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Abstract—Quantitative ultrasound has great potential 
for assessing human bone quality. Considered as an elastic 
waveguide, long bone supports propagation of several guided 
modes, most of which carry useful information, individually, 
on different aspects of long bone properties. Therefore, pre-
cise knowledge of the behavior of each mode, such as velocity, 
attenuation, and amplitude, is important for bone quality as-
sessment. However, because of the complicated characteristics 
of the guided waves, including dispersion and mode conver-
sion, the measured signal often contains multiple wave modes, 
which yields the problem of mode separation. In this paper, 
some novel signal processing approaches were introduced to 
solve this problem. First, a crazy-climber algorithm was used 
to separate time-frequency ridges of individual modes from 
time-frequency representations (TFR) of multimodal signals. 
Next, corresponding time domain signals representing indi-
vidual modes were reconstructed from the TFR ridges. It was 
found that the separated TFR ridges were in agreement with 
the theoretical dispersion, and the reconstructed signals were 
highly representative of the individual guided modes as well. 
The validations of this study were analyzed by simulated mul-
timodal signals, with or without noise, and by in vitro experi-
ments. Results of this study suggest that the ridge detection 
and individual reconstruction method are suitable for separat-
ing individual modes from multimodal signals. Such a method 
can improve the analysis of skeletal guided wave signals by 
providing accurate assessment of mode-specific ultrasonic pa-
rameters, such as group velocity, and indicate different bone 
quality properties.

I. Introduction

Osteoporosis, which increases the risk of bone frac-
turing, has become prevalent worldwide because of 

the aging population [1]–[3]. Many useful methods have 
been established for diagnosing this disease, including 
quantitative CT (QCT), dual-energy X-ray attenuation 
(DXA), and three-dimensional X-ray bone densitometry 
[3]–[5]. Although DXA still is the clinical standard for 
diagnosing osteoporosis, this approach has some disadvan-
tages such as radioactivity, bulky instruments, and rela-
tively high cost. Most importantly, DXA does not accu-
rately identify individuals who will later sustain a fracture 
[6], [7]. Quantitative ultrasound (QUS) offers significant 
advantages over these X-ray based methods, as it does 

not include ionizing radiation and ultrasonic devices can 
be made inexpensive and portable. Furthermore, QUS is 
highly sensitive to both geometric and material properties 
of the bone. Specifically, ultrasonic guided waves provide 
a viable QUS approach for the assessment of long cortical 
bones [2], [5], [8]–[10].

