A two-component μ-Hunter-Saxton equation

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2010 Inverse Problems 26085003
(http://iopscience.iop.org/0266-5611/26/8/085003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 141.161.91.14
This content was downloaded on 22/05/2015 at 06:20

Please note that terms and conditions apply.

A two-component $\boldsymbol{\mu}$-Hunter-Saxton equation

Dafeng Zuo
Department of Mathematics, University of Science and Technology of China, Hefei 230026, People's Republic of China
E-mail: dfzuo@ustc.edu.cn

Received 2 January 2010, in final form 11 May 2010
Published 4 June 2010
Online at stacks.iop.org/IP/26/085003

Abstract

In this paper, we propose a two-component generalization of the generalized Hunter-Saxton equation obtained in Khesin et al (2008 Math. Ann. 342 61756). We will show that this equation is a bi-Hamiltonian Euler equation, and can also be viewed as a bi-variational equation.

1. Introduction

Arnold in [1] suggested a general framework for the Euler equations on an arbitrary (possibly infinite-dimensional) Lie algebra \mathcal{G}. In many cases, the Euler equations on \mathcal{G} describe geodesic flows with respect to a suitable one-side invariant Riemannian metric on the corresponding group G. Now it is well known that Arnold's approach to the Euler equation works very well for the Virasoro algebra and its extensions, see $[6,10,13-15,19]$ and references therein.

Let $\mathcal{D}\left(\mathbb{S}^{1}\right)$ be a group of orientation preserving diffeomorphisms of the circle and $G=\mathcal{D}\left(\mathbb{S}^{1}\right) \oplus \mathbb{R}$ be the Bott-Virasoro group. In [6], Ovsienko and Khesin showed that the KdV equation is an Euler equation, describing a geodesic flow on G with respect to a right-invariant L^{2} metric. Another interesting example is the Camassa-Holm equation, which was originally derived in [4] as an abstract equation with a bi-Hamiltonian structure, and independently in [9] as a shallow water approximation. In [10], Misiolek showed that the Camassa-Holm equation is also an Euler equation for a geodesic flow on G with respect to a right-invariant Sobolev H^{1}-metric.

In [13], Khesin and Misiolek extended Arnold's approach to homogeneous spaces and provided a beautiful geometric setting for the Hunter-Saxton equation, which firstly appeared in [8] as an asymptotic equation for rotators in liquid crystals, and its relatives. They showed that the Hunter-Saxton equation is an Euler equation describing the geodesic flow on the homogeneous spaces of the Bott-Virasoro group G modulo rotations with respect to a rightinvariant homogeneous \dot{H}^{1}-metric.

Furthermore, by using extended Bott-Virasoro groups, Guha and others [11, 16, 21] generalized the above results to two-component integrable systems, including several coupled KdV-type systems, and two-component peak-type systems, especially two-component

Camassa-Holm equation which was introduced by Chen et al [17] and independently by Falqui [18]. Another interesting topic is to discuss the super or supersymmetric analogue, see [6, 12, $16,20,23,24]$ and references therein.

Recently Khesin et al in [22] introduced a generalized Hunter-Saxton (μ-HS in brief) equation lying midway between the periodic Hunter-Saxton and Camassa-Holm equations:

$$
\begin{equation*}
-f_{t x x}=-2 \mu(f) f_{x}+2 f_{x} f_{x x}+f f_{x x x} \tag{1.1}
\end{equation*}
$$

where $f=f(t, x)$ is a time-dependent function on the unit circle $\mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$ and $\mu(f)=\int_{\mathbb{S}^{1}} f \mathrm{~d} x$ denotes its mean. This equation describes evolution of rotators in liquid crystals with an external magnetic field and self-interaction.

