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A new entangled state |n;0) is proposed by the technique of integral within an ordered product. A generalized
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1. Introduction

In recent years quantum computer has attracted
the attention of physicists because the principle of
quantum computer obeys the laws of quantum me-
chanics. The representation theory is one of the
foundations in the mathematics and physics of quan-
tum mechanics. Fan!!! and Wiinschel? have created
the technique of integral within an ordered product
(IWOP) of operators, which has developed the rep-
resentation theory greatly. Since the publication of
the paper of Einstein, Podolsky and Rosen (EPR)
in 1935,13 the conception of entanglement has be-
come more and more fascinating and important as it
plays a central role in quantum communication and
quantum computation. The entangled state has been
an important topic in quantum mechanics and quan-
tum optics4~% since Glauber”8 and Klauder and

] introduced the coherent state of the har-

Skagerstam
monic oscillator. In the theoretical study of quantum
computer, of great importance is the Hadamard trans-

form. The continuous Hadamard operator is defined
[10]
as
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where o is the scale length.
From Eq. (1), Fan and Guo[' found the following
explicit form of Hadamard operator:
20 ot —4 1o
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and the following explicit form of two-mode Hadamard

F:

operator in entangled state representation:

~ 402 4—o* ;. i a 402
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In the present paper, employing a new type
of entangled state representation |n;0) and IWOP

technique, we construct a so-called generalized Had-
mard operator which plays a role of two-mode Had-
mard transform for (@ sin @ — as cos @) and (a1 cos 6+
g sin 6).

2. Entangled state representation
m; 0)

Fan and Lul'?l constructed a kind of coherent-
entangled state |a, z). Xu et al.l'> constructed two

*Project supported by the National Natural Science Foundation of China (Grant No. 10574060) the Natural Science Foundation of
Shandong Province of China (Grant No. Y2008A16), the University Experimental Technology Foundation of Shandong Province,
China (Grant No. S04W138), and the Natural Science Foundation of Heze University of Shandong Province, China (Grant

Nos. XY07WL01 and XY08WLO03).
TCorresponding author. E-mail: xxlwlx@126.com

(© 2011 Chinese Physical Society and IOP Publishing Ltd

http://www.iop.org/journals/cpb  http://cpb.iphy.ac.cn

010301-1



Chin. Phys. B Vol. 20, No. 1 (2011) 010301

kinds of states, i.e., coherent-entangled state |a, x; \) + &;(sin2 0 — cos 0)]|n; 0),

and intermediate entangled state |11, m2) 5. By test- as|n;0) = [—(ncosf + " sinf) — 2&; sinf cos O
ing, we construct a new type of entangled state |n; 6), Lot (sin? 0 — cos? 0)]|: 0) (6)
which is a common eigenvector of [(£; — Z2)sind — ! Gt

(£1+32) cos ] and [(p1 +pPo) sin 0+ (P1 —P2) cosb], a8 [t follows that

follows:
2 By — &9)sinf — (&1 + & 0l|m; 0) = vV2m1|n; 6
|n;0) = exp | — % + (nsin® — n* cos 6)&1 [(#1 = &2) sin (1 + &2) cos blln; 6) = V2 n;0),
. [(P1 + p2) sin 0 + (p1 — p2) cos 6] |n; 6) = V/2na|n; 0),
— (ncos@ + n*sinf)a; (7)
+ &12 sinf cosf — d;z sin f cos 0
here n is a complex number, whose real part 7; and
Atatre 2 2 w. n p ) p m
+ayy(sin” 6 — cos™ 0)100), (4) imaginary part 7 multiplied by /2 are indeed the
where eigenvalues of [(Z1 — &3)sinf — (&1 + Z2) cosf] and
LAt LAt [(P1 + P2) sin @ + (p1 — P2) cos 0], respectively.
A_ai+ai L ay—ay .
T; = vz pi = VoTl Using the normal ordered product of the two-
. vt mode vacuum projector
(22172>7 n=m +1772- (5)
In fact, using [a;,a}] = 0y, [ai: f(al,a;) 1 =: 00)(00] =: exp{—ala, — abas} : (8)
6’1]‘(&1,6@-) ;, and @;|00) =0 (i,57 = 1,2), we have
e and IWOP technique, we can smoothly prove the com-
a1|n; 0) = [(nsin® — n* cos ) + 2a! sin @ cos 0 pleteness relation of |n; 6)

d277 d27] 2 : * ~t * s ~t
7|77;9><77;9| =/ —: exp[—|n|* + (nsind — n* cos)a] — (ncosb + n* sinb)a)