Ultrasound velocity measurement in long bones is typi-
cally based on axial transmission approach. The measure-
ment configuration consists of two transducers placed 
along the axial direction of the pipe-shaped long bone, 
and the incidence angle and transmission distance can 
be tuned and optimized for any wave mode of interest 
[2], [8], [10]. Although the axial transmission approach is 
based on a simple setup, the received guided wave signals 
are complicated. The signal tends to spread because of 
dispersion and interferences between multiple propagat-
ing wave packets which correspond to individual guided 
modes. As a result, it is often very challenging to separate 
these individual modes. Time-frequency representation 
(TFR) is a commonly used method for analyzing such 
multimode signals, because it provides a clear illustra-
tion for the temporal variation modal energy stream in 
the time-frequency domain. Short-time Fourier transform 
(STFT) is the simplest TFR approach available, and it 
has been used to identify modes L(0,2) and L(0,3) from a 
series of bovine tibia signals [11]. Recently, some improved 
TFR methods, such as reassigned spectrogram, smoothed-
pseudo Wigner-Ville and its reassigned version, have been 
used to analyze the dispersion properties of guided modes, 
and detailed comparisons between the theoretical disper-
sion curves and the TFR energy distributions have been 
carried out [10], [12]. These studies already investigated 
some multimodal signals, but did not report proper modes 
extraction of quantitative data [10]–[14]. If some advanced 
separation algorithms can be adopted in the TFR analy-
sis of multimodal signals, accurate quantitative data on 
propagation characteristics of individual modes, such as 
energy [12], arriving time, attenuation [14], amplitude, 
and transmission and reflection coefficients [15] can be 
obtained, which further reflect different properties of the 
bone as a waveguide. Such accurate information on propa-
gation characteristics of individual modes can essentially 
enable inverse assessment of individual bone properties 
from ultrasonic signals. There is a call for such methods 
of signal processing, because those methods can highly 
improve multimodal bone assessment. Nevertheless, an ef-
ficient separation of guided modes remains a challenging 
task for signal processing [8].
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Studies attempting to address this problem could be 
divided into two main categories, selective mode exci-
tation and modes separation. In case of selective mode 
excitation, a transducer array with a multichannel time-
delay system has been applied to improving mode control 
and selection [16]. Magnetostrictive sensors were suggest-
ed to excite axisymmetric modes in industrial pipes [17]. 
However, the anatomical geometry of the human long 
bone is irregular, thus there has been little progress in 
implementation of the selective excitation, especially at a 
low frequency. As for modes separation, two-dimensional 
fast Fourier transform (2-D-FFT) has been widely used 
to obtain some individual modes from a group of mul-
timodal signals [18]. Moilanen et al. [19] used group ve-
locity filtering (a kind of time domain mask window) to 
selectively envelop a region of interest from the measured 
distance-time signal diagram. After that, the resolution 
of the 2-D-FFT was improved, and an inversion scheme 
to determine the plate thickness was further discussed. 
However, for all of the 2-D-FFT based methods, several 
signals recorded within a finite source-receiver distance 
are needed to achieve a sufficient spatial resolution. This 
kind of shift technique (i.e., analysis of a series of signals 
recorded within a range of source-receiver distance) in-
herently assumes that long bones have a uniform shape, 
which is somewhat unrealistic. The variation of bone 
material properties and geometry within this region of 
interest may critically affect the propagation character-
istics of certain guided modes. This may cause inconsis-
tency in the modal contents of the spatial signal, and 
the 2-D-FFT cannot then provide unambiguous mode 
identification. Also, it is difficult to separate the time-
domain waveform of the individual mode components 
from multimodal signals by the 2-D-FFT method. Thus, 
other interesting and useful methods have been pro-
posed. Niethammer et al. [20] introduced the empirical 
mode decomposition (EMD) method into ultrasonic non-
destructive evaluation (NDE), which is a crucial step of 
the Hilbert-Huang transform (HHT) [21], but they failed 
to separate the individual modes during the analysis of 
multiple modes. Later, Luo et al. combined the HHT 
with wavelet packet decompositions to reduce the noise 
and mutual disturbance among different modes, and esti-
mated bovine cortical thickness [22]. Recently, a singular 
value decomposition-based algorithm, taking the benefit 
of multi-receiver array signal, was also applied to extract 
the most energetic late arrival contribution, whose veloc-
ity was shown to be highly correlated to cortical bone 
thickness [23]–[25].

In this paper, being attracted by the fact that the 
guided modes can be identified in TFR [11], [26]–[28], we 
used an interesting crazy-climber time-frequency ridge de-
tection method [29] to separate TFR ridges correspond-
ing to individual wave modes, and then applied the TFR 
ridge penalization algorithm to reconstruct corresponding 
waveforms in the time domain. The whole process can be 
accomplished without any a priori knowledge, which is an 
advantage of the method.

The paper is organized as follows. In Section II, de-
tailed introductions for the TFR, separation, and re-
construction method are provided. Basic theory of the 
waveguide and methods of simulations are illustrated in 
Sections III-A and III-B, and in vitro experiments on 
bovine tibiae are described in Section III-C. Results of 
separation and reconstruction are shown in Section IV. 
The simulations are analyzed under different levels of 
added synthetic noise. The extracted individual modal 
components are also compared with the theoretical re-
sults in this section. Conclusions will be given in the last 
section.

II. Multiridge Detection and Reconstruction 
Method

Many time-frequency methods have been applied to ul-
trasonic NDE because of the capability of these techniques 
to represent the time-varying components of the guided 
waves [12], [20]. Recently, De Marchi et al. implemented 
a warped frequency transform, which can fit the time-
frequency plane to the dispersion curve of certain mode, 
and therefore enhance its TFR resolution and extraction 
capabilities [30], [31]. Apparently, different TFR meth-
ods, including time-frequency [32] and time-scale (wave-
let) transforms [33], have different properties, but their 
common idea is to characterize the temporal frequency 
of the time-varying signals. For convenience, TFR will be 
restricted to the STFT hereinafter.

The separation work was first proposed by McAulay 
and Quatieri for speech analysis/synthesis [34]. They built 
a sinusoidal model that can estimate the temporal phase, 
frequency, and amplitude for speech reconstructions. 
This model can also be used to separate components of a 
multimodal signal because the temporal parameters are 
easier to divide than the TFR energy distribution. Later, 
Carmona et al. [29] developed a systemic separation and 
reconstruction method based on the TFR ridges, which 
can mark the energy-concentrated region of the time-
frequency plane. It is capable of handling the compres-
sion and reconstruction of multiple components in speech 
signals. This paper applied the algorithm to multimode 
separation. As Fig. 1 shows, first, the TFR of the input 
signal is obtained by STFT. Second, the temporal fre-
quencies of the guided modes with corresponding am-
plitude (e.g., TFR ridges) can be achieved by the crazy-
climber algorithm. Third, the individual components are 
obtained by reconstruction method. Because a singular 
mode is subject to being separated into pieces of ridges, 
the reconstructed waveform pieces need to be selectively 
added together in the end.

