNV, MSC, 1-Der and 2-Der), variable selection algorithms

(UVEPLS, SPA and UVEPLS-SPA) and calibration algorithms

(MLR, PLS, LS-SVMRBF and LS-SVMlin) were analyzed. The

results proved that it was necessary to operate UVEPLS before

SPA, which could both reduce the calculation time and improve

the model’s performance. Moreover, Vis-SNIR spectroscopy

was successfully utilized for the protein determination in dried

laver. The RPD values of both linear and non-linear models

based on the thirteen selected variables of UVEPLS-SPA showed

that coarse quantitative predictions were possible. We hope that
Anal. Methods, 2011, 3, 1790–1796 | 1795



the results obtained by us will help both further chemometric

investigations (multivariate selection and calibration analysis)

and investigations in the sphere of vibrational (Near infrared,

Mid-infrared and Raman) spectroscopy of multicomponent

systems.
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