Let $\mathcal{D}^{s}\left(\mathbb{S}^{1}\right)$ be a group of orientation preserving Sobolev H^{s} diffeomorphisms of the circle. They proved that the μ-HS equation (1.1) describes a geodesic flow on $\mathcal{D}^{s}\left(\mathbb{S}^{1}\right)$ with a right-invariant metric given at the identity by the inner product

$$
\begin{equation*}
\langle f, g\rangle_{\mu}=\mu(f) \mu(g)+\int_{\mathbb{S}^{1}} f^{\prime}(x) g^{\prime}(x) \mathrm{d} x \tag{1.2}
\end{equation*}
$$

They also showed that (1.2) is bi-Hamiltonian and admits both cusped and smooth travelling wave solutions which are natural candidates for solitons. In this paper, we want to generalize these to a two-component μ-HS ($2-\mu \mathrm{HS}$ in brief) equation. Our main object is the Lie algebra $\mathcal{G}=\operatorname{Vect}^{s}\left(\mathbb{S}^{1}\right) \ltimes \mathrm{C}^{\infty}\left(\mathbb{S}^{1}\right)$ and its three-dimensional central extension $\widehat{\mathcal{G}}$. Firstly, we introduce an inner product on $\widehat{\mathcal{G}}$ given by

$$
\begin{equation*}
\langle\hat{f}, \hat{g}\rangle_{\mu}=\mu(f) \mu(g)+\int_{\mathbb{S}^{1}}\left(f^{\prime}(x) g^{\prime}(x)+a(x) b(x)\right) \mathrm{d} x+\vec{\alpha} \cdot \vec{\beta}, \tag{1.3}
\end{equation*}
$$

where $\hat{f}=\left(f(x) \frac{\mathrm{d}}{\mathrm{d} x}, a(x), \vec{\alpha}\right), \hat{g}=\left(g(x) \frac{\mathrm{d}}{\mathrm{d} x}, b(x), \vec{\beta}\right)$ and $\vec{\alpha}, \vec{\beta} \in \mathbb{R}^{3}$. Afterwards, we have

Theorem 1.1 (=Theorem 2.2). The Euler equation on $\widehat{\mathcal{G}}_{\mathrm{reg}}^{*}$ with respect to (1.3) is a $2-\mu H S$ equation

$$
\left\{\begin{array}{l}
-f_{x x t}=2 \mu(f) f_{x}-2 f_{x} f_{x x}-f f_{x x x}+v_{x} v-\gamma_{1} f_{x x x}+\gamma_{2} v_{x x} \tag{1.4}\\
v_{t}=(v f)_{x}-\gamma_{2} f_{x x}+2 \gamma_{3} v_{x}
\end{array}\right.
$$

where $\gamma_{j} \in \mathbb{R}, j=1,2,3$.

Actually from the geometric view, if we extend the inner product (1.3) to a left-invariant metric on $\widehat{G}=\mathcal{D}^{s}\left(\mathbb{S}^{1}\right) \ltimes \mathrm{C}^{\infty}\left(\mathbb{S}^{1}\right) \oplus \mathbb{R}^{3}$, we can view the 2- $\mu \mathrm{HS}$ equation (1.4) as a geodesic flow on \widehat{G} with respect to this left-invariant metric. Obviously, if we choose $v=0$ and $\gamma_{j}=0, j=1,2,3$, and replace t by $-t$, (1.4) reduces to (1.1). Furthermore, we show that

Theorem 1.2 (=Theorems 3.1 and 4.1). The $2-\mu H S$ equation (1.4) can be viewed as a bi-Hamiltonian and bi-variational equation.

This paper is organized as follows. In section 2, we calculate the Euler equation on $\widehat{\mathcal{G}_{\text {reg }}^{*}}$. In section 3, we study the Hamiltonian nature and the Lax pair of the $2-\mu \mathrm{HS}$ equation (1.4). Section 4 is devoted to discuss the variational nature of (1.4). In the last section we describe the interrelation between bi-Hamiltonian natures and bi-variational natures.

2. Eulerian nature of the $2-\mu \mathrm{HS}$ equation

Let $\mathcal{D}^{s}\left(\mathbb{S}^{1}\right)$ be a group of orientation preserving Sobolev H^{s} diffeomorphisms of the circle and let $T_{i d} \mathcal{D}^{s}\left(\mathbb{S}^{1}\right)$ be the corresponding Lie algebra of vector fields denoted by $\operatorname{Vect}^{s}\left(\mathbb{S}^{1}\right)=\left\{\left.f(x) \frac{\mathrm{d}}{\mathrm{d} x} \right\rvert\, f(x) \in H^{s}\left(\mathbb{S}^{1}\right)\right\}$.