This section is arranged as follows. Part A explains 
one of the basic TFR methods, STFT. Part B introduces 
the TFR multiridge detection and separation algorithm 
(called the crazy-climber method [29]). The individual 
TFR ridge-based mode reconstruction procedure will be 
described in part C.
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A. Short Time Fourier Transform (STFT)

To meet the requirement of non-stationary signals, a 
large number of TFRs have been developed. By taking the 
spectra of a series of signal pieces divided by short over-
lapping windows, we can observe how the energy distribu-
tion of a signal varies with time. This is the essential idea 
of the STFT, which is defined for a signal s(t) as [32]

	 TFR dSTFT[ ( )]( , ) ( ) ( ) ,s t
jvtu v e s t h t u t= --

-¥

¥

ò
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2p

	 (1)

where h(t) is a short time window, and consequently the 
time-frequency atom can be defined as φu,v(t) = eiv(t−u)h(t 
− u). The energy density spectrum of the STFT is simply 
called spectrogram and given by E(u, v) = |TFRSTFT(u, v)|2. 
The resolution limitation between time and frequency is 
the so-called time-frequency tradeoff, which has been con-
cluded by an uncertainty principle, e.g., Gabor-Heisenberg 
inequality [32]. To offset the uncertainty and some the 
cross-terms [32] in TFR, some modified time-frequency 
methods have been proposed. Traditionally speaking, they 
can be mainly divided into two categories: Cohen’s-class 
bilinear time-frequency distributions [32] and affine-class 
time-frequency distributions [35]. For the applications of 
waveguides, all of these methods are able to reflect the 
time-frequency properties of the energetic guided compo-
nents [12]. Because many parameters of guided waves can 
be computed theoretically (as described in Section III-A), 
TFRs provide means for estimating the characteristics of 
the waveguide inversely. Recently, many studies on guided 
waves were done by comparing TFRs with the theoretical 
dispersion curves. However, if the TFR ridges can be sepa-
rated, and the associated mode components can be further 
reconstructed, the parameters of the existing modes, for 
example, velocity, attenuation, transmission, and reflec-
tion coefficients, can be analyzed individually. This is the 

fundamental goal of multiridge-based analysis of modes 
separation and reconstruction, and it is a valuable topic of 
waveguide signal processing.

B. TFR Multiridge Detection and Separation Algorithm

TFR multiridge detection and separation method is 
based on the Markov chain Monte Carlo approach [36]. 
The crazy climbers are able to determine all local maxima 
rather than global maxima. Afterward, a chaining trick is 
used to obtain the individual TFR ridges (also called skel-
etons). Fig. 2 shows the block diagram of the multiridge 
detection and separation algorithm.

The real signal is always a non-analytic signal with a 
TFR that contains negative frequencies. However, we can 
focus on the upper half of the time-frequency plane (T, F) 
in the domain D = (T > 0, F > 0) because the nega-
tive and positive frequencies are mutually mirrored. TFR 
in D is denoted as m(T, F), and its modulus is given by 
|m(T, F)|. For implementation, we discretized the domain 
D as T = {0, …, TL−1} and F = {0, …, FM−1}. Then the 
modulus TFR becomes an L × M matrix.

1) Crazy-Climber Algorithm:

	 1) 	Initialization: At time t0 = 0, the position set of 
the climbers X(t0) = {(j, k); j = 0, …, TL−1; k = 
0, …, TL−1} are randomly initialized with a uniform 
probability distribution in the domain D and the 
temperature is set to temp0.

	 2) 	Markov chain iteration: Because each crazy climber 
is independent of the others, it will not reduce gen-
erality to discuss the statistical property of a single 
climber. Assuming that at time t, the position is X(t) 
= (j, k), at time t + 1, the position X(t + 1) = (j′, k′) 
will be arranged in two steps. The first one is the 
horizontal adjustment. If 1 ≤ j ≤ TL−1 − 1, then the 
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Fig. 1. Block diagram of the TFR multiridge detection and component reconstruction.

