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Abstract Building patterns are important features that should be preserved in the
map generalization process. However, the patterns are not explicitly accessible
to automated systems. This paper proposes a framework and several algorithms
that automatically recognize building patterns from topographic data, with a fo-
cus on collinear and curvilinear alignments. For both patterns two algorithms are
developed, which are able to recognize alignment-of-center and alignment-of-side
patterns. The presented approach integrates aspects of computational geometry,
graph-theoretic concepts and theories of visual perception. Although the individual
algorithms for collinear and curvilinear patterns show great potential for each type
of the patterns, the recognized patterns are neither complete nor of enough good
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quality. We therefore advocate the use of a multi-algorithm paradigm, where a
mechanism is proposed to combine results from different algorithms to improve the
recognition quality. The potential of our method is demonstrated by an application
of the framework to several real topographic datasets. The quality of the recognition
results are validated in an expert survey.

Keywords Building patterns · Building alignments · Pattern recognition ·
Data enrichment · Computational geometry · Visual perception theory ·
Map generalization

1 Introduction

Building patterns are important local structures that characterize urban and other
built-up spaces [7]. Other characteristic urban structures are neighborhood level
street patterns (e.g. radial and grid networks) that describe the layout of streets,
roads and other thoroughfares [20], as well as city-wide patterns that describe the
relationship between cities and/or sub-cities (e.g. satellite and network cities). These
hierarchically interconnected structures always have historical, social, cultural and
functional implications of built environments [7], which is important information in
many disciplines. A traditional way to comprehend and communicate such infor-
mation is topographic maps, a very effective visualization tool to convey patterns
generated by underlying geographic processes [19].

To better understand and interpret patterns and their deeper implications at
different scales, topographic maps should be carefully designed and generalized
(both graphically and syntactically) so as to preserve the patterns. Current research
on automated map generalization [11, 13, 28, 29] shows the needs for a better
understanding of the generalization of important characteristics and patterns (i.e.
syntactic content of a map), and for evaluation techniques that can assess how well
such patterns are kept during the generalization. After all, map generalization is
essentially a process of representing and discerning important geographic character-
istics and patterns, by suppressing unnecessary details and noises for certain purposes
and map scales.

Currently, topographic data have rich geometries but lack explicit knowledge on
relationships, structures, patterns and higher semantics of spatial objects. Stoter et al.
[30] showed that a cartographer adds this knowledge in the interactive generalization
process. In an automated process this knowledge need to be available at computer
level. Fortunately, such knowledge can be inferred from geometries of such objects
and their spatial relationships [24], much the same way as an experienced reader
interprets a map.

Therefore, our objective is to enrich topographic datasets with structural informa-
tion on building patterns in an automated manner, which is particularly useful for the
automated generalization and evaluation in urban and rural contexts. In particular,
the enriched information can be used to facilitate map object grouping in support of
meaningful aggregation and other operators. For example, it can be used to improve
building typification [6] and displacement algorithms [4], by increasing the weights
of buildings belonging to certain patterns. In addition, building patterns are useful
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in much broader fields, such as spatial analysis, database enrichment for semantic
interoperation, information retrieval, etc. For instance, Lüscher et al. [17] used
the patterns to infer higher semantics such as terraced houses, and Gersmehl [12]
suggests that functional aspects (e.g. residential houses, resorts or military bases) of a
built-up space can be implied from the alignments of buildings and their relationships
to nearby roads.

Basically, building patterns can be divided into two types: linear alignments and
nonlinear clusters. Linear alignments are common features that can be found in
less dense part of urban areas (e.g. residential areas), suburban and rural areas,
whereas nonlinear clusters almost mainly occur in densely populated regions such as
inner city (i.e. city centers) and commercial/industrial areas. When it comes to map
generalization, nonlinear clusters are simply generalized into blocks or built-up areas
(i.e. polygons enclosed by surrounding roads) due to their high densities [27]. Linear
alignments, on the other hand, are usually preserved or even enhanced during the
generalization, in which their forms and characteristics have to be considered [27].
Therefore, we will focus on two linear alignments (i.e. collinear and curvilinear) in
this paper.

We propose a framework that automatically recognizes building patterns from
topographic data. This framework integrates aspects of computational geometry,
graph-theoretic concepts and theories of visual perception. It advocates the use
of multiple algorithms to detect different types of building patterns followed by a
combination process. We claim that in this way the quality and completeness of the
recognized building patterns can be improved.

The remainder of this paper is structured as follows. Section 2 briefly reviews
previous attempts to detect specific building patterns for automated map generaliza-
tion. Section 3 clarifies the context and definition of building patterns and discusses
some abstract attributes of building patterns that help to better understand our work.
After presenting the recognition framework and algorithms in Section 4, Section 5
carefully designs experiments, in which an expert survey is carried out to validate
the recognition quality. Section 6 then discusses the experimental results. This paper
ends with conclusions (Section 7).

2 Related work

Automated map generalization has reported many approaches to the detection of
building patterns in topographic data. Regnauld [22, 23], for instance, adopted a
graph-theoretic approach based on [32] to detect clusters for building typification.
His approach, however, leaves large space for further refinements. The algorithms
presented in this paper partly follow this graph-theoretic approach, coupled with
visual perception rules to recognize more refined patterns. Christophe and Ruas [8]
focused on the detection of collinear alignments using a straight line based technique.
Their results contained many false positives which were rejected by a subsequent
quality assessment. It is worth mentioning that this technique is similar to Hough
transform [14] in computer vision, in which only patterns with analytic forms can
be detected (e.g. straight lines and circles). To accommodate better integration of
multiple generalization operators, Li et al. [16] detected building groups by firstly
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Fig. 1 Typology and
representative symbols of
building patterns in
topographic data

identifying building pairs (i.e. two proximate buildings that look similar) and then
connecting adjacent pairs that share a same building. This approach could lead
to some foreseeable false positives, and the assumed elongated building form (i.e.
having major axes) further limits its applicability.

Motivated by automatic interpretation and generalization of spatial data, Anders
[2] proposed a hierarchical parameter-free clustering algorithm, which uses nearest
neighbor graph, minimum spanning tree, relative neighborhood graph, Gabriel
graph and Delaunay triangulation. This algorithm can find natural groups of objects
without having to specify the number of clusters to be identified. Based on the
identified clusters, Anders [3] detected grid-like building patterns on top of relative
neighborhood graph in support of building typification.

To get more insight into the local settlement structures available on topographic
maps, we have proposed a hierarchical typology of building patterns (i.e. clus-
ters) [33], distinguishing between linear alignments (collinear, curvilinear and align-
along-road) and nonlinear clusters (grid-like and unstructured), see Fig. 1. In this
previous work, we have developed two individual algorithms for recognizing align-
along-road and unstructured building patterns (i.e. arbitrary clusters). Because we
have focused on building clusters, arbitrary arrangement of buildings (i.e. isolated
buildings with random spatial distributions) was not covered in this typology. How-
ever, it is an important arrangement and thus detection algorithms also need to be
devised.