The main objects in our paper will be the group $\mathcal{D}^{s}\left(\mathbb{S}^{1}\right) \ltimes \mathrm{C}^{\infty}\left(\mathbb{S}^{1}\right)$, its Lie algebra $\mathcal{G}=\operatorname{Vect}^{s}\left(\mathbb{S}^{1}\right) \ltimes \mathrm{C}^{\infty}\left(\mathbb{S}^{1}\right)$ with the Lie bracket given by

$$
\begin{aligned}
& {\left[\left(f(x) \frac{\mathrm{d}}{\mathrm{~d} x}, a(x)\right),\left(g(x) \frac{\mathrm{d}}{\mathrm{~d} x}, b(x)\right)\right]} \\
& \quad=\left(\left(f(x) g^{\prime}(x)-f^{\prime}(x) g(x)\right) \frac{\mathrm{d}}{\mathrm{~d} x}, f(x) b^{\prime}(x)-a^{\prime}(x) g(x)\right)
\end{aligned}
$$

and their central extensions. It is well known in $[3,7]$ that the algebra \mathcal{G} has a three-dimensional central extension given by the following nontrivial cocycles:
$\omega_{1}\left(\left(f(x) \frac{\mathrm{d}}{\mathrm{d} x}, a(x)\right),\left(g(x) \frac{\mathrm{d}}{\mathrm{d} x}, b(x)\right)\right)=\int_{\mathbb{S}^{1}} f^{\prime}(x) g^{\prime \prime}(x) \mathrm{d} x$,
$\omega_{2}\left(\left(f(x) \frac{\mathrm{d}}{\mathrm{d} x}, a(x)\right),\left(g(x) \frac{\mathrm{d}}{\mathrm{d} x}, b(x)\right)\right)=\int_{\mathbb{S}^{1}}\left[f^{\prime \prime}(x) b(x)-g^{\prime \prime}(x) a(x)\right] \mathrm{d} x$,
$\omega_{3}\left(\left(f(x) \frac{\mathrm{d}}{\mathrm{d} x}, a(x)\right),\left(g(x) \frac{\mathrm{d}}{\mathrm{d} x}, b(x)\right)\right)=2 \int_{\mathbb{S}^{1}} a(x) b^{\prime \prime}(x) \mathrm{d} x$,
where $f(x), g(x) \in H^{s}\left(\mathbb{S}^{1}\right)$ and $a(x), b(x) \in \mathrm{C}^{\infty}\left(\mathbb{S}^{1}\right)$. Note that the first cocycle ω_{1} is the well-known Gelfand-Fuchs cocycle [2,5]. The Virasoro algebra Vir $=\operatorname{Vect}^{s}\left(\mathbb{S}^{1}\right) \oplus \mathbb{R}$ is the unique non-trivial central extension of $\operatorname{Vect}^{s}\left(\mathbb{S}^{1}\right)$ via the Gelfand-Fuchs cocycle ω_{1}. Sometimes we would like to use the modified Gelfand-Fuchs cocycle
$\tilde{\omega}_{1}\left(\left(f(x) \frac{\mathrm{d}}{\mathrm{d} x}, a(x)\right),\left(g(x) \frac{\mathrm{d}}{\mathrm{d} x}, b(x)\right)\right)=\int_{\mathbb{S}^{1}}\left(c_{1} f^{\prime}(x) g^{\prime \prime}(x)+c_{2} f^{\prime}(x) g(x)\right) \mathrm{d} x$,
which is cohomologeous to the Gelfand-Fuchs cocycle ω_{1}, where $c_{1}, c_{2} \in \mathbb{R}$.
Definition 2.1. The algebra $\widehat{\mathcal{G}}$ is an extension of \mathcal{G} defined by

$$
\begin{equation*}
\widehat{\mathcal{G}}=\operatorname{Vect}^{s}\left(\mathbb{S}^{1}\right) \ltimes C^{\infty}\left(\mathbb{S}^{1}\right) \oplus \mathbb{R}^{3} \tag{2.3}
\end{equation*}
$$