Fig. 2. Block diagram of the multiridge detection and separation algorithm.
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climber can move to the right or left with the same 
probability, P{j′ = j + 1} = P{ j′ = j − 1} = 1/2. The 
second step is the vertical adjustment: up (k′ = k + 
1) or down (k′ = k − 1). If |m(j′, k′)| > |(j′, k)|, then 
X(t + 1) = (j′, k′). If |m(j′, k′)| < |(j′, k)|, the climber 
will move depending on the probability to X(t + 1) 
= (j′, k′) with Pt = exp{[|m(j′, k′)| − |m(j′, k)|]/tempt} 
and to X(t + 1) = (j′, k) with 1 − Pt. After moving, 
the temperature tempt must be adjusted to 0 step by 
step. It has been proven that tempt = temp0/log2 t 
ensures that the system can converge to a global 
minimum.

	 3) 	Iteration ending: The iteration will be ended when 
the temperature is lower than a certain threshold.

2) Chaining:

In the beginning, the positioned climbers, as the output 
of the crazy-climber process, are filtered by a threshold 
which is used to distinguish the climbers lost in the pseu-
do peaks. Some random noise, reflections, and scatters can 
be removed by this step. Then, for the remaining climbers 
on each ridge, an iterative trick is used to chain the fittest 
neighbors one by one.

C. Individual Modes Reconstruction From the TFR Ridges

When the TFR ridges are detected by the crazy-climb-
er algorithm, their temporal frequencies can be used to 
create the reconstruction constraints because the TFRs 
components of the estimated ̂ ( )s t  must take the same value 
on each sample point of the abstracted ridges. Further-
more, ̂ ( )s t  cannot oscillate too widely, either. This problem 
can be formulated as a solution of minimization [29]

	 ˆ argmin , ,/S
n

Qf f
f

f= å -[ ] +{ }á ñ-1 1 2 2
TFR TFRs h 			

		  (2)
where ||∙|| denotes the Euclidian norm. The first term, called 
the Mahalanobis distance, is a weighted sum of the squares, 
where the weights are defined by the inverse of the covari-
ance matrix. If the covariance matrix is the identity matrix, 
the Mahalanobis distance reduces to the Euclidean dis-
tance. Here, it is used to ensure that the TFR of the estima-
tion TFRf is identical to TFR of the original signal (TFRs) 
on each sample point of the ridge. The second term is a 
penalty term to prevent Ŝ  from oscillating too widely, and 
the reconstruction kernel Q is defined by [29]

	

Q x y x y g x u g y u

g x u g y u x u y
i

( , ) ( ) ( ) ( )

( ) ( ) [( )(

' '= - + - -({
+ - - × - -

òåd e

 uu v u

x y u v u v u v u x y u

g x

i

i i i

) ( )

( ) ( ) ( )] cos( ( )( )

(

'

'' '

'

2

2 

 

d- + - ) × -

+ -- - - -(
× - - × - -
ò u g y u v u y u v u

g x u g y u v u x u

i i

i

) ( )[ ( ) ( ) ( )]

( ) ( ) [ ( ) (

'

' )) ( )]

sin( ( )( )) ,

'v u

v u x y u

i

i

)
× - } d

			
		  (3)

where i denotes the number of the ridges detected from 
the TFR. The solution of this minimization problem can 
be written as
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where φi,j(t) is the time-frequency atom (see definition in 
Section II-A) at the jth sample point of the ith ridge, and 
2ni denotes the number of real constraints from the ni 
complex constraints of the TFR consistency between the 
estimated and original signals. The λi,j can be computed 
from 2ni linear equations by Lagrange multipliers method, 
and consequently the estimated (̂ )S t  can be calculated 
from (4).

III. Simulations and Experiments

A. Guided Wave Theory

A hollow cylinder filled with the viscous liquid was used 
to model the guided wave propagation in the elastic long 
bone. The mechanical properties of cortical bone were 
considered to be isotropic and homogeneous. The outer 
boundary of the cortical bone was considered traction 
free. Bone marrow was assumed to be a viscous Newto-
nian liquid obeying the linearized Navier-Stokes equation 
[14], [37]. Therefore, the axial and radial displacements 
are continuous, and the radial stress in the inner surface 
of cortical bone is equal to the pressure in the marrow. 
According to the elastic dynamic motion equation and 
boundary conditions, the characteristic equation is writ-
ten [14]

	 [ ] [ ] , , , ,..., ,M N i jij × = =0 1 2 6 	 (5)

where N = [A B A1 B1 Am Bm]T and A, B, A1, B1, Am, and 
Bm are unknown amplitudes. Mij is a coefficient matrix 
[14]. To obtain a non-trivial solution of this model, the 
determinant of the coefficient matrix should be zero [14]:

	 Mij = 0.	 (6)

Eq. (6) is the dispersion equation of the guided waves 
in the long bone, which can be used to calculate the dis-
persion curves for generating the simulated signals and 
comparing with the mutimodal TFRs.