To summarize, all the reviewed work focused on individual algorithms for detect-
ing certain types of building patterns (e.g. collinear alignment). Since the boundary
between different pattern types can be ambiguous [8], it is not clear yet whether
those techniques can work together and how the results of different pattern types can
be combined together automatically. This is important because otherwise substantial
human effort is required to decide on which approach to apply in which circumstance.

Our approach consists of three major components. First, we put forward an
alternative to the detection of collinear alignments. Second, we propose an approach
to recognizing curvilinear alignments—important but previously less discussed align-
ments. For both pattern types two algorithms are developed, which are able to recog-
nize alignment-of-center and alignment-of-side patterns. Finally, as patterns detected
by different algorithms may conflict with each other, we propose a framework to
combine the patterns from respective algorithms in order to find the complete and
best possible results. Again, this issue has not been tackled previously. This proposed
framework should give better results than the single algorithm approach.
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3 Building patterns in topographic data

This section explains the use of the term ‘pattern’ in different geo-spatial contexts
and in which context the concept of ‘building pattern’ is meaningful. After that, a
semi-formal definition of building pattern is given, followed by a discussion of its
abstract attributes.

3.1 Meanings of geo-spatial pattern

The geo-spatial domain distinguishes between generic pattern and domain-specific
pattern. The generic pattern is the output of a spatial data mining process which aims
at discovering interesting and previously unknown, but potentially useful knowledge
from large datasets (e.g. determine the “hot spots” in crime analysis) [25]. Because
the discovery and description method for such patterns are generic (e.g. those for
spatial outliers, co-locations and clustering), we term them generic patterns. The
domain-specific (geo-spatial) patterns, on the other hand, have four fundamental
features:

1. The detection of such patterns does not yield any new knowledge. In fact, most
of them are results of geographic processes that are already known;

2. Most of such patterns are recognized and described in ad-hoc manners (e.g. those
for building, river, and street patterns);

3. Such patterns have their typical structures and may quite differ from others;
4. Underlying geographic processes which generate different patterns can be in-

ferred from the structures of the patterns.

Building patterns are domain-specific and have their distinctive spatial structures
or arrangements (cf. Fig. 1). In fact, they are the result of urban design and
development processes where morphological, perceptual and visual principles are
employed [7, 18].

3.2 Definition and abstract attributes of building patterns

Semi-formally, building patterns can be defined as building clusters whose elements,
i.e., buildings, are homogeneous in terms of specific properties (e.g. spacing, size,
orientation, shape and density), and which have typical spatial arrangements. This
section discusses some abstract attributes of building patterns which improve the
understanding of building patterns and our recognition approach in a broader
context.

Visual significance The repetition and recurrence of some selected visual elements
(e.g. shape, size and color) or their combinations will lead read-
ers to recognize significant building patterns. To emulate this
process, our detection algorithms use Gestalt principles of per-
ceptual organization [31]. These principles include proximity,
similarity, and good continuity (i.e. smooth connection among
compositional parts). Many geo-spatial processing assume im-
plicitly a common region principle, as for instance buildings
are usually partitioned by road networks before processing. In
addition, gradual variation or rhythm is of great importance
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for the detection of curvilinear alignments (see Section 4.4.3).
Although this principle contradicts somewhat the concept of
similarity, it remains that the pattern elements are in general
similar, with gradual variations that are perceptually tolerable.
It is noticeable that the repetition, good continuity and gradual
variation properties are also in line with Alexander’s “The
Nature of Order” theory about built spaces [1].

Symbolization It is the ability to represent something (or a group) by a
simple, familiar symbol through association, resemblance, or
convention, and symbolization may differentiate one group
from another. Topographic patterns are usually symbolized by
developing templates or representative symbols that resemble
their typical arrangements. Examples include radial and trellis
patterns in drainage system, collinear, curvilinear, and grid-
like patterns (Fig. 1) in building structure. The algorithms of
in this paper are formalized templates for recognizing building
patterns and their variations.

Ambiguity The definition and recognition of building patterns are in-
herently ambiguous, and the ambiguities in general take two
forms. First, in the grouping process it is sometimes tricky to
decide whether a building belongs to this or that group. Sec-
ond, recognition approaches generally make crisp distinctions
between different pattern types, though the difference may be
ambiguous [8]. This means that a group of buildings could be
recognized as a collinear, a curvilinear or an align-along-road
alignment, depending on the person or approach involved. It
may also be the case that some patterns will not be found by one
algorithm and will be recognized by another (see Section 5.2.2).
Therefore, combining different results for a more refined and
complete result (Section 4.6) becomes necessary. Section 6.3
will further discuss the involved ambiguities.

4 Method: recognition framework and algorithms

This section firstly introduces the recognition framework in Section 4.1. Sections 4.2–
4.6 explain in detail the major steps of the proposed framework.

4.1 Framework overview

The proposed framework consists of six steps (Fig. 2). It uses multiple algorithms to
recognize building patterns from topographic data:

1. Constructing proximity graph—ProxG<V, E> on input data: buildings are
vertices and proximity relationships among objects are edges (see Section 4.2);

2. Performing pre-clustering based on ProxG after Step 1. Minimum Spanning Tree
(MST) is firstly derived from ProxG. Then significant inter-cluster edges are
identified and pruned from the MST (Section 4.2). After this step, some general
clusters are separated;
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Fig. 2 Multi-algorithm
framework for building
pattern recognition

3. Applying different algorithms for detecting different building patterns, based
on the pruned MST (see e.g. the tracing algorithm in Section 4.3). For each
algorithm, different rules are employed to detect a specific pattern type (e.g.
Sections 4.4.1–4.4.3);

4. Shrinking ProxG and repeating Steps 2–3 to find more patterns: after patterns
have been detected, they are added to the result set and their element buildings
are removed from ProxG, and then Steps 2 and 3 are re-executed. This process is
repeated until there is no pattern can be recognized by the algorithms from the
remaining ProxG. For each loop, detected patterns are added to the result set
(see detailed explanation in Section 6.1);

5. Characterizing the detected patterns using a homogeneity measure described in
Section 4.5. The homogeneity measure is implemented with subtle differences
that are known to specific detection algorithms (also see Section 4.5);

6. Evaluating the conflicting patterns recognized by different algorithms against
each other, and combining them into a final result (Section 4.6).

The following sections explain the framework step by step. These steps focus on
algorithms and rules for the recognition of collinear and curvilinear alignments, and
how the results can be combined.

4.2 Step 1 & 2—deriving building clusters based on proximity graph and MST

Delaunay triangulation (DT) is an ideal tool to model contextual and proximity re-
lationship between spatial objects in a natural way [2, 15]. In our approach, we adopt
constrained Delaunay triangulation (CDT), where line segments of buildings and
roads are constrained lines of CDT. To derive proximity graph from CDT, buildings
are modeled as vertices and any two buildings (vi and vp) that are connected directly
by at least one triangle form an edge(vi, vp) of the graph.

More specifically, we refine the implementation of CDT by inserting extra points
to constrained lines. The interval between inserted points is based on the minimal
distance among the data points. We choose to construct the refined CDT based
on object outlines rather than on object centers. This is because this refined CDT
provides a better way of modeling the proximity relationship between buildings
and between buildings and roads (see e.g. Fig. 11a) than basing CDT on centers.
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In addition, the computation of nearest distance between buildings and between
buildings and roads on this structure becomes more efficient [33]. This step results in
initial proximity graph.

