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Abstract
In this paper, we propose a two-component generalization of the generalized
Hunter–Saxton equation obtained in Khesin et al (2008 Math. Ann. 342 617–
56). We will show that this equation is a bi-Hamiltonian Euler equation, and
can also be viewed as a bi-variational equation.

1. Introduction

Arnold in [1] suggested a general framework for the Euler equations on an arbitrary (possibly
infinite-dimensional) Lie algebra G. In many cases, the Euler equations on G describe geodesic
flows with respect to a suitable one-side invariant Riemannian metric on the corresponding
group G. Now it is well known that Arnold’s approach to the Euler equation works very well
for the Virasoro algebra and its extensions, see [6, 10, 13–15, 19] and references therein.

Let D(S1) be a group of orientation preserving diffeomorphisms of the circle and
G = D(S1) ⊕ R be the Bott–Virasoro group. In [6], Ovsienko and Khesin showed that
the KdV equation is an Euler equation, describing a geodesic flow on G with respect to a
right-invariant L2 metric. Another interesting example is the Camassa–Holm equation, which
was originally derived in [4] as an abstract equation with a bi-Hamiltonian structure, and
independently in [9] as a shallow water approximation. In [10], Misiolek showed that the
Camassa–Holm equation is also an Euler equation for a geodesic flow on G with respect to a
right-invariant Sobolev H1-metric.

In [13], Khesin and Misiolek extended Arnold’s approach to homogeneous spaces and
provided a beautiful geometric setting for the Hunter–Saxton equation, which firstly appeared
in [8] as an asymptotic equation for rotators in liquid crystals, and its relatives. They showed
that the Hunter–Saxton equation is an Euler equation describing the geodesic flow on the
homogeneous spaces of the Bott–Virasoro group G modulo rotations with respect to a right-
invariant homogeneous Ḣ 1-metric.

Furthermore, by using extended Bott–Virasoro groups, Guha and others [11, 16, 21]
generalized the above results to two-component integrable systems, including several
coupled KdV-type systems, and two-component peak-type systems, especially two-component
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Camassa–Holm equation which was introduced by Chen et al [17] and independently by Falqui
[18]. Another interesting topic is to discuss the super or supersymmetric analogue, see [6, 12,
16, 20, 23, 24] and references therein.

Recently Khesin et al in [22] introduced a generalized Hunter–Saxton (μ-HS in brief)
equation lying midway between the periodic Hunter–Saxton and Camassa–Holm equations:

−ftxx = −2μ(f )fx + 2fxfxx + ffxxx, (1.1)

where f = f (t, x) is a time-dependent function on the unit circle S
1 = R/Z and

μ(f ) = ∫
S

1 f dx denotes its mean. This equation describes evolution of rotators in liquid
crystals with an external magnetic field and self-interaction.

Let Ds(S1) be a group of orientation preserving Sobolev Hs diffeomorphisms of the
circle. They proved that the μ-HS equation (1.1) describes a geodesic flow on Ds(S1) with a
right-invariant metric given at the identity by the inner product

〈f, g〉μ = μ(f )μ(g) +
∫

S
1
f ′(x)g′(x) dx. (1.2)

They also showed that (1.2) is bi-Hamiltonian and admits both cusped and smooth travelling
wave solutions which are natural candidates for solitons. In this paper, we want to generalize
these to a two-component μ-HS (2-μHS in brief) equation. Our main object is the Lie algebra
G = Vects(S1) � C∞(S1) and its three-dimensional central extension Ĝ. Firstly, we introduce
an inner product on Ĝ given by

〈f̂ , ĝ〉μ = μ(f )μ(g) +
∫

S
1
(f ′(x)g′(x) + a(x)b(x)) dx + −→α · −→

β , (1.3)

where f̂ = (
f (x) d

dx
, a(x),−→α )

, ĝ = (
g(x) d

dx
, b(x),

−→
β

)
and −→α ,

−→
β ∈ R

3. Afterwards, we
have

Theorem 1.1 (=Theorem 2.2). The Euler equation on Ĝ∗
reg with respect to (1.3) is a 2-μHS

equation {−fxxt = 2μ(f )fx − 2fxfxx − ffxxx + vxv − γ1fxxx + γ2vxx,

vt = (vf )x − γ2fxx + 2γ3vx,
(1.4)

where γj ∈ R, j = 1, 2, 3.