B. Simulations

The proposed signal processing method was tested on 
synthesized multimodal guided wave signals. Let u(x, t) 
denote the out-of-plane surface displacements of the mode 
of interest in the model, where the x is the axial propaga-
tion distance, e.g., distance between the axial transducers, 
and the t is the time, the corresponding waveform of this 
mode can be calculated by [38]

	
u x t F ei k x t( , ) ( ) ,( ( ) )=
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(7)
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where k(ω) is the wavenumber dispersion curve of the 
mode of interest as a function of frequency; F(ω) is the 
spectrum of the input signal, e.g., the excited impulse; and 
here, a Gaussian-envelope signal was used. The theoreti-
cal dispersion curve of each mode can be calculated by 
the pipe-shaped model that we discussed previously. The 
multimodal synthetic signal is the sum of several indi-
vidual simulated modes. Thus, the amplitude of each in-
dividual mode can be arbitrarily decided, which is helpful 
for the comparison between the simulation and separation 
results. Acoustic properties of cortical bone were modeled 
by the density ρ = 1.90 g/cm3, compression wave velocity 
Cl = 4.00 m/ms, and shear wave velocity of Ct = 1.97 m/
ms [14]. The wall thickness was 5.5 mm and inner radius 
of curvature 21.5 mm, based on X-ray CT on bovine tibia 
specimens used in the study.

C. Experimental Setup and Bone Samples

The experimental setup for in vitro ultrasonic guid-
ed wave measurements in long bones is shown in [14]. 
The pulser/receiver unit 5900PR (Panametrics Corp., 
Waltham, MA) was used to excite the transducer and to 
receive signals. Two different transducers were used in 
our experiment; both had center frequencies of 0.5 MHz 
(bandwidth 0.2 to 0.8 MHz). The transmitter was a ver-
tical transducer; the receiver was an oblique transducer 
with a 45° angle. The vertical transmitter was fixed, and 
the oblique receiver can incrementally move along the 
axial direction of the long bone. Movement in the axial 
direction was controlled by UltraPAC step motors (Physi-
cal Acoustics Corp., Princeton Junction, NJ). The guided 
waves at different sites on the bone can be measured. All 
measurements were performed at temperature of 22°C. Ul-
trasonic gel (Echo Jelly; Aloka Medical Equipment Co., 
Shanghai, China) was used as a coupling agent to guaran-
tee that the transducers were compacted to the bone sur-
face. The influence of the gel on the signals was ignored. 
The received signals were averaged 256 times, amplified, 
and digitized to 8 bits (HP54642A; Hewlett-Packard, Palo 
Alto, CA) at a speed of 20 mega-samples per second.

It should be noted that modes L(0,2), L(0,3), and L(0,4) 
have already been observed and identified in such bovine 
bones in our earlier study [14], where the same experimen-
tal setup was used. In the present paper, modes L(0,3), 
L(0,4), and L(0,5) were observed, and the synthetic test 
signals were composed correspondingly. Nevertheless, the 
purpose of the study was to evaluate the mode separation 
ability of the proposed method on such signals, without 
specifically taking a stance on any experimental setup or 
exact modal contents of the response.

IV. Results and Discussion

For a certain long bone model, after calculating its dis-
persion curves by (6), the time-domain waveforms were 
synthesized by (7). Longitudinal tube modes L(0,m), m 
= 3, 4, and 5, were superimposed in these simulated sig-

nals, consistently with modes observed on in vitro test 
experiments. Our earlier in vitro axial transmission studies 
have already reported on observation and identification 
of these higher-order L(0,m) modes in bone [11], [14]. In 
these studies, frequency-to-thickness products of around 
1 to 3 MHz⋅mm and oblique incidence and/or reception 
were used, as in the present study. On the other hand, 
several other studies using lower frequency-to-thickness 
products of around 0.1 to 1.0 MHz⋅mm have reported on 
observation and identification of the fundamental flexural 
mode F(1,1) (also referred as A0 by some studies) in bone 
[39]–[41]. Composition of a multimodal signal is thus de-
termined by the experimental setup used. The methods 
presented here can be applicable to any multimode signal 
composition.