Then, we derive Minimum Spanning Tree (MST) from the proximity graph. In
graph theory, a spanning tree of an undirected graph G is a tree that contains all
vertices of G. The weight of a tree is defined as the sum of the weights of all its
constituent edges. A minimum spanning tree of G is a spanning tree whose weight
is the minimum among all spanning trees of G. In our approach, each MST edge is
weighted by the nearest distance between building outlines connected by this edge.
To group building clusters that are perceptually significant, we adopt the notion of
inconsistent edge developed by Zahn [32]. It is formally defined as follows:

edgei =
{

inconsistent, if wi > Il ∩ wi > Ir

consistent, otherwise
, (1)

where wi is the weight of edgei; I is a measure of significance that can be defined on
both left (Il) and right (Ir) side of edgei:

I = max
{

f · meanweight, meanweight + n · stdweight
}

. (2)

In Eq. 1, inconsistency means that an edge’s weight is significantly larger than the
mean weight of its nearby edges on both sides (if not applicable, one side) of this
edge. Consider I = meanweight + n · stdweight, I is larger than the mean weight by n
units of standard deviation. If a normal distribution is assumed, then I, with n = 3,
is larger than 99.7% weights in the distribution. It is in this sense that ‘signif icantly
larger than’ is defined. Practically, stdweight may sometimes equal to zero. In this case
f · meanweight is used to define ‘signif icantly larger than’, where f is a magnifying
factor. Eq. 2 integrates both aspects based on their maximum. We used f = 2, n = 3
in our experiments. Details of the parametrization can be found in [32, 33].

The perceptual clusters are formed by pruning all identified inconsistent edges
(Fig. 3). The use of inconsistent edges enables reasonable inter-cluster edges to be
identified, which is more adaptive than using a fixed threshold. For example, all edges
in group O are identified as intra-cluster edges even if all of them are longer than
the inconsistent edge e1 in Fig. 3b. If we used a fixed threshold instead, e.g., T =

Fig. 3 Perceptual groups E, L and O (a) and their MST and inconsistent edges (b)
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Algorithm 1 A sketch algorithm to trace linear paths from pruned MST
Input: pruned MST; rules for recognizing specific alignments
Output: a collection of linear paths (LPColl)
for all vertex v0 of degree 1 or of degree 3 in MST do

v1 ← adjacent vertex of v0

initialize a linear path (LP): LP ← edge(v0, v1)

repeat {add a new vertex each loop to LP if possible}
find a vertex v2 ← adjacent vertex of v1 and v2 �= v0, so that edge(v1, v2)

satisfies rules w.r.t. LP
if v2 exists then

add edge(v1, v2) to LP
v0 ← v1; v1 ← v2; v2 ← NU LL

else
add LP to LPColl if LP contains more than 3 vertices
reset LP: LP ← edge(v1, v2)

v0 ← v1; v1 ← v2; v2 ← NU LL
end if

until v1 is of degree 1
add LP to LPColl if LP contains more than 3 vertices

end for
Post-processing: search-for-connection and search-for-extension

Length(e1), all edges in group O would have been identified as inter-cluster edges,
which would lead to an unacceptable clustering for this case.

4.3 Step 3—tracing algorithm

There is no guarantee that collinear and curvilinear alignments will be found after
pruning inconsistent edges. In fact, the result is only a mixture of nonlinear and linear
clusters that are neither significant nor regular. Therefore, the pruned MST serves as
a starting point for all of our recognition algorithms. This section sketches out an
algorithm template (Algorithm 1), designed for tracing linear paths (i.e. a sequence
of vertices that are consecutively connected by MST edges) from pruned MST.
Different rules for recognizing collinear and curvilinear alignments are deployed as
parameters (Sections 4.4.1–4.4.3).

Algorithm 1 starts from vertices of degree 1 or 3 and traverses the pruned MST
in the following way. For each new edge encountered in the tracing iteration, the
algorithm determines if the edge is coherent with the existing alignment concerning
the recognition rules described in Section 4.4. The algorithm may find a number of
edges connected with current vertex v1, and the edge that best satisfies the rules is
added to the alignment. If no edge satisfies the rules, the algorithm goes to the next
edge in the searching direction (if possible) and restarts a new tracing.

After the tracing procedure, the initially detected alignments may not be perfect
(e.g. Fig. 4). Search-for-connection and search-for-extension are required to post-
process and refine the initial result. First, search-for-connection is needed in the case
of a short distance between end vertices of two detected alignments (e.g. the two
curvilinear alignments in Fig. 4). This search can be done by connecting the two
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Fig. 4 Post-processing of
initially detected alignments

end vertices of both alignments, if the connecting edge does not violate any of the
recognition rules used. Second, search-for-extension is required because MST only
connects locally shortest edges rather than visually desired edges. In Fig. 4, the two
white buildings on the bottom right should have been grouped into the alignment of
the four dark blue buildings. However, MST does not connect the two white buildings
to the four because of the intermediate non-aligned building. Consequently, the
tracing procedure stops at the sharp turn. To solve this problem, we then extend
each traced alignment at its end vertices and search for adjacent edges in proximity
graph instead of MST. If an edge is found that best satisfies the required rules, the
edge (and its connecting buildings) is added to the alignment.

4.4 Step 4—rules for the recognition of linear alignments

Section 4.4.1 addresses the recognition rules for collinear alignment, after which
a technique for detecting one-side alignments is presented (Section 4.4.2). Sec-
tion 4.4.3 formalizes a perceptual model (a set of different rules) to detect curvilinear
alignments.

4.4.1 Collinear alignments

A salient feature of collinear patterns is that buildings are aligned as if they form a
straight line. The straightness is controlled by path angle rule in the tracing process
described in Section 4.3. Path angle at vertex vi is the angle formed by vector(vi−1, vi)

and vector(vi, vi+1) in the path (Fig. 5b).
The detection of the collinear pattern requires proximity, path angle, orienta-

tion and size similarity rules. Shape similarity is ignored because after studying
topographic maps, we found that shape is not a dominant feature in determining
a collinear alignment. First, most buildings have similar man-made shapes. Second,

Fig. 5 Alignment-of-center vs. alignment-of-side technique



Geoinformatica (2013) 17:1–33 11

buildings with complex shapes are usually much bigger than the ordinary ones, so
complex buildings can always be identified by size similarity rule. Nevertheless, shape
property is still used for characterizing the detected patterns (see Section 4.5).

Proximity rule is again based on the notion of inconsistent edge introduced in
Section 4.2. That is, if the weight of a new edge encountered in Algorithm 1 is
inconsistent with respect to the existing alignment, the edge is regarded to be not
part of this alignment. Path angle rule requires that angular deviations between the
new edge and all edges in the existing alignment should be within certain threshold
(PathAngleDev). This rule suppresses accumulative angular errors and ensures a
straight-line-like alignment. Orientation similarity rule (OrientationDev) ensures
that the angular deviation between any two adjacent buildings does not exceed 45◦,
as according to Duchêne et al. [9]. Size similarity rule, then, prevents the size contrast
(SizeContrast) between any two adjacent buildings in the alignment from being too
large (i.e. bigger building/smaller building < SizeContrast).