with the commutation relation

$$
\begin{equation*}
[\hat{f}, \hat{g}]=\left(\left(f g^{\prime}-f^{\prime} g\right) \frac{\mathrm{d}}{\mathrm{~d} x}, f b^{\prime}-a^{\prime} g, \vec{\omega}\right) \tag{2.4}
\end{equation*}
$$

where $\hat{f}=\left(f(x) \frac{\mathrm{d}}{\mathrm{d} x}, a(x), \vec{\alpha}\right), \hat{g}=\left(g(x) \frac{\mathrm{d}}{\mathrm{d} x}, b(x), \vec{\beta}\right)$ and $\vec{\alpha}, \vec{\beta} \in \mathbb{R}^{3}$ and $\vec{\omega}=$ $\left(\omega_{1}, \omega_{2}, \omega_{3}\right) \in \mathbb{R}^{3}$.

Let

$$
\begin{equation*}
\widehat{\mathcal{G}}_{\text {reg }}^{*}=\mathrm{C}^{\infty}\left(\mathbb{S}^{1}\right) \oplus \mathrm{C}^{\infty}\left(\mathbb{S}^{1}\right) \oplus \mathbb{R}^{3} \tag{2.5}
\end{equation*}
$$

denote the regular part of the dual space $\widehat{\mathcal{G}}^{*}$ to the Lie algebra $\widehat{\mathcal{G}}$ under the pairing

$$
\begin{equation*}
\langle\hat{u}, \hat{f}\rangle^{*}=\int_{\mathbb{S}^{1}}(u(x) f(x)+a(x) v(x)) \mathrm{d} x+\vec{\alpha} \cdot \vec{\gamma} \tag{2.6}
\end{equation*}
$$

where $\hat{u}=\left(u(x)(\mathrm{d} x)^{2}, v(x), \vec{\gamma}\right) \in \widehat{\mathcal{G}}^{*}$. Of particular interest are the coadjoint orbits in $\widehat{\mathcal{G}}_{\text {reg }}^{*}$.
On $\widehat{\mathcal{G}}$, let us introduce an inner product

$$
\begin{equation*}
\langle\hat{f}, \hat{g}\rangle_{\mu}=\mu(f) \mu(g)+\int_{\mathbb{S}^{1}}\left(f^{\prime}(x) g^{\prime}(x)+a(x) b(x)\right) \mathrm{d} x+\vec{\alpha} \cdot \vec{\beta} . \tag{2.7}
\end{equation*}
$$

A direct computation gives

$$
\langle\hat{f}, \hat{g}\rangle_{\mu}=\left\langle\hat{f},\left(\Lambda(g)(\mathrm{d} x)^{2}, b(x), \vec{\beta}\right)\right\rangle^{*}, \quad \Lambda(g)=\mu(g)-g^{\prime \prime}(x)
$$

which induces an inertia operator $\mathcal{A}: \widehat{\mathcal{G}} \longrightarrow \widehat{\mathcal{G}}_{\text {reg }}^{*}$ given by

$$
\begin{equation*}
\mathcal{A}(\hat{g})=\left(\Lambda(g)(\mathrm{d} x)^{2}, b(x), \vec{\beta}\right) \tag{2.8}
\end{equation*}
$$

Theorem 2.2. The $2-\mu H S$ equation (1.4) is an Euler equation on $\widehat{\mathcal{G}}_{\text {reg }}^{*}$ with respect to the inner product (2.7).

Proof. By definition,

$$
\begin{aligned}
\left\langle a d_{\hat{f}}^{*}(\hat{u}), \hat{g}\right\rangle^{*} & =-\langle\hat{u},[\hat{f}, \hat{g}]\rangle^{*} \quad \text { (by using integration by parts) } \\
& =\left\langle\left(\left(2 u f_{x}+u_{x} f+a_{x} v-\alpha_{1} f_{x x x}+\alpha_{2} a_{x x}\right)(\mathrm{d} x)^{2},(v f)_{x}-\alpha_{2} f_{x x}+2 \alpha_{3} a_{x}, 0\right), \hat{g}\right\rangle^{*}
\end{aligned}
$$