Actually from the geometric view, if we extend the inner product (1.3) to a left-invariant
metric on Ĝ = Ds(S1) � C∞(S1) ⊕ R

3, we can view the 2-μHS equation (1.4) as a geodesic
flow on Ĝ with respect to this left-invariant metric. Obviously, if we choose v = 0 and
γj = 0, j = 1, 2, 3, and replace t by −t , (1.4) reduces to (1.1). Furthermore, we show that

Theorem 1.2 (=Theorems 3.1 and 4.1). The 2-μHS equation (1.4) can be viewed as a
bi-Hamiltonian and bi-variational equation.

This paper is organized as follows. In section 2, we calculate the Euler equation on Ĝ∗
reg.

In section 3, we study the Hamiltonian nature and the Lax pair of the 2-μHS equation (1.4).
Section 4 is devoted to discuss the variational nature of (1.4). In the last section we describe
the interrelation between bi-Hamiltonian natures and bi-variational natures.
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2. Eulerian nature of the 2-μHS equation

Let Ds(S1) be a group of orientation preserving Sobolev Hs diffeomorphisms of the
circle and let TidDs(S1) be the corresponding Lie algebra of vector fields denoted by
Vects(S1) = {

f (x) d
dx

∣∣f (x) ∈ Hs(S1)
}
.

The main objects in our paper will be the group Ds(S1) � C∞(S1), its Lie algebra
G = Vects(S1) � C∞(S1) with the Lie bracket given by[(

f (x)
d

dx
, a(x)

)
,

(
g(x)

d

dx
, b(x)

)]
=

(
(f (x)g′(x) − f ′(x)g(x))

d

dx
, f (x)b′(x) − a′(x)g(x)

)
,

and their central extensions. It is well known in [3, 7] that the algebraG has a three-dimensional
central extension given by the following nontrivial cocycles:

ω1

((
f (x)

d

dx
, a(x)

)
,

(
g(x)

d

dx
, b(x)

))
=

∫
S

1
f ′(x)g′′(x) dx,

ω2

((
f (x)

d

dx
, a(x)

)
,

(
g(x)

d

dx
, b(x)

))
=

∫
S

1
[f ′′(x)b(x) − g′′(x)a(x)] dx,

ω3

((
f (x)

d

dx
, a(x)

)
,

(
g(x)

d

dx
, b(x)

))
= 2

∫
S

1
a(x)b′′(x) dx,

(2.1)

where f (x), g(x) ∈ Hs(S1) and a(x), b(x) ∈ C∞(S1). Note that the first cocycle ω1 is
the well-known Gelfand–Fuchs cocycle [2, 5]. The Virasoro algebra Vir = Vects(S1) ⊕ R

is the unique non-trivial central extension of Vects(S1) via the Gelfand–Fuchs cocycle ω1.
Sometimes we would like to use the modified Gelfand–Fuchs cocycle

ω̃1

((
f (x)

d

dx
, a(x)

)
,

(
g(x)

d

dx
, b(x)

))
=

∫
S

1
(c1f

′(x)g′′(x) + c2f
′(x)g(x)) dx, (2.2)

which is cohomologeous to the Gelfand–Fuchs cocycle ω1, where c1, c2 ∈ R.

Definition 2.1. The algebra Ĝ is an extension of G defined by

Ĝ = Vects(S1) � C∞(S1) ⊕ R
3 (2.3)

with the commutation relation

[f̂ , ĝ] =
(

(fg′ − f ′g)
d

dx
, f b′ − a′g,−→ω

)
, (2.4)

where f̂ = (
f (x) d

dx
, a(x),−→α )

, ĝ = (
g(x) d

dx
, b(x),

−→
β

)
and −→α ,

−→
β ∈ R

3 and −→ω =
(ω1, ω2, ω3) ∈ R

3.

Let

Ĝ∗
reg = C∞(S1) ⊕ C∞(S1) ⊕ R

3 (2.5)

denote the regular part of the dual space Ĝ∗ to the Lie algebra Ĝ under the pairing

〈û, f̂ 〉∗ =
∫

S
1
(u(x)f (x) + a(x)v(x)) dx + −→α · −→γ , (2.6)

where û = (u(x)(dx)2, v(x),−→γ ) ∈ Ĝ∗. Of particular interest are the coadjoint orbits in Ĝ∗
reg.