+a{%sin 6 cos§ — ab? sinf cos O + alal(sin? 0 — cos? 0) — ala, — alas

+ (n*sinf — ncosf)a; — (n* cos + nsin b)as

+a? sin 6 cos O — a3 sin 6 cos 6 + G1as(sin® 6 — cos® )] := 1. (9)
Employing the over-completeness relation of the two-mode coherent state
d?z1d229
/#m,zmzl,zﬂ =1 (10)

and noticing the overlap

2 2 2
(21, 22|n;0) = exp [— % - % - % + (nsin@ — n* cos )z}
— (ncos® +n*sinf)z; + 272 sinf cos ) — 232 sinf cos O + 2} 25 (sin? 6 — cos? 0) |, (11)
we obtain

d?z;d?z
0 81s6) = [ S22 0121, 20) 22l )
d?zd?
= / % exp { — 212 + 21[(n* sin @ — 7/ cos ) + z5(sin? O — cos? 0)]
+ 27 [(nsin @ — n* cos§) + 25 (sin? @ — cos® #)] + 22 sinf cos
+21%sinfcos @ — |22|* — 2o(n' sin @ + n* cos §) — 23 (1 cos O + n* sin h)

2 2
= mo(m —n1)d(n2 — 15), (12)

/12 2
—z%sin@cos&—z’z"zsiDOCosﬁ— m — |77}
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where we have used the mathematical formulas

1 exp <C£n+£29+n2f>
(2 —4Afg (2 —4fg ’

o) =ty e (), ”

Thus the entangled state |7; 0) is orthogonal.

d?z
/7 exp(C|z)? + €2 4+ n2* + f22 4 g2*?) =

Furthermore, by making the Fourier transformation and the inverse Fourier transform, we obtain

‘ _m \Jr@lnz, > / du exp(iuny)|z1 = u(sin @ + cos ) + 5 (sm¢9 —cos b))
®|wy = u(sin @ — cos #) — %(Sin@ + cos 9)>, (15)

which is the Schmidt decomposition of |7;6), and confirms that |n; ) itself is an entangled state, where

1 1‘% f At CALI2 1 Z‘g f At d;z
|z1) = mexp ) + V2xia] — > [0); and |zo) = Wexp ) + V2x2a) — > |0Y2

are the first-mode and the second-mode coordinate eigenstates, respectively.
From Egs. (9), (12) and (15), we conclude that |n; 0) exhibits the properties of entangled states.

3. Properties of generalized Hadamard transformation operator
Note that

[(G1sin6 — as cosB), (a J{ cos + absinf)] =0, [(a1 cosf + g sinb), (a J{ 11107(1;(?089)] =0,
A1
ay

[(a1 sin 6 — a5 cosB), (al sinf — al cos@)] =1, [(ay cosd + agsinb), (al cosd + alsinh)] =1, (16)

(a1 sin @ — ag cosf)can be considered to be a mode independent of another mode (a1 cos @ + as sinf), then we
will have the following operator identities:

exp[A(a] sin @ — &}, cos 0)(a sin @ — @y cos 0)] =: exp[(e* — 1)(a] sin 6 — a; cosB)(ay sinf — dg cos )] -,
T AT
1 a

exp[A(a] cos @ + d; sin 0)(ay cos @ 4 Gy sin 0)] =: exp|(e* — 1)(a! cos 6 + a2 sin0) (a1 cos O + G sinf)] : . (17)

According to the entangled representation |n;0) and Eq. (2), we now construct the following ket-bra inte-

Sy R S (19)

Substituting Eq. (4) into Eq. (18) and using the IWOP technique we obtain

~ d2 ’ 2 /12 kol o Ik
U:/ / N Ul +2|77| LTI g — g cost)a]

— (ncosf +n*sinB)ad + al* sin 0 cos  — al? sin 6 cos 0 + al al(sin? @ — cos? )

gration:

—alay —alay + (/" sin — 1’ cos 0)ay — (n'* cos O + 1’ sin B)asy
+ a2 sinf cos § — a2 sin A cos 6 + ayaz(sin? @ — cos? 0)] :
40 4 —o*

= T P {04_’_4(&1 sinf — &; cos 0)(&4{ cos @ + &; sin 0)

4 2
+ <04i4 - 1> (dJ{ sinf — &; cos 0) (a1 sin @ — ay cos )

—40?
+ ((74 nvie 1> (a1 cos&—l—azsmﬂ)(al cos 0 + g sin6)
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+4—04(
ot 44

Using Eq. (17), we obtain

402 4 —o*

ﬁ:
J4+4exp o444

a1 8in @ — ag cos ) (a; cosf + o sin )] : . (19)