This gives
$a d_{\hat{f}}^{*}(\hat{u})=\left(\left(2 u f_{x}+u_{x} f+a_{x} v-\alpha_{1} f_{x x x}+\alpha_{2} a_{x x}\right)(\mathrm{d} x)^{2},(v f)_{x}-\alpha_{2} f_{x x}+2 \alpha_{3} a_{x}, 0\right)$.
By definition in [13], the Euler equation on $\widehat{\mathcal{G}}_{\text {reg }}^{*}$ is given by

$$
\begin{equation*}
\frac{\mathrm{d} \hat{u}}{\mathrm{~d} t}=-a d_{\mathcal{A}^{-1} \hat{u}}^{*} \hat{u} \tag{2.9}
\end{equation*}
$$

as an evolution of a point $\hat{u} \in \widehat{\mathcal{G}}_{\text {reg }}^{*}$. That is to say, the Euler equation on $\widehat{\mathcal{G}}_{\text {reg }}^{*}$ is

$$
\begin{aligned}
u_{t} & =2 u f_{x}+u_{x} f+v_{x} v-\gamma_{1} f_{x x x}+\gamma_{2} v_{x x}, \\
v_{t} & =(v f)_{x}-\gamma_{2} f_{x x}+2 \gamma_{3} v_{x},
\end{aligned}
$$

where $u(x, t)=\Lambda(f(x, t))=\mu(f)-f_{x x}$. By integrating both sides of this equation over the circle and using periodicity, we obtain

$$
\mu\left(f_{t}\right)=\mu(f)_{t}=0
$$

This yields that

$$
\begin{aligned}
& -f_{x x t}=2 \mu(f) f_{x}-2 f_{x} f_{x x}-f f_{x x x}+v_{x} v-\gamma_{1} f_{x x x}+\gamma_{2} v_{x x}, \\
& v_{t}=(v f)_{x}-\gamma_{2} f_{x x}+2 \gamma_{3} v_{x}
\end{aligned}
$$

which is the $2-\mu \mathrm{HS}$ equation (1.4).
Remark 2.3. If we replace the Gelfand-Fuchs cocycle ω_{1} by the modified cocycle $\tilde{\omega}_{1}$, the Euler equation $\widehat{\mathcal{G}}_{\text {reg }}^{*}$ is of the form

$$
\begin{aligned}
& -f_{x x t}=2 \mu(f) f_{x}-2 f_{x} f_{x x}-f f_{x x x}+v_{x} v-\gamma_{1} c_{1} f_{x x x}+\gamma_{2} v_{x x}+\gamma_{1} c_{2} f_{x}, \\
& v_{t}=(v f)_{x}-\gamma_{2} f_{x x}+2 \gamma_{3} v_{x} .
\end{aligned}
$$

3. Hamiltonian nature of the $2-\mu \mathrm{HS}$ equation

In this section, we will study the Hamiltonian nature of the $2-\mu \mathrm{HS}$ equation (1.4) and its geometric meaning. We will show that

Theorem 3.1. The $2-\mu H S$ equation (1.4) is bi-Hamiltonian.
Proof. Let us define $u(x, t)=\Lambda(f)=\mu(f)-f_{x x}$ and

$$
\begin{equation*}
H_{1}=\frac{1}{2} \int_{\mathbb{S}^{1}}\left(u f+v^{2}\right) \mathrm{d} x \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{2}=\int_{\mathbb{S}^{1}}\left(\mu(f) f^{2}+\frac{1}{2} f f_{x}^{2}+\frac{1}{2} f v^{2}-\gamma_{2} v f_{x}+\gamma_{3} v^{2}-\frac{\gamma_{1}}{2} f f_{x x}\right) \mathrm{d} x \tag{3.2}
\end{equation*}
$$

It is easy to check that the $2-\mu \mathrm{HS}$ equation can be written as

$$
\begin{equation*}
\binom{u}{v}_{t}=\mathcal{J}_{1}\binom{\frac{\delta H_{2}}{\delta u}}{\frac{\delta H_{2}}{\delta v}}=\mathcal{J}_{2}\binom{\frac{\delta H_{1}}{\delta u}}{\frac{\delta H_{1}}{\delta v}}, \tag{3.3}
\end{equation*}
$$

where the Hamiltonian operators are

$$
\mathcal{J}_{1}=\left(\begin{array}{cc}
\partial_{x} \Lambda & 0 \tag{3.4}\\
0 & \partial_{x}
\end{array}\right), \quad \mathcal{J}_{2}=\left(\begin{array}{cc}
u \partial_{x}+\partial_{x} u-\gamma_{1} \partial_{x}^{3} & v \partial_{x}+\gamma_{2} \partial_{x}^{2} \\
\partial_{x} v-\gamma_{2} \partial_{x}^{2} & 2 \gamma_{3} \partial_{x}
\end{array}\right) .
$$

By a direct and lengthy calculation we could show that the Hamiltonian operators \mathcal{J}_{1} and \mathcal{J}_{2} are compatible.