4.4.2 One-side alignments

Some collinear alignments (see Fig. 5a), which can be widely found in real topo-
graphic data and are also perceptually significant, cannot be detected by the above
model without an adaptation of parameters. This is mainly due to the varying size of
adjacent buildings (Fig. 5a) that increases the path angles, which leads to a violation
of the path angle rule.

To detect such patterns, we use alignment-of-side instead of alignment-of-center
technique to measure the alignment of buildings. The alignment-of-side technique
is facilitated by the incident triangles stored after the construction of CDT (e.g.
the dashed triangles in Fig. 5a). To implement this technique, new path angle is
calculated as the vector angle between adjacent side-edges of the incident triangles
(e.g. the bold blue lines in Fig. 5a). Note that the new path angle can be measured on
two sides of an alignment. If this new path angle rule, proximity and orientation rules
are satisfied on at least one side, the group is recognized as a one-side alignment.

This alternative better resembles the way how human eyes perceive one-side
alignments. In particular, it is more robust in detecting one-side alignments than
arbitrarily adjusting PathAngleDev, as the latter will increase the chance of false
positives. For instance, using alignment-of-center technique, the one-side alignment
in Fig. 5a can be detected by increasing PathAngleDev. However, this will identify
the group in Fig. 5b as a collinear alignment, which is unacceptable. Note that
the alignment-of-side technique can also be applied for curvilinear alignments.
This technique does not address size similarity rule as it is not required for one-
side alignments (e.g. Fig. 5a). A mechanism for combining alignment-of-center and
alignment-of-side techniques is presented in Section 4.6.

4.4.3 Curvilinear alignments

Curvilinear building alignments are patterns with gradual variations. Empirically,
paths formed by such alignments gradually alter their heading angles and orienta-
tions of composing buildings, while keeping other properties such as spacing and
size as similar as possible. Because most of the meandering features represented in
geo-spatial data are too complex to be described by mathematical functions, we use
the theory of ‘association field’ [10] to formulate rules for recognizing curvilinear
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Fig. 6 Rules for human eyes
to recognize curvilinear
patterns - adopted from [5]

alignments. This theory of visual perception suggests a set of localized linking rules
that explains why and how curved paths can be detected by human observers (Fig. 6).
Contemporary researchers in visual perception also acknowledged that these rules
are more concrete and realizable than Gestalt principles [5, p. 159].

In general, the psychological experiment by Field et al. [10] suggests that the hu-
man perception of curved or undulated paths formed by adjacent visual stimulus (e.g.
Fig. 6a) is reflected by good continuity (i.e. smooth connection). More specifically,
it depends on two criteria. These are the path angle and the degree to which the
path elements (e.g. composing buildings in our case) are aligned or misaligned along
the path. Take Fig. 6 for example, if the normal vector of the path (PN) coincides
with the building orientation (BO), the building is perfectly aligned (the shaded
building in Fig. 6b). If PN and BO are far apart, the building is misaligned (the shaded
building in Fig. 6c). Field et al. [10] show further that the allowed maximum path
angle (MaxPathAngle) is 40◦–60◦, provided that the elements are aligned along the
path; misalignment by ±15◦ reduces the performance of detecting such paths (see
also [5]). These rules explain why human visual system can see a ‘snake’ in Fig. 6a.

We formalize the above rules as follows. First, MaxPathAngle ∈ [40◦, 60◦] was
selected for path angle rule. It means that the path can be regarded as smooth
if its path angle is smaller than MaxPathAngle. Second, the misalignment angle
(MisalignAngle) for a building is the allowed deviation between its BO and the
PN at this building. MisalignAngle is a dependent variable of the path angle at
the building. The relationship between MisalignAngle and the path angle is that
MisalignAngle is relatively relaxed (=15◦) when the path angle is relatively small
(≤15◦), and MisalignAngle then decreases with the increase of the path angle, and
it ends with 0 when the path angle reaches MaxPathAngle (Fig. 7). If the calculated
misalignment angle of a building exceeds its MisalignAngle, the building is regarded
as a misaligned building.

The detection of curvilinear building patterns is based on Algorithm 1 specialized
by the above formalized rules, along with proximity and size similarity rules. The

Fig. 7 The function describing
the relationship between
MisalignAngle and calculated
path angle
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alignment-of-side technique as presented in Section 4.4.1 is also applicable for
curvilinear patterns.

4.5 Step 5—characterization of recognized building patterns

According to the proposed definition of building patterns in Section 3.2, the detected
patterns can be generally characterized using the notion of homogeneity. Homo-
geneity describes how much regular the interested characteristics of the patterns
are. Here, we consider homogeneities on four characteristics (Adding new ones is
also possible): spacing, calculated between two proximate buildings using nearest
distance; size, computed by area metric; orientation, implemented by wall statistical
weighting method [9] which is well fitted for building orientations (blue crosses in
Fig. 3a); and shape, measured by the complexity of building shapes: ShapeIndex =
Perimeter/(2 · (π · Area)1/2) [21]. Equation 3 formally defines the homogeneities of
these properties:

Homo(Ci) =
{

ST D(Ci)/Mean(Ci), Ci ∈ {spacing, size, shape}
ST D(Ci)

∗/NFactor, Ci ∈ {orientation} , (3)

where Ci = {ci
1, . . . , ci

p} is a vector of characteristic values measured from a group of
buildings {b 1, . . . , b p}. The homogeneities of spacing, size, and shape are based on
the notion of coef f icient of variance (i.e. STD/Mean). The denominator serves not
only as a normalization factor, but also it takes the relative regularity into account.
For example, if two groups have the same STD, the group with a larger mean is
regarded more regular, and vise verse. However, this is not a suitable concept for the
homogeneity of orientation because orientation is a cyclic variable. To normalize the
homogeneity of orientation, we divide STD of orientations by a factor (NFactor).
Here we choose NFactor = 45◦, because the max angular deviation between two
regular buildings is 45◦ [9].

Note that, STD of building orientations (BO) in Eq. 3 has different interpretations
depending on the type of patterns to be recognized. For collinear alignments, it has a
standard calculation: ST D = ((BOi − Mean(BO))2/N)1/2. However, STD requires
a different interpretation for curvilinear alignments. In essence, STD describes the
degree of deviation from mean. To better describe the homogeneity of orientation
for a curvilinear alignment, normal of path (PN) is more appropriate as the local
mean for each BO, instead of the real mean of BO (Fig. 8). In particular, when
all BO align themselves fully with their local PN, the buildings are regarded to be
perfectly aligned in terms of orientation. As a result, STD of orientation (starred
in Eq. 3) for curvilinear alignments is better calculated by the formula: ST D =
((BOi − PNi)

2/N)1/2.

Fig. 8 Using local PN instead
of the mean of BO to compute
the homogeneity of
orientation for curvilinear
alignments
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Finally, component homogeneities are integrated into a single value using Eq. 4:

InteHomo =
∑

wi · Homo(Ci), Ci ∈ {spacing, size, shape, orientation} , (4)

where wi is the weight of component homogeneities. A lower homogeneity value
indicates a visually stronger pattern. In addition, an alignment consisting of more
buildings is also regarded stronger.