A. Simulated Signals Without Noise

We begin with presenting the waveform of mode L(0,3) 
[see Fig. 3(a)] as an example. The multimode waveform is 
computed by the sum of the L(0,3), L(0,4), and L(0,5) [see 
Fig. 3(c)]. Considering the length of simulated signals is 
1250 points, a 301-point Gaussian window function, about 
a quarter of the signal length, was used to calculate the 
TFRs by the STFT. The TFR of the multimodal signal 
is depicted in Fig. 3(c) with its TFR ridges obtained by 
crazy-climber algorithm (500 climbers) in Fig. 3(d), where 
the color of the ridges (in the online version of the figure) 
denotes the energy intensity on the sample points of the 
TFR. Dispersion curves of L(0,3), L(0,4), and L(0,5) are 
plotted on the time-frequency plane for comparison. As 
expected, the multimodal TFR ridges focus on the time-
frequency regions in which the signal energies are con-
centrated [see Fig. 3(d)]. In addition, it is shown that the 
three modes can be separated by three ridges. However, 
there seems to be some discrepancy between the ridges and 
the dispersion curves, which are implied by the time-fre-
quency uncertainty principle, e.g., the time and frequency 
position information of each time-frequency atom cannot 
be determined accurately and simultaneously. The energy 
of each time-frequency atom easily leaks to the adjacent 
time-frequency grids, and both are to be covered by the 
TFR ridges. Each of the ridges can be used to reconstruct 
the corresponding original components.

The idea of the proposed method is to reconstruct the 
original components from the separated ridges which are 
obtained from the multimodal TFR. Thus, it will never 
distinguish the reconstructed and the separated signal 
hereafter. An example of the reconstructed component 
L(0,3) is exhibited in Fig. 4(a), with its TFR in Fig. 4(b). 
Although the ridges are not accurate because of time-fre-
quency uncertainty, both the waveform and TFR of the 
reconstructed L(0,3) are in agreement with the original 
one [Figs. 3(a) and 3(c)]. The total signal, which is the 
sum of three modes independently reconstructed, is given 
in Figs. 4(c) and 4(d). Comparing Fig. 4(c) and Fig. 3(b), 
there is almost no difference between the reconstructed 
and original signals, except that the early 50-μs amplitude 
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of the reconstructed signal seems to be less than that of 
the original one. Because the early 50-μs TFR, with small 
modulus values of TFR, are considered to be some noise, 
it is removed by the threshold filter of the ridge chaining 
step. The normalized root mean square error (NRMSE) of 
the total reconstruction is about 1.38% and the NRMSE 
of L(0,3), L(0,4), and L(0,5) are about 0.82%, 1.53%, and 
2.45%, respectively [see Fig. 7(a), (SNR = ∞)]. More 
quantitative evaluations of the reconstruction will be dis-
cussed later.

B. Simulated Signals With Noise

To test the robustness of the proposed method, some 
white Gaussian noise was added into the signal (SNRs 
from 0 to 15 dB). The results of the separation under 
the SNR = 0 dB condition can be seen in Figs. 5 and 
6. Fig. 5(a) shows the noisy simulated waveform, where 
the SNR is 0 dB. It is difficult to recognize the origi-
nal signal in such a high-noise situation. Fortunately, 

an overview of the multimodal energy distribution can 
be identified from the TFR of the noisy signal in Fig. 
5(b). The TFR ridges displayed in Fig. 5(c) are not 
strongly impacted by the noise and the TFR energy 
of each mode is successfully tracked and separated by 
the ridges. The reconstructed component L(0,3) and 
its TFR are shown in Figs. 6(a) and 6(b). The recon-
structed result of Fig. 5(a) is shown in Fig. 6(c) with 
TFR in Fig. 6(d). Comparing Fig. 3(b) with Fig. 6(c), 
the reconstructed components from the noisy signals 
retain most of their energies as well. It is also found 
that the maximal amplitude of reconstructed L(0,3) is 
identical to the original waveform [see Figs. 3(a), 4(a), 
and 6(a)], which indicates that during the reconstruc-
tion, the component ratios of different modes are kept 
invariant. It indicates that the separation method can 
be applied to calculating the energy ratio [10], attenu-
ation [12], reflection, and transmission coefficients [13] 
for each mode in the multimodal signal.
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Fig. 3. Original noise-free simulated signals: (a) waveform of mode 
L(0,3), (b) waveform, (c) time-frequency representation (TFR) and (d) 
TFR ridges of the multimodal signal containing the L(0,3), L(0,4), and 
L(0,5) modes. 