Next we will explain the geometric meaning of the bi-Hamiltonian structures of the $2-\mu \mathrm{HS}$ equation (1.4). Let $F_{i}: \widehat{\mathcal{G}}_{\text {reg }}^{*} \rightarrow \mathbb{R}, i=1,2$, be the two arbitrary smooth functionals. It is well known that the dual space $\widehat{\mathcal{G}}_{\text {reg }}^{*}$ carries the canonical Lie-Poisson bracket

$$
\begin{equation*}
\left\{F_{1}, F_{2}\right\}_{2}(\hat{u})=\left\langle\hat{u},\left[\frac{\delta F_{1}}{\delta \hat{u}}, \frac{\delta F_{2}}{\delta \hat{u}}\right]\right\rangle^{*}, \tag{3.5}
\end{equation*}
$$

where $\hat{u}=\left(u(x, t)(\mathrm{d} x)^{2}, v(x, t), \vec{\gamma}\right) \in \widehat{\mathcal{G}}_{\text {reg }}^{*}$ and $\frac{\delta F_{i}}{\delta \hat{u}}=\left(\frac{\delta F_{i}}{\delta u}, \frac{\delta F_{i}}{\delta v}, \frac{\delta F_{i}}{\delta \vec{\gamma}}\right) \in \widehat{\mathcal{G}}, i=1,2$. By the definition of the Euler equation (2.9), we know that the Lie-Poisson structure (3.5) is exactly the second Poisson bracket, induced by \mathcal{J}_{2}, of the $2-\mu \mathrm{HS}$ equation (1.4).

To explain the first Hamiltonian structure, in the following we will use the 'frozen LiePoisson' method introduced in [13]. Let us define a frozen (or constant) Poisson bracket

$$
\begin{equation*}
\left\{F_{1}, F_{2}\right\}_{1}(\hat{u})=\left\langle\hat{u}_{0},\left[\frac{\delta F_{1}}{\delta \hat{u}}, \frac{\delta F_{2}}{\delta \hat{u}}\right]\right\rangle^{*}, \tag{3.6}
\end{equation*}
$$

where $\hat{u}_{0}=\left(u_{0}(\mathrm{~d} x)^{2}, v_{0}, \vec{\gamma}_{0}\right) \in \widehat{\mathcal{G}}_{\text {reg }}^{*}$. The corresponding Hamiltonian equation for any functional $F: \widehat{\mathcal{G}}_{\text {reg }}^{*} \rightarrow \mathbb{R}$ reads

$$
\begin{equation*}
\frac{\mathrm{d} \hat{u}}{\mathrm{~d} t}=a d_{\frac{\delta F}{*} \hat{u}}^{*} \hat{u}_{0} \tag{3.7}
\end{equation*}
$$

which gives

$$
\begin{align*}
& u_{t}=2 u_{0}\left(\frac{\delta F}{\delta u}\right)_{x}+\left(\frac{\delta F}{\delta v}\right)_{x} v_{0}-\gamma_{1}^{0}\left(\frac{\delta F}{\delta u}\right)_{x x x}+\gamma_{2}^{0}\left(\frac{\delta F}{\delta v}\right)_{x x} \\
& v_{t}=\left(v_{0} \frac{\delta F}{\delta u}\right)_{x}-\gamma_{2}^{0}\left(\frac{\delta F}{\delta u}\right)_{x x}+2 \gamma_{3}^{0}\left(\frac{\delta F}{\delta v}\right)_{x} \tag{3.8}\\
& \vec{\gamma}_{0, t}=0
\end{align*}
$$