Homogeneity is a generic way to describe the regularity of all pattern types and
it is useful in the subsequent step (Section 4.6). Next we will introduce an extended
characteristic - curvature descriptor. With this descriptor, it is possible for the system
to infer more specific forms of the alignments, e.g., arc-like, circle-like.

A suitable estimation of local curvatures for an alignment would be: LocalCur-
vature(vi) = PathAngle(vi)/Distance(vi−1, vi+1). The denominator is more or less the
same for a given alignment and can be considered as a constant, therefore we use
LocalCurvature(vi) = PathAngle(vi) to estimate the curvatures. In addition, this new
estimation is easier to interpret. The forms of alignments can be analyzed based on
the distribution of local curvatures estimated for them (Fig. 9).

Figure 9 illustrates three typical forms. They are alignments with constant curva-
ture (c1, c2), with monotone curvature (m) and with wavy curvature (w). Specifically,
if the curvatures of an alignment almost constantly distribute around the zero (c2 in
Fig. 9), it has a straight-line-like shape. If the curvatures constantly distribute with a
considerable distance to the horizontal axis (i.e. zero), the alignment has an arc-like
shape. In this case if the head and tail of the alignment are close to each other, it has a
circle-like shape (c1 in Fig. 9). Wavy alignments have the property that its curvatures
go from positive to negative part of the curvature space or in an opposite direction;
crossing points at horizontal axis identify inflection points in the alignments (e.g. w
in Fig. 9). Alignments with Monotone increase or decrease in curvatures without
changing signs are only theoretical (e.g. the spiral in Fig. 9). Because the curvature
descriptor is not directly useful in the detection of building patterns, we will discuss
some results in Section 6.5.

4.6 Step 6—combining conflicting patterns

As shown in Section 5.2, the algorithms (and their alignment-of-side variations) de-
scribed above can produce reasonable results, but the results from these algorithms
are not in itself complete. For instance, although the curvilinear algorithm is able to
recognize some collinear alignments, it does not recognize all of them successfully.
In other cases, a group of buildings may at the same time be recognized as e.g.
a collinear and a curvilinear alignment. As a result, those potentially conflicting

Fig. 9 Hypothetical
distributions of different forms
of alignments



Geoinformatica (2013) 17:1–33 15

Fig. 10 Relationships between two potentially conflicting building patterns

patterns have to be combined and the most probable one should be selected for a
better and more complete result.

The basic criteria for combining conflicting alignments are the number of elements
(NumOf Elem) contained in patterns and their homogeneity values (i.e. InteHomo
in Eq. 4). Specifically, the more elements a pattern contains the better it is, and
the lower the homogeneity value the stronger the pattern is. According to these
two principles, we formulate a more detailed scheme to combine two potentially
conflicting patterns (suppose groups A and B in Fig. 10 are patterns recognized by
different algorithms, e.g., collinear and curvilinear ones):

1. If two groups A and B intersect by one common element (e.g. Fig. 10a), rather
than treating them as combined patterns, we keep both patterns as individual
ones; otherwise the combination can yield rather complex and irregular groups;

2. If one group B is the subset of another group A (e.g. Fig. 10b), group A is selected
as the final result. In a special case where A and B are exactly the same but they
are assigned to different pattern types (by different algorithms), the one with
lower InteHomo is selected;

3. If two groups A and B have at least 2 elements in common (e.g. Fig. 10c), we
consider the following criterion: InteHomo/NumOf Elem. The group with a
lower value for this criterion is selected;

4. For cases where the patterns are detected by only one of the algorithms, they are
added to the final result set.

The combining process should be applied in two stages in the framework. The
first stage stays within each algorithm, by evaluating the results detected by the
alignment-of-center technique against those by the alignment-of-side one. This stage
produces a harmonized result for each pattern type. The second stage is to evaluate
and combine the harmonized results between different pattern types (e.g. collinear
and curvilinear), which leads to a final result. Examples are presented in Section 5.2
and discussed in Section 6.2.

5 Experiments

5.1 Implementation

The proposed framework and algorithms were implemented as extensions to
GenTool—an interactive generalization platform that has been implemented and
maintained in Visual C++ 6.0 by our colleagues at Wuhan University since 1998.
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(a) Refined CDT

(b) Proximity graph (c) Pruned MST

Fig. 11 Computation of refined CDT, proximity graph and pruned MST on buildings and roads

The platform was applied in a national wide project in China to generalize and
update topographic databases (from 1:10k to 1:50k). Among others, GenTool im-
plemented an incremental Delaunay triangulation algorithm, based on which we
implemented refined CDT, proximity graph, MST and inconsistent edge concepts
(e.g. Fig. 11). Additionally, it implemented four recognition algorithms, including
two algorithms for collinear alignments using alignment-of-center (CollAlgo1) and
alignment-of-side (CollAlgo2), as well as two algorithms for curvilinear alignments
using alignment-of-center (CurvAlgo1) and alignment-of-side (CurvAlgo2).

5.2 Experiments and results

We tested our approach against four topographic datasets of different geographic
areas and scales. Dataset1 (scale 1:10k), Dataset2 and Dataset3 (scale 1:50k) are
part of Dutch topographic datasets (Kadaster, the Netherlands). Dataset4 is part
of ICC (Catalonia, Spain) topographic datasets at 1:25k. Figure 12 demonstrates
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Fig. 12 Results obtained by CollAlgo1 (a), CollAlgo2 (b), CollAlgo1 (c) and CurvAlgo1 (d)
(Dataset1: Kadaster, NL)

a general impression of some algorithms. Four experiments were carried out to
show the result of parametrization, application of the framework, recognition quality
and computational efficiency. Note that in the resulting figures black thin lines (if
applicable) denote MST edges and (randomly) colored bold lines denote recognized
patterns.

5.2.1 Adaptation of parameters

To better demonstrate the algorithms, different parameter values were tested to
show their influence on the recognition results. We found that the most dominant
parameters are PathAngleDev for collinear pattern and MaxPathAngle for curvi-
linear pattern. First, PathAngleDev = {5◦, 10◦, 15◦, 20◦, 25◦, 30◦} were used to detect
collinear alignments in Dataset2 (Fig. 13).

Figure 13 shows that the best working range of PathAngleDev for collinear
algorithms was from 15◦ to 20◦. When using a value lower than 10◦, some alignments
were missed (false negatives, blue circles in Fig. 13). When using a threshold higher
than 25◦, some false positives were created (red circles in Fig. 13). The tests on the
other datasets confirmed this working range of PathAngleDev.

Likewise, the MaxPathAngle = {40◦, 60◦} was used for curvilinear patterns. The
two values for our test cases did not show any difference, except for the alignment
highlighted by the red circle on the bottom of Fig. 15b which can only be detected
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Fig. 13 Result of CollAlgo1 with different path angle values: a PathAngleDev = 5◦, b 10◦, c 15◦, d
20◦, e 25◦, f 30◦; obvious false positives (red circles) and false negatives (blue circles) are exemplified
(Dataset2: Kadaster, NL)

with the value of 60◦. Consequently MaxPathAngle = 60◦ is preferred since it is
more tolerable to alignments with bigger curvatures.