On Ĝ, let us introduce an inner product

〈f̂ , ĝ〉μ = μ(f )μ(g) +
∫

S
1
(f ′(x)g′(x) + a(x)b(x)) dx + −→α · −→

β . (2.7)

3
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A direct computation gives

〈f̂ , ĝ〉μ = 〈f̂ , (�(g)(dx)2, b(x),
−→
β )〉∗, �(g) = μ(g) − g′′(x),

which induces an inertia operator A : Ĝ −→ Ĝ∗
reg given by

A(ĝ) = (�(g)(dx)2, b(x),
−→
β ). (2.8)

Theorem 2.2. The 2-μHS equation (1.4) is an Euler equation on Ĝ∗
reg with respect to the

inner product (2.7).

Proof. By definition,

〈ad∗
f̂
(û), ĝ〉∗ = −〈û, [f̂ , ĝ]〉∗ (by using integration by parts)

= 〈((2ufx + uxf + axv − α1fxxx + α2axx)(dx)2, (vf )x − α2fxx + 2α3ax, 0), ĝ〉∗.
This gives

ad∗
f̂
(û) = ((2ufx + uxf + axv − α1fxxx + α2axx)(dx)2, (vf )x − α2fxx + 2α3ax, 0).

By definition in [13], the Euler equation on Ĝ∗
reg is given by

dû

dt
= −ad∗

A−1ûû (2.9)

as an evolution of a point û ∈ Ĝ∗
reg. That is to say, the Euler equation on Ĝ∗

reg is

ut = 2ufx + uxf + vxv − γ1fxxx + γ2vxx,

vt = (vf )x − γ2fxx + 2γ3vx,

where u(x, t) = �(f (x, t)) = μ(f ) − fxx . By integrating both sides of this equation over
the circle and using periodicity, we obtain

μ(ft ) = μ(f )t = 0.

This yields that

−fxxt = 2μ(f )fx − 2fxfxx − ffxxx + vxv − γ1fxxx + γ2vxx,

vt = (vf )x − γ2fxx + 2γ3vx,

which is the 2-μHS equation (1.4). �

Remark 2.3. If we replace the Gelfand–Fuchs cocycle ω1 by the modified cocycle ω̃1, the
Euler equation Ĝ∗

reg is of the form

−fxxt = 2μ(f )fx − 2fxfxx − ffxxx + vxv − γ1c1fxxx + γ2vxx + γ1c2fx,

vt = (vf )x − γ2fxx + 2γ3vx.

3. Hamiltonian nature of the 2-μHS equation

In this section, we will study the Hamiltonian nature of the 2-μHS equation (1.4) and its
geometric meaning. We will show that

Theorem 3.1. The 2-μHS equation (1.4) is bi-Hamiltonian.

Proof. Let us define u(x, t) = �(f ) = μ(f ) − fxx and

H1 = 1

2

∫
S

1
(uf + v2) dx (3.1)

4
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and

H2 =
∫

S
1

(
μ(f )f 2 +

1

2
ff 2

x +
1

2
f v2 − γ2vfx + γ3v

2 − γ1

2
ffxx

)
dx. (3.2)

It is easy to check that the 2-μHS equation can be written as(
u

v

)
t

= J1

(
δH2
δu

δH2
δv

)
= J2

(
δH1
δu

δH1
δv

)
, (3.3)

where the Hamiltonian operators are

J1 =
(

∂x� 0
0 ∂x

)
, J2 =

(
u∂x + ∂xu − γ1∂

3
x v∂x + γ2∂

2
x

∂xv − γ2∂
2
x 2γ3∂x

)
. (3.4)

By a direct and lengthy calculation we could show that the Hamiltonian operators J1 and J2

are compatible. �

Next we will explain the geometric meaning of the bi-Hamiltonian structures of the
2-μHS equation (1.4). Let Fi : Ĝ∗

reg → R, i = 1, 2, be the two arbitrary smooth functionals.
It is well known that the dual space Ĝ∗

reg carries the canonical Lie–Poisson bracket

{F1, F2}2(û) =
〈
û,

[
δF1

δû
,
δF2

δû

]〉∗
, (3.5)

where û = (u(x, t)(dx)2, v(x, t), 
γ ) ∈ Ĝ∗
reg and δFi

δû
= (

δFi

δu
, δFi

δv
, δFi

δ 
γ
) ∈ Ĝ, i = 1, 2. By the

definition of the Euler equation (2.9), we know that the Lie–Poisson structure (3.5) is exactly
the second Poisson bracket, induced by J2, of the 2-μHS equation (1.4).