Let us take the Hamiltonian functional F to be

$$
\begin{equation*}
H_{2}=\int_{\mathbb{S}^{1}}\left(\mu(f) f^{2}+\frac{1}{2} f f_{x}^{2}+\frac{1}{2} f v^{2}-\gamma_{2} v f_{x}+\gamma_{3} v^{2}-\frac{\gamma_{1}}{2} f f_{x x}\right) \mathrm{d} x \tag{3.9}
\end{equation*}
$$

and set $u(x, t)=\Lambda(f(x, t))=\mu(f)-f_{x x}$. Then we have

$$
\begin{align*}
& \frac{\delta F}{\delta u}=\Lambda^{-1}\left(\mu\left(f^{2}\right)+2 f \mu(f)-\frac{1}{2} f_{x}^{2}-f f_{x x}-\gamma_{1} f_{x x}+\gamma_{2} v_{x}\right) \tag{3.10}\\
& \frac{\delta F}{\delta v}=v f-\gamma_{2} f_{x}+2 \gamma_{3} v
\end{align*}
$$

Let us choose a fixed point

$$
\hat{u}_{0}=\left(u_{0}, v_{0}, \vec{\gamma}_{0}\right)=\left(0,0,\left(1,0, \frac{1}{2}\right)\right) .
$$

Observe that $\partial_{x}^{3} \Lambda^{-1}=-\partial_{x}$. By substituting (3.10) into (3.8), we obtain the $2-\mu \mathrm{HS}$ equation (1.4). According to proposition 5.3 in [13], $\{,\}_{1}$ and $\{,\}_{2}$ are compatible for every freezing point \hat{u}_{0}. Consequently we have

Theorem 3.2. The $2-\mu H S$ equation (1.4) is Hamiltonian with respect to two compatible Poisson structures (3.5) and (3.6) on $\widehat{\mathcal{G}}_{\text {reg }}^{*}$, where the first bracket is frozen at the point $\hat{u}_{0}=\left(u_{0}, v_{0}, \vec{\gamma}_{0}\right)=\left(0,0,\left(1,0, \frac{1}{2}\right)\right)$.

Let us point out that the constant bracket depends on the choice of the freezing point \hat{u}_{0}, while the Lie-Poisson bracket is only determined by the Lie algebra structure.

To this end we want to derive a Lax pair of $2-\mu \mathrm{HS}$ equation (1.4) with $\vec{\gamma}=0$, i.e.

$$
\begin{equation*}
-f_{x x t}=2 \mu(f) f_{x}-2 f_{x} f_{x x}-f f_{x x x}+v_{x} v, \quad v_{t}=(v f)_{x} \tag{3.11}
\end{equation*}
$$

Motivated by the Lax pair of the two-component Camassa-Holm equation in [17], we could assume that the Lax pair of (3.11) has the following form:

$$
\begin{equation*}
\Psi_{x}=U \Psi, \quad \Psi_{t}=V \Psi \tag{3.12}
\end{equation*}
$$

with

$$
U=\left(\begin{array}{cc}
0 & 1 \\
\lambda \Lambda(f)-\lambda^{2} v^{2} & 0
\end{array}\right) \quad \text { and } \quad V=\left(\begin{array}{cc}
p & r \\
q & -p
\end{array}\right)
$$

where λ is a spectral parameter. The compatibility condition

$$
U_{t}-V_{x}+U V-V U=0
$$

in componentwise form reads

$$
\begin{aligned}
& p=-\frac{r_{x}}{2}, \quad q=p_{x}+r\left(\lambda \Lambda(f)-\lambda^{2} v^{2}\right) \\
& 2 \lambda^{2} v v_{t}+\lambda f_{x x t}+q_{x}-2 p\left(\lambda \Lambda(f)-\lambda^{2} v^{2}\right)=0
\end{aligned}
$$

By choosing $r=f-\frac{1}{2 \lambda}$, we have

$$
p=-\frac{f_{x}}{2}, \quad q=-\frac{f_{x x}}{2}+\left(f-\frac{1}{2 \lambda}\right)\left(\lambda \Lambda(f)-\lambda^{2} v^{2}\right)
$$

and

$$
f_{x x t}+2 \mu(f) f_{x}-2 f_{x} f_{x x}-f f_{x x x}+v_{x} v+2 \lambda v\left(v_{t}-(v f)_{x}\right)=0
$$

which yields the system (3.11). Let us write $\Psi=\binom{\psi}{\psi_{x}}$. We have
Proposition 3.3. The system (3.11) has a Lax pair given by

$$
\psi_{x x}=\left(\lambda \Lambda(f)-\lambda^{2} v^{2}\right) \psi, \quad \psi_{t}=\left(f-\frac{1}{2 \lambda}\right) \psi_{x}-\frac{1}{2} f_{x} \psi
$$

where $\lambda \in \mathbb{C}-\{0\}$ is a spectral parameter.