Fig. 4. Separated and reconstructed results of the noise-free simulated 
signal: (a) waveform and (b) TFR of the separated component L(0,3), 
(c) waveform and (d) TFR of the reconstructed multimodal signal (the 
sum of all the individually separated components). 
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Fig. 7 illustrates the quantitative evaluation results of 
the noisy simulated signals, where the SNRs vary from 
0 dB to ∞ dB (the ∞ dB denotes noise-free). Figs. 7(a), 
7(b), and 7(c) are the NRMSEs (%), the SNRs (dB), and 
correlation coefficients of the separated individual modes 
(reconstructed from the TFR ridges), respectively. The 
NRMSE is the root mean square error divided by the 
range of observed value,
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The value of NRMSE is often expressed as a percent-
age; lower values indicate less residual variance. All of 
these indices are obtained by the comparisons between 
the reconstructed and corresponding noise-free simulat-
ed components, whereas the total reconstructed signals, 
which are the sums of the reconstructed individual modes, 
are compared with the noise-free multimodal signal in Fig. 
3(b). The NRMSEs decrease with increasing SNRs, but 
the poorest ones are less than 3.92%. The errors of the 
lower-order modes are less than those of the higher-order 
modes, which illustrates that higher-order modes are eas-
ily subjected to noise in this method. The main reason 
for this is that the frequencies of higher-order modes are 

greater than those of lower-order modes, and during the 
reconstruction process, there is an operation equivalent to 
a kind of interpolation that estimates the remainder using 
some samples. Therefore, the ridge samples of higher-or-
der modes are relatively rougher than those of lower-order 
modes. A higher sample ratio can improve the NRMSE 
of the higher-order modes, but the relative difference be-
tween the higher and lower modes will still exist. The 
varying trends of the reconstructed SNRs, the opposite to 
those of the NRMSEs, increase with the improvement of 
the simulated SNRs [see Fig. 7(b)]. Even under the worst 
condition, where the signal and noise have equal variance 
(SNR = 0 dB), the SNR of the total reconstructed sig-
nal can be retained at 10.31  dB, and the SNR of the 
reconstructed L(0,5) is about 4.67  dB. Fig. 7(c) shows 
the results of the correlation coefficients. The correlation 
coefficients of the total reconstructed signals are higher 
than 0.95 and their average is 0.98; the worst correlation 
coefficients of L(0,5) are higher than 0.85 and average is 
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Fig. 5. Noise-polluted multimodal simulated signal (SNR = 0 dB), (a) 
waveform, (b) TFR, and (c) TFR ridges. 

Fig. 6. Separated and reconstructed results of the noise-polluted simu-
lated signal (SNR = 0 dB), (a) waveform and (b) TFR of the separated 
component L(0,3), (c) waveform, and (d) TFR of the reconstructed mul-
timode signal. 
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0.90. These results indicate that the method is robust to 
the multimodal signals with or without noise and capable 
of preserving most of the original energy after separation.

C. Experimental Signal

The crazy-climber TFR ridge detection and reconstruc-
tion techniques are further demonstrated by experimental 
signals from bovine tibiae. A 160-μs bovine tibia multi-
modal signal is shown as an example in Fig. 8(a), and 
the reconstructed waveform is also plotted for comparison. 
The consistency between the reconstructed and original 
signals demonstrates the accuracy of this method, and the 
smoothness of the reconstruction indicates the de-noising 
effect and that some baseline drift is also suppressed. Fig. 
8(b) shows the TFR of the original signal and three dif-
ferent modes L(0,3), L(0,4), and L(0,5) can be noted. The 
ridges were detected by 500 climbers, and except for some 
pseudo-components, these modes are clearly separated in 
Fig. 8(c). Because each ridge is processed individually in 
our reconstruction, these noisy components (they might 
be random noise, scattering, reflection, etc.) can be easily 
discriminated by their small amplitudes and can be re-
moved by applying some threshold. It is difficult to sepa-
rate the real individual mode waveforms from the experi-
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Fig. 7. Separated and reconstructed results of the simulated signals for 
varying SNRs: (a) NRMSEs (%), (b) SNRs (dB) of the reconstructed 
signals, and (c) correlation coefficients between the reconstructed and 
original noise-free simulated signals.