5.2.2 Application of the framework

To demonstrate the framework, including the combination step (Section 4.6),
the following parameters were used for all the datasets: PathAngleDev = 18◦,
OrientationDev = 45◦ (for collinear), MaxPathAngle = 60◦ (for curvilinear), and
SizeContrast = 3.2 (used for alignment-of-center technique only). The component
homogeneities were equally weighted to calculate the integrated homogeneity
(Eq. 4). Figures 14, 15 and 16 show intermediate and final combined results for our
datasets.
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Pattern types

Curvilinear
Collinear

Homogeneity 
values

0.02 - 0.05
0.05 - 0.09
0.09 - 0.15
0.15 - 0.22
0.22 - 0.30

Fig. 14 Combination of different results: a CollAlgo1; b CollAlgo2; c harmonized result for a and b;
d harmonized result for CurvAlgo1 and CurvAlgo2; the final combined result visualized by pattern
types (e) and homogeneity values (f); (Dataset2: Kadaster, NL)

The first observation in these figures is that, in most situations, all individual
algorithms were able to detect alignments that are visually significant. Still, some
alignments were not fully recognized by one and other algorithms. It was obvious that
collinear algorithms segmented long curves (with apparent variations in curvature)
into small pieces of straight lines. Not surprisingly, such long curves were successfully
recognized by curvilinear algorithms. For example, the long curves (highlighted by
red circles in Figs. 14d and 15b) were detected by curvilinear algorithms, but they
were segmented by collinear algorithms (see their counterparts in Figs. 14c and 15a).
An extreme case is demonstrated in Figs. 16b–d, where most curves were segmented
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Pattern types
Collinear
Curvilinear

Homogeneity
value

0.00 - 0.05

0.05 - 0.11

0.11 - 0.16

0.16 - 0.24

0.24 - 0.38

(a) (b)

(c) (d)

Fig. 15 Combination of different results: a harmonized result for CollAlgo1 and CollAlgo2; b
harmonized result for CurvAlgo1 and CurvAlgo2; the final combined result visualized by pattern
types (c) and homogeneity values (d); (Dataset3: Kadaster, NL)

by collinear algorithms. On the other hand, although curvilinear algorithms were also
able to detect part of the collinear alignments, they did not recognize all of them. For
instance, collinear algorithms recognized the alignments (highlighted by red circles
in Figs. 15a and 16d) while curvilinear algorithms did not, as can be seen from their
counterparts in Figs. 15b and 16b–c.

The difference between algorithms working with alignment-of-center and
alignment-of-side techniques is obvious. Examples refer to the differences between
e.g. Fig. 12a and b, and between Fig. 14a and b. In particular, the areas highlighted in
Fig. 16b identify potential longer curves (curvilinear alignments). These alignments
were not fully recognized using alignment-of-center, but they were recognized using
alignment-of-side technique (cf. Fig. 16c).

Last but not least, the experiment shows that the final results combined from
different algorithms were more complete than the individual results. In fact, they
are unions of the individual results. Further, Figs. 14e, 15c and 16e show that the



Geoinformatica (2013) 17:1–33 21

(a) (b)

(c) (d)

(e) (f)

Fig. 16 Combination of different results: a Dataset4 (ICC, Catalonia, Spain); b CurvAlgo1; c
CurvAlgo2; d harmonized result for CollAlgo1 and CollAlgo2; the final combined result visualized
by pattern types (e) and homogeneity values (f)

datasets are mixtures of different types of alignments. Figures 14f, 15d and 16f show
the homogeneities calculated for the final patterns (the wider the symbol the stronger
the pattern is in terms of homogeneity).
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5.2.3 Validation of the recognition results

To validate the quality of the recognition results, an expert evaluation was carried
out. In this survey, an independent cartographer (from Kadaster, the Netherlands)
visually identified the patterns in representative excerpts of the datasets used in this
research (Fig. 17).

The survey was presented in a Word document. The invited expert used the draw-
ing tools available in MS Word to ‘draw’ the patterns he regards to be significant.
Note that the expert only used a straight line tool to mark all pattern types, with
colors indicating different types of patterns.

We validate the recognition results by comparing the automatically detected
alignments (ADAs) with the visually identified alignments (VIAs) and considering
the following three side notes. First, for all the three datasets, the expert identified
isolated and pairs of buildings as meaningful patterns, but by definition the building
patterns in our approach contain at least three buildings. Consequently, we ignored
all the VIAs that only contain one or two buildings. Second, since this research
focuses on linear alignments, we also ignored grid-like and unstructured patterns.
Finally, in the expert’s view, curvilinear and align-along-road alignments are varia-
tions of collinear alignments. As a result, linear alignments are directly compared
regardless of their respective types.

The comparison approach works as follows: if an ADA partly coincide with a VIA
(i.e. the two have common features), we count it as a true positive (tp); if an ADA
occurs without a (partly) coincident VIA, we count it as a false positive ( fp); if a
VIA occurs without a (partly) coincident ADA, we count it as a false negative ( f n).

Fig. 17 Building patterns visually identified by a cartographer (Dataset2-4)
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Table 1 Precision and recall of automatically recognized alignments with respect to visually iden-
tified alignments (Dataset2-4)

Precision Recall

Dataset2 73.9% 85.9%
Dataset3 77.3% 91.9%
Dataset4 60.0% 100.0%

Then we use precision = tp/(tp + fp) and recall = tp/(tp + f n) to characterize the
recognition quality (Table 1).

From the comparison result we can conclude that the recognition quality is in
general satisfactory. The recall for the three datasets is high (approx. 90% and
higher). This indicates that the automatic approach recognized almost all the VIAs.
The relatively low precision (lower than 80%) indicates that the automatic approach
recognized more alignments than the expert. That the expert chose more rigorous
rules in determining the alignments could be one possible reason. The ambiguities
in defining and distinguishing the patterns could be another, which we will discuss in
Section 6.3.

5.2.4 Computational ef f iciency

To give an idea of the computational time the framework takes, we tested Dataset3
(consisting of 391 roads and 333 buildings; 44 linear alignments were detected) on
two strategies. The first strategy processed the data set as a whole and the second
strategy applied a divide-and-conquer approach (buildings divided into groups by
roads). The test was carried out on a HP laptop (CPU 2.00GHz). The time taken (s)
is shown in Table 2.

Generally, the performance is rather practical: it took 2.674 s to recognize align-
ments from Dataset3 without using a divide-and-conquer strategy. It shows further
that Step 1—triangulation and deriving of proximity graph took the majority of
the running time (2.063 s). The four recognition algorithms (Steps 2–5) were fairly
efficient: together they took 0.249 s. Step 6 took 0.362 s to combine conflicting
alignments from different algorithms.