(al sin@ — ) cos 0)(al cos 6 + ) sin 0)}

ot . . . o?
x exp | (@l sin@ — @l cos0)(ay sin 0 — ay cos 0) In (U4_|_4>

— 452
+(&J{cos9+d§sin9)(d1cosﬁ+d2sin9)ln( g )]

(4 — ot

X exp _m(

ot 44

1 8in 0 — Gz cos 0)(ay cosf + ag sin 9)} , (20)

which is the normal ordered form of generalized Hadamard operator for (G; sin 8 —as cos #) and (a; cos 0+ads sin 6)

and is unitary UTU = UU* = 1.
Using Eq. (20) we have
A R N 1
U(ay sinf — ag cos 0)U L= o2
. A 1
U(alsing —alcos)U ' = —
(G sin@ — akcos0) 107
and
Ulay cos 0 + agsin @)U~ = o2
A N -1
U(al cost +absin) Ut = —
(G cos 8 + absin0) 12

which lead to

Ul(#1 — @2)sin@ — (&1 + #2) cos )| U} =

U[(pr + po) sin 6 + (pr — p) cos 0)]U " =

from which we see that the generalized Hadamard op-
erator can also play a role in exchanging coordinates
[(#1 —Z2)sin@ — (Z1 + T2) cos8)] and [(&1 + &2) sin b+
(%1 — @9) cos )] or momenta [(p; + p2)sind + (P —
Po2) cosd)] and [(p1 — p2)sinb — (1 + p2) cos )], fol-
lowed by a squeezing transform, with the squeezing
parameter being %2
In particular, when 6 = 7, we have

™ 0% | b aat o atat
”55 = exp 77+77a17n ay + aq09 |00>7(24)

which is the common eigenvector of (&#; — Z2) and
(p1 + P2). The Hadamard operator in this entangled
state representation is

A 402 4—cot
_ AT AT
U = U4+4exp<04+4a1a2>

X exp |atay o [ 37 +alasn il
*paa ot +4 272 ot 44

[(o* + 4)(a1 sin 6 — as cos B) + (o* — 4)(a} cos 0 + al, sin 0)],

[(o* + 4)(al sin 6 — al cos0) + (6! — 4)(a1 cos O + ag sin )], (21)

-1
[(o* +4)(@y cos 0 + ag sin0) + (0! — 4)(al sin — al cos )],

[(o* + 4)(al cos O + al sin ) + (6% — 4)(a1 sin 0 — @y cos 0)], (22)

2

%[(531 + o) sinf + (&1 — &2) cos )],
o2
7[(;31 — po)sin @ — (py + pa) cos b)), (23)
4 -0t
X exp (U4_f4alag>. (25)
It then follows that
2
Uay — #2)] Ut = %(ml + i),
2
A N N A ag N R
Ul(pr + p2)U " = 7(}71 — D2), (26)

which is in agreement with the result of Ref. [8].
In particular, when # = 7, we have

2
n=¢5m) = exp [— %+ga1
el - dafoo). e

which is the common eigenvector of (Z; + &2) and
(p1 — P2). The Hadamard operator in this entangled
state representation is

- 40 U4_4ATAT
U= i1 %P <a4+4a1a2)
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4
ale@). (28)

A~ N _ 0’ N R
U(CUl +(E2)]U 1 = ?(.’L'Q — 1’1),
A N R A 0'2 .
Ul(p2 —p)U ™" = 7(1?1 + p2) (29)
In particular, when ¢ = 7, we have
St ot
TN -~ nf? a; — G
s 4> exp{ B) +n \/§
At ot
W1 +ay 1 4o 42]
- + =@ = al? |00y, (30
4 gl =) oo). (30)

which is the common eigenvector of (a; — &J{) and
(a2 + d;) The Hadamard operator in this entangled
state representation is

L {404 (al —ab) (al + A;)}
V2

X exp

which is the unitary Hadamard operator for (4+4z2)

and (%) It then follows that

S

4. Summary

With the aid of the IWOP technique, we have
proposed a new entangled state representation |n; ).
We have proved the completeness relation of |7;8)
and shown that |n;6) is orthogonal and entangled.
We have also derived a generalized Hadamard oper-
ator. This unitary operator plays a role of Hadamard
transformation for (Gq sinf — as cos @) and (a; cos +
aosinf). We have shown that this transformation is
concisely expressed in the entangled state representa-
tion as a projective operator in integration form. In
particular, when 6 = % and § = , this unitary oper-
ator plays a role of Hadamard transformation for a;

and @z, when 6 = —7, this unitary operator plays

a role of Hadamard transformation for (%) and

(B55)
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