To explain the first Hamiltonian structure, in the following we will use the ‘frozen Lie–
Poisson’ method introduced in [13]. Let us define a frozen (or constant) Poisson bracket

{F1, F2}1(û) =
〈
û0,

[
δF1

δû
,
δF2

δû

]〉∗
, (3.6)

where û0 = (u0(dx)2, v0, 
γ0) ∈ Ĝ∗
reg. The corresponding Hamiltonian equation for any

functional F : Ĝ∗
reg → R reads

dû

dt
= ad∗

δF
δû

û0 (3.7)

which gives

ut = 2u0

(
δF

δu

)
x

+

(
δF

δv

)
x

v0 − γ 0
1

(
δF

δu

)
xxx

+ γ 0
2

(
δF

δv

)
xx

,

vt =
(

v0
δF

δu

)
x

− γ 0
2

(
δF

δu

)
xx

+ 2γ 0
3

(
δF

δv

)
x

, (3.8)


γ0,t = 0.

Let us take the Hamiltonian functional F to be

H2 =
∫

S
1

(
μ(f )f 2 +

1

2
ff 2

x +
1

2
f v2 − γ2vfx + γ3v

2 − γ1

2
ffxx

)
dx (3.9)

and set u(x, t) = �(f (x, t)) = μ(f ) − fxx . Then we have

δF

δu
= �−1

(
μ(f 2) + 2f μ(f ) − 1

2
f 2

x − ffxx − γ1fxx + γ2vx

)
,

δF

δv
= vf − γ2fx + 2γ3v.

(3.10)

5
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Let us choose a fixed point

û0 = (u0, v0, 
γ0) = (
0, 0,

(
1, 0, 1

2

))
.

Observe that ∂3
x�−1 = −∂x . By substituting (3.10) into (3.8), we obtain the 2-μHS

equation (1.4). According to proposition 5.3 in [13], {, }1 and {, }2 are compatible for every
freezing point û0. Consequently we have

Theorem 3.2. The 2-μHS equation (1.4) is Hamiltonian with respect to two compatible
Poisson structures (3.5) and (3.6) on Ĝ∗

reg, where the first bracket is frozen at the point

û0 = (u0, v0, 
γ0) = (
0, 0,

(
1, 0, 1

2

))
.

Let us point out that the constant bracket depends on the choice of the freezing point û0,
while the Lie–Poisson bracket is only determined by the Lie algebra structure.

To this end we want to derive a Lax pair of 2-μHS equation (1.4) with −→γ = 0, i.e.

−fxxt = 2μ(f )fx − 2fxfxx − ffxxx + vxv, vt = (vf )x. (3.11)

Motivated by the Lax pair of the two-component Camassa–Holm equation in [17], we could
assume that the Lax pair of (3.11) has the following form:

	x = U	, 	t = V 	 (3.12)

with

U =
(

0 1
λ�(f ) − λ2v2 0

)
and V =

(
p r

q −p

)
,

where λ is a spectral parameter. The compatibility condition

Ut − Vx + UV − V U = 0

in componentwise form reads

p = − rx

2
, q = px + r(λ�(f ) − λ2v2),

2λ2vvt + λfxxt + qx − 2p(λ�(f ) − λ2v2) = 0.

By choosing r = f − 1
2λ

, we have

p = −fx

2
, q = −fxx

2
+

(
f − 1

2λ

)
(λ�(f ) − λ2v2)

and

fxxt + 2μ(f )fx − 2fxfxx − ffxxx + vxv + 2λv(vt − (vf )x) = 0

which yields the system (3.11). Let us write 	 = ( ψ

ψx

)
. We have

Proposition 3.3. The system (3.11) has a Lax pair given by

ψxx = (λ�(f ) − λ2v2)ψ, ψt =
(

f − 1

2λ

)
ψx − 1

2
fxψ,

where λ ∈ C − {0} is a spectral parameter.

6
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4. Variational nature of the 2-μHS equation

In [22], they have shown that the μ-HS equation (1.1) can be obtained from two distinct
variational principles. In this section we will show that the 2-μHS equation (1.4) also arises
as the equation

δS = 0

for the action functional

S =
∫ (∫

L dx

)
dt

with two different densities L. That is to say,

Theorem 4.1. The 2-μHS equation (1.4) satisfies two different variational principles.