The whole process greatly accelerated (in total 1.012 s) when applying a divide-
and-conquer optimization. In particular, Steps 1 and 6 benefit most from this: the
two steps took 0.672 s and 0.096 s, respectively. Note that this optimization did not

Table 2 Performance (time taken (s)) of our framework and its sub-steps on Dataset3 using two
strategies: processed as a whole and divide-and-conquer

Processed as a whole Divid-and-conquer

Time taken (s) Step 1 2.063 0.672

Steps Coll- Coll- Curv- Curv- Coll- Coll- Curv- Curv-
2–5 Algo1 Algo2 Algo1 Algo2 Algo1 Algo2 Algo1 Algo2

0.015 0.031 0.062 0.141 0.016 0.023 0.078 0.125
0.249 (in total) 0.242 (in total)

Step 6 0.362 0.096

Total 2.674 1.012
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improve the performance of the individual algorithms, because the algorithms work
on the MST structure that is segmented into small groups by roads no matter the
optimization is used or not (cf. Fig. 11: no partitioning before triangulation).

6 Discussion

This discussion consists of two parts. Sections 6.1–6.3 discuss the results presented in
Section 5. Sections 6.4 and 6.5 present current limitations and suggestions for further
improvement.

6.1 Intermediate steps that improve the recognition quality

This section explains several intermediate steps in the framework (Section 4) that
aim to improve the recognition quality. Take CollAlgo1 for example, Fig. 18b shows
the detected collinear alignments without post-processing (Section 4.3) after the
algorithm has been executed once. By applying the post-processing (e.g. search-for-
extension) the result was improved (a longer alignment was detected in Fig. 18c).
Visually, the alignment on the bottom should have been recognized, but it was
not detected due to the original form of MST structure (Fig. 18a). As described in
Section 4.1, the framework automatically records the detected alignments and then
removes them from the proximity graph, after which MST is recalculated and the
above-mentioned steps are re-executed. This iteration proceeds until all possible
alignments are successfully recognized (e.g. Fig. 18d and e).

Usually, building blocks contain limited number of buildings and thus it reduces
the times of the above-mentioned iteration. In our test datasets, the iteration stopped
at second round only occasionally, and in most cases all the potential alignments were
detected at first round of the iteration. Consequently, this iteration substantially im-
proved the recognition quality without reducing too much computational efficiency
(see Section 5.2.4).

Note also that some single objects in the removed alignments, usually vertices of
degrees 1 and 3, may also be part of other patterns (see e.g. Fig. 12b). We decided
not to keep those shared objects when removing detected patterns for the following
reasons. First, the removal of patterns only occurs between iterations, while most
alignments with shared objects were detected in the first iteration. Second, false
positives would have been created if the shared objects were kept. For example,
the three buildings marked in Fig. 12b would consequently have been recognized

(a) Pruned MST (b) Initial result (c) Extension (d) 2nd round (e) Final result

Fig. 18 Intermediate steps to improve the recognition quality (part of Dataset3)
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as a new alignment which does not really exist. Still, it is true that some potential
patterns may be missed if we do not keep those shared objects. To better address
this problem without causing new problems, a possible improvement is discussed in
Section 6.5. Similarly, a group of objects can be part of another group. Nevertheless,
this does not contradict our approach. For instance, a collinear alignment detected
using CollAlgo1 may be part of a curvilinear alignment using CurvAlgo2. This part-
of relation can be used to form building pattern hierarchies. Also, the two alignments
can be combined into a harmonized result using the method described in Section 4.6.

6.2 Single algorithm versus multi-algorithm approach

The results show that the collinear and curvilinear algorithms and their variations
(e.g. alignment-of-side technique) are able to recognize building patterns that are
also contented with human perception. However, these individual algorithms are
not competent to fully recognize building alignments. The results show merits and
limitations of each algorithm and that different algorithms are partly complementary
(Section 6.2.1). Therefore a framework that combines different algorithms will yield
better results for building patterns recognition than the single algorithm approach,
which can be concluded from several observations (Section 6.2.2). Finally, Sec-
tion 6.2.3 discusses the efficiency of the two approaches.

6.2.1 Potentials and problems of the individual algorithms

The algorithms for collinear and curvilinear patterns are appropriate to recognize
straight lines respectively curves. These individual algorithms refine the general
clusters (clusters linked by black thin lines in Fig. 15a) detected by an approach
similar to [23]. In the design phase, we made a sharp distinction between collinear
and curvilinear patterns. It is thus reasonable that the collinear algorithms fail to
recognize curvilinear alignments. On the other hand, straight lines can be regarded
as a special case of curves, so the curvilinear algorithms are expected to be able to
find collinear alignments. The experiments confirm that, this is true in many cases
but not in all cases. For example, when the buildings align themselves to the same
direction, and when this direction is quite different from the normal direction of
the path (e.g. the red circles in Fig. 15a), curvilinear algorithms will identify them
as misaligned buildings. However such alignments can be successfully detected by
collinear algorithms, because they use a much looser rule on building orientations.
Given this deficiency, this study shows that still the visual perception theory [10] used
in the curvilinear algorithms is effective and yields satisfactory results, especially in
recognizing long curvilinear patterns.

On the other hand, the results demonstrate that it is very difficult to use a
single algorithm to detect all patterns. First of all, universal rules appropriate for
detecting different pattern types are not available. Usually different ad-hoc models
are used. Technically, it is also difficult to accommodate competing recognition rules
(e.g. for collinear, curvilinear, alignment-of-center and alignment-of-side) in one
algorithm. Considering the fact that the recognition results from different algorithms
are partly complementary, using multiple algorithms followed by a combination
process should yield better results. The experiments that combined the results of
individual algorithms confirmed this (see Figs. 14, 15 and 16).
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6.2.2 Advantages of using a multi-algorithm paradigm

The use of multiple algorithms followed by a combination process also improves
the quality (in terms of homogeneity) of the detected patterns. This is because,
in the combination process, two conflicting patterns are evaluated against each
other, and the one with better quality (defined in terms of number of elements and
homogeneity, see Section 4.6) is selected as the final result.

Admittedly, each specific algorithm may be well suited for a certain type of
data. But real data are mostly mixtures of various characteristics as shown in the
experiments, i.e., only in rare cases a dominant pattern type may character a dataset.
Even if a dataset is rather homogeneous, with the single algorithm approach one still
has to identify the main characteristics of the dataset and manually choose the most
appropriate algorithm. The proposed multi-algorithm approach can deal better with
these problems due to the evaluation and combination mechanism. Therefore, it is
more adaptive to different types of data.

6.2.3 Ef f iciency considerations

The experiments show that combining the results of multiple algorithms reduces the
performance compared with the single algorithm approach. The total running time
of the multi-algorithm approach, however, is still acceptable. This is because the
most time-consuming computation—DT (more than 60% of the whole processing
for Dataset3) is in both cases required. Applying multiple algorithms and combining
the results in a final procedure are computationally less expensive (less than 30%).
It is therefore worthwhile to sacrifice a little performance for improved quality and
completeness of the recognition. For time-crucial applications, a divide-and-conquer
strategy that greatly improves the performance could be applied.

6.3 Ambiguities in defining and distinguishing building patterns

Several observations from the expert survey (Section 5.2.3) demonstrate further
ambiguities outlined in Section 3.2. An example of the ambiguity in defining building
patterns is how many buildings counts as a pattern, as described in Section 5.2.3.
Besides, the groups that were identified by both the expert and the proposed
approach differ slightly. The difference lies in whether a building belongs to a group
or not (e.g. the red circles in Fig. 15a and their counterparts in Fig. 17b). The reason
may be the ambiguity in the definition, which causes the use of different recognition
rules and parameters.