Fig. 8. Analysis of the experimental bovine signal: (a) measured and 
reconstructed waveforms, (b) TFR, and (c) TFR ridges of the measured 
waveform. 
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mental signal completely. Thus the TFRs of these three 
separated individual modes were calculated for compari-
sons. Because there are three modes in the experimental 
signal, the components of a single mode were selected and 
summed together. Fig. 9 illustrates the separated results 
of the experimental bovine signal; Fig. 9(a), 9(b), and 9(c) 
show components 1, 2, and 3, respectively. The top plots 
are the waveforms; the middle and the bottom ones are 
the corresponding TFRs and the group velocity extracted 
from the TFRs. It can be seen that the energies of the 
separated components are close to the theoretical disper-
sion curves. The small square marks in the bottom fig-
ures (group velocity results) represent the maximal energy 
points of each component, which can be used to estimate 
the group velocity for each individual mode. The extracted 
group velocity points are in agreement with the theoreti-
cal dispersion curves, and the average root mean square 
errors of the group velocity results of component 1, 2, 3 
are about 1.02% for theoretical L(0,3), 7.03% for L(0,4), 
and 16.49% for L(0,4), respectively, which illustrates the 
successful separation of different modes. However, there 
are still some limitations to this method. It is difficult to 
determine whether it is a individual mode of L(0,4) or a 
mixture of L(0,4) and L(0,5), as shown in Fig. 8(b) and 
Fig. 9(b). This limitation is due to the inherent properties 
of the waveguide and the time-frequency resolution limita-
tion. Improvement may be made by exciting the signals 

using low-frequency transducers, because there are fewer 
modes at lower frequencies. Additionally, if experimen-
tal analysis of wave propagation is provided by varying 
the acoustical base, more realistic imaging of the existing 
modes could be obtained. Second, as shown in Fig. 9(a), 
the mode L(0,3) is separated into two parts, and these 
different parts may need to be distinguished by manual 
interaction rather than complete computer separation.

The proposed technique for individual modes sepa-
ration offers several advantages, not only for ultrasonic 
guided waves in the long bone, but also for all waveguide 
studies, such as inspection of metal plates and pipelines in 
industrial NDE. First, the individual modes can be sepa-
rated in the time domain, whereas most of the existing 
contributions were limited to the time-frequency domain. 
Second, the crazy-climber method is capable of directly 
measuring the group velocity or finding the TFR ridges, 
which can be used to reconstruct the original signals. It 
was also shown that these TFR ridges can be used to 
make a more accurate comparison between the TFR of 
the real multimodal signal and the theoretical prediction 
than using TFR alone. Third, in terms of application, it 
is convenient to separate individual modes from only one 
remote obtained signal rather than from a group of shift 
signals. The information of the individual modes can thus 
be more rationally obtained than by the shifting method, 
which requires a uniform bone section assumption. Fourth, 
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Fig. 9. Separated results of the experimental bovine signal: (a) component 1, (b) component 2, and (c) component 3. 
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this technique is based on a blind separation which can be 
relatively easy applied. Finally, after obtaining the time-
domain individual mode components from a complicated 
multimodal signal, the waveguide information, such as en-
ergy ratio, velocity, amplitude, coefficients of attenuation, 
transmission, and reflection can be independently and pre-
cisely computed.

V. Conclusions

A time-frequency-based modes separation technique 
was presented to analyze ultrasonic guide waves in long 
cortical bones. For the simulated signals with or without 
noise, the individual modes can be reconstructed from cor-
responding ridges. Meanwhile, it was shown that these 
methods are also robust with the bovine tibia experimen-
tal signal. The main advantage is that this method can 
separate the TFR ridges and reconstruct the correspond-
ing time-domain individual components without any a 
priori knowledge. Furthermore, it allows for efficient com-
parisons between the obtained TFR ridges and the theo-
retical dispersion curves, and quantitative estimation of 
propagation parameters for each mode individually. They 
both are essentially useful for inverse assessment of bone 
properties from ultrasonic signals.

However, from a point of application, it is still diffi-
cult to determine the modal energy attribution at some 
time-frequency areas because of time-frequency uncertain-
ty. Improvements may be made by acquiring fewer mode 
signals by using low-frequency transducers. Additionally, 
the identification of different modes still needs to be per-
formed by manual interaction, rather than automatic 
computer separation. Finally, this paper did not provide 
detailed discussion of the mode characteristics varied with 
the overlying soft tissues, and cortical thickness, which 
must be investigated in further studies.

In conclusion, the methods presented provide a pow-
erful signal processing tool for analyzing multimodal ul-
trasonic axial transmission signals in long bones, regard-
less of the specific setup used. In particular, ability of the 
methods to extract quantitative data for experimental in 
vitro signals was demonstrated. Detailed evaluation of the 
feasibility of the methods on different measurement set-
ups and bone samples still provides challenges for further 
studies. Moreover, these methods may also prove useful 
for other applications of NDE.
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