Proof. Motivated by the Lagrangian densities for the μ-HS equation (1.1) in [22], by
some conjectural computations we find two generalized Lagrangian densities for the 2-μHS
equation (1.4). More precisely,

Case I. Let us consider the first Lagrangian density

L1 = 1
2f 2

x + 1
2μ(f )f + 1

2v2 − vzx + w(f zx − zt + γ̃3v) + γ2wxf − 2γ1f, (4.1)

where γ̃3 = γ3 − 1
2γ1. Varying the corresponding action with respect to f , v,w and z,

respectively, we get

fxx = μ(f ) + wzx + γ2wx − 2γ1,

zx = v + γ̃3w,

zt = f zx + γ̃3v − γ2fx,

wt = (wf )x − vx.

(4.2)

By using (4.2), we have

vt = zxt − γ3wt = [f (v + γ̃3w) + γ̃3v − γ2fx]x − γ̃3((wf )x − vx),

= (vf )x − γ2fxx + (2γ3 − γ1)vx, (4.3)

and

−fxxt + fxfxx + ffxxx = −(μ(f ) + wzx + γ2wx)t + fx(μ(f )

+ wzx + γ2wx − 2γ1) + f (μ(f ) + wzx + γ2wx)x

= −wtzx − wzxt + γwxt + fxwzx + f wxzx + f wzxx + γ2f wxx + 2γ1fx

= vvx + 2μ(f )fx + γ2vxx − 2γ1fx. (4.4)

Note that if we replace f by f + γ1 in the system (4.3) and (4.4), this gives the 2-μHS
equation (1.4).

Case II. The second variational representation can be obtained from the Lagrangian density

L2 = −fxft + 2μ(f )f 2 + ff 2
x + f φ2

x − γ1ffxx − 2γ2φxfx + 2γ3φ
2
x − φxφt . (4.5)

The variational principle δS = 0 gives the Euler–Lagrange equation

−fxt = 2μ(f )f + μ(f 2) − 1
2f 2

x − ffxx + 1
2φ2

x − γ1fx + γ2φxx,

φxt = (f φx)x − γ2fxx + 2γ3φxx.
(4.6)

If we set φx = v and take the x-derivative of the first term in (4.6), this yields the 2-μHS
equation (1.4). �

7
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5. Relation between Hamiltonian nature and variational nature

Recall that we have shown that the 2-μHS equation (1.4) is bi-Hamiltonian and has two
different variational principles. In the last section we will study the relation between
Hamiltonian natures and bi-variational principles and prove that

Theorem 5.1. The two variational formulations for the 2-μHS equation (1.4) formally
correspond to the two Hamiltonian formulations of this equation with the Hamiltonian
functionals H1 and H2.

Proof. The action is related to the Lagrangian by S = ∫ ( ∫
Ldx

)
dt . The first variational

principle has the Lagrangian density

L1 = 1
2f 2

x + 1
2μ(f )f + 1

2v2 − vzx + w(f zx − zt + γ̃3v) + γ2wxf − 2γ1f.

The momenta conjugate to the velocities ft, vt , zt and wt , respectively, are
∂L1

∂ft

= 0,
∂L1

∂wt

= 0,
∂L1

∂zt

= −w,
∂L1

∂wt

= 0.

Consequently, the Hamiltonian density is

H = −ztw − L1

= − 1
2f 2

x − 1
2μ(f )f − 1

2v2 + vzx − w(f zx + γ̃3v) − γ2wxf + 2γ1

= 1
2μ(f )f − 1

2f 2
x + 1

2v2 − ffxx, by using (4.2).

Therefore, the Hamiltonian is

H =
∫

H dx =
∫ (

1

2
μ(f )f − 1

2
f 2

x +
1

2
v2 − ffxx

)
dx

= 1

2

∫
(μ(f )f − ffxx + v2) dx,

which is exactly H1 defined in (3.1).
In the second principle the Lagrangian density is

L2 = −fxft + 2μ(f )f 2 + ff 2
x + f φ2

x − γ1ffxx − 2γ2φxfx + 2γ3φ
2
x − φxφt .

The momenta conjugate to the velocities ft and φt , respectively, are
∂L2

∂ft

= −fx,
∂L2

∂φt

= −φx.

Consequently, the Hamiltonian density is

H = −fxft − φxφt − L2

= −2μ(f )f 2 − ff 2
x − f φ2

x + γ1ffxx + 2γ2φxfx − 2γ3φ
2
x .

Now let us set φx = v and so

H =
∫

(−2μ(f )f 2 − ff 2
x − f v2 + −γ1ffxx + 2γ2vfx − 2γ3v

2) dx = −H2

2
,

where H2 is defined in (3.2). �
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