The survey result also demonstrates ambiguities in distinguishing pattern types.
Typically, the expert identified linear alignments as align-along-road patterns. The
reason, also inferred from the expert survey, was the presence of either real or virtual
roads (e.g. white spaces between alignments in Fig. 17c). The expert may therefore
characterize linear alignments as unstructured clusters where he cannot perceive
virtual roads. For instance, he identified obvious linear alignments as unstructured
clusters in Fig. 17c, which explains why the precision for dataset4 is the lowest (60%).
The above observation shows a different understanding of how to distinguish types
of patterns. Additionally, the curvilinear alignments in Fig. 17c were segmented into
consecutive straight lines and identified as align-along-road patterns by the expert.
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This may be due to the limited drawing tools available, but the reason could also be
that the boundary between linear types is ambiguous and subjective.

6.4 Limitations of current methodology

One of the drawbacks of our current approach is that it sometimes fails to recognize
linear alignments in densely populated areas, such as city centers, commercial
and industrial areas. In such areas the MST usually structures as trees with short
branches, where linear paths are not clearly visible (see e.g. the group highlighted by
the blue dashed circle in Fig. 15). Ideally, we would prefer to classify such building
groups as nonlinear patterns, because linear characteristics are no longer significant
there. As a result, future work is needed to complete our current framework by
allowing for nonlinear clusters. A simple solution could be firstly removing the
recognized linear alignments from the MST, and then applying e.g. the unstructured
pattern detection algorithm described in [33] to recognize nonlinear clusters.

To perfect the recognition of building patterns, contextual knowledge should
also be incorporated. Actually, different types of building patterns may appear in
different places depending on spatial contexts. For instance, linear alignments can
be found in urban (e.g. residential areas and partly town centers) and suburban
areas; nonlinear clusters are dominant in city centers and industrial areas; random
arrangements can be found in scattered and mountain villages [26, 27]. The ratio
between the detected alignments and the general clusters may be used to partly
imply the context of the built environment, although the determination of the context
is a more complex inference, which depends also on size, shape and density of
buildings [27].

The ambiguities and subjectivity involved in the expert survey lead to several
problems in the evaluation of recognition quality. One problem is the low but
problematic precision obtained in Section 5.2.3. Apart from the reason of ambiguities
explained in Section 6.3, another reason is the way that the expert dealt with the
buildings shared among patterns. In the survey, the expert sometimes precluded a
building from an alignment if this building is already part of another alignment (cf.
the two horizontal alignments in Fig. 18e and their counterparts in Fig. 17b). Because
of this, the expert may end up with alignments consisting of only two buildings, which
also contributes to the decrease in precision. To address this issue, the survey should
be further improved by clearly explaining the concepts and terms used, providing
more appropriate ways for experts to identify the patterns. In addition, inviting
more experts from different organizations would enable to draw more persistent
conclusions.

6.5 Further options and improvement

– User interaction: Intended users can interact and tune the framework at several
stages. First, parameters such as PathAngleDev and MaxPathAngle can be
tuned before the algorithms starts, to better control the results. Second, after the
final result (combined from different algorithms) has been obtained, the users
can select more homogeneous patterns by specifying a homogeneity threshold.

– Further enrichment: as described in Section 4.5, the curvature descriptor can
be used to enrich the description of building alignments. This enrichment is
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Fig. 19 Experimentally
derived local curvatures for
sample alignments

useful in automated generalization of building alignments for keeping their
specific shapes. For illustration, the descriptor was applied to some detected
linear alignments (T1, T2 and T3 marked in Figs. 15d and 16f). According to the
curvature descriptor, we can identify alignments with straight-line shape (T1),
constant curvatures (T2) and wavy curvatures (T3) in Fig. 19, which agrees with
their respective spatial arrangements.

– Further improvement: As can be seen from Fig. 18, the MST structure may
disconnect desired proximity relationship. Hence at times the tracing procedure
has to resort to the edges of the proximity graph. In extreme cases, the tracing
procedure starting from MST may fail to recognize building patterns (e.g. the
stream of buildings next to the road on the right side of Fig. 12a). An improve-
ment could be obtained by starting the tracing procedure on the proximity graph
instead of MST. This has at least three advantages. First, the tracing procedure
is able to detect those extreme case alignments as more options are available
to it. Second, the search-for-connection and search-for-extension described in
Section 4.3 are no longer needed. Third, the iteration explained in Section 6.1 is
not necessary as all alignments can be detected at the first round of tracing. This
last point can avoid the problem caused by removing those shared buildings. The
potential downside of this improvement is that it would increase the searching
space and hence the computational time. Besides, this improved approach may
not be deterministic, because there are no fixed vertices for the tracing procedure
to start from, and the tracing has to be adapted for two directional searching.
In current development, the tracing starts from vertices of degree 1 and 3 and
searches only in one direction. Therefore, further research is required to confirm
the above merits in practice.

7 Conclusion

This paper presents a framework and four algorithms for recognizing collinear
and curvilinear building alignments from topographic data. The algorithm for each
type has two variations: alignment-of-center and alignment-of-side. As shown by
the experiments, these individual algorithms have their own merits and limitations.
Furthermore, this study shows that the proposed multiple algorithms approach im-
proves the results detected by the single algorithm approach. Also the combination
process is effective in finding better patterns between conflicting alternatives and in
compiling a more complete result from different recognition results.

This paper also illustrates how the theories of visual perception can be inte-
grated into and combined with different computational models, such as Delaunay
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triangulation, MST and other geometric measurements (e.g. shape and orientation),
in order to recognize building patterns. The building patterns recognized from
topographic datasets proves to be also satisfactory for experts working with visual
methods. Additionally, we identify the working ranges of different parameters in
which the algorithms may probably yield satisfactory results. Still, one can achieve
results that better fit his/her own situations by fine-tuning the parameters, or by
adding or dropping recognition rules.

Although our framework is partially implemented (currently we concentrate on
linear alignments), the idea underlying the framework, i.e., using multiple algorithms
followed by an evaluation and combination process, is applicable to other types
of building patterns. As the adopted perception theories are generic to geometric
forms, our proposed approach can be adapted to the detection of patterns in other
geographic features, such as groups of ponds, lakes and archipelago, as long as related
recognition rules are modified according to their own characteristics.

Future work will complete the implementation by covering both linear and
nonlinear patterns. In addition, arbitrary (i.e. random) arrangements and isolated
buildings should also be identified to support automated generalization of e.g.
mountain villages. The approach can be applied in many ways. For instance, the
quality measure (i.e. homogeneity value) we derived for building patterns can be
used to investigate the generalization of the patterns. These include enhancement
of homogeneity, derivation of pattern hierarchies as well as aggregation, typification
and simplification of patterns. Besides, the quality measure can be used for auto-
mated evaluation of whether and to what extent building patterns are preserved
at scale transitions. For the recognized patterns, they may also be used to facilitate
different cadastral and urban planning activities.
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