4. Variational nature of the $2-\mu \mathrm{HS}$ equation

In [22], they have shown that the μ-HS equation (1.1) can be obtained from two distinct variational principles. In this section we will show that the $2-\mu \mathrm{HS}$ equation (1.4) also arises as the equation

$$
\delta \mathcal{S}=0
$$

for the action functional

$$
\mathcal{S}=\int\left(\int \mathcal{L} \mathrm{d} x\right) \mathrm{d} t
$$

with two different densities \mathcal{L}. That is to say,
Theorem 4.1. The $2-\mu H S$ equation (1.4) satisfies two different variational principles.
Proof. Motivated by the Lagrangian densities for the μ-HS equation (1.1) in [22], by some conjectural computations we find two generalized Lagrangian densities for the $2-\mu \mathrm{HS}$ equation (1.4). More precisely,

Case I. Let us consider the first Lagrangian density
$\mathcal{L}_{1}=\frac{1}{2} f_{x}^{2}+\frac{1}{2} \mu(f) f+\frac{1}{2} v^{2}-v z_{x}+w\left(f z_{x}-z_{t}+\tilde{\gamma}_{3} v\right)+\gamma_{2} w_{x} f-2 \gamma_{1} f$,
where $\tilde{\gamma}_{3}=\gamma_{3}-\frac{1}{2} \gamma_{1}$. Varying the corresponding action with respect to f, v, w and z, respectively, we get

$$
\begin{align*}
& f_{x x}=\mu(f)+w z_{x}+\gamma_{2} w_{x}-2 \gamma_{1} \\
& z_{x}=v+\tilde{\gamma}_{3} w \tag{4.2}\\
& z_{t}=f z_{x}+\tilde{\gamma}_{3} v-\gamma_{2} f_{x}, \\
& w_{t}=(w f)_{x}-v_{x} .
\end{align*}
$$

By using (4.2), we have

$$
\begin{align*}
v_{t} & =z_{x t}-\gamma_{3} w_{t}=\left[f\left(v+\tilde{\gamma}_{3} w\right)+\tilde{\gamma}_{3} v-\gamma_{2} f_{x}\right]_{x}-\tilde{\gamma}_{3}\left((w f)_{x}-v_{x}\right), \\
& =(v f)_{x}-\gamma_{2} f_{x x}+\left(2 \gamma_{3}-\gamma_{1}\right) v_{x}, \tag{4.3}
\end{align*}
$$

and

$$
\begin{align*}
-f_{x x t}+f_{x} f_{x x} & +f f_{x x x}=-\left(\mu(f)+w z_{x}+\gamma_{2} w_{x}\right)_{t}+f_{x}(\mu(f) \\
& \left.+w z_{x}+\gamma_{2} w_{x}-2 \gamma_{1}\right)+f\left(\mu(f)+w z_{x}+\gamma_{2} w_{x}\right)_{x} \\
= & -w_{t} z_{x}-w z_{x t}+\gamma w_{x t}+f_{x} w z_{x}+f w_{x} z_{x}+f w z_{x x}+\gamma_{2} f w_{x x}+2 \gamma_{1} f_{x} \\
= & v v_{x}+2 \mu(f) f_{x}+\gamma_{2} v_{x x}-2 \gamma_{1} f_{x} . \tag{4.4}
\end{align*}
$$

Note that if we replace f by $f+\gamma_{1}$ in the system (4.3) and (4.4), this gives the $2-\mu \mathrm{HS}$ equation (1.4).

Case II. The second variational representation can be obtained from the Lagrangian density
$\mathcal{L}_{2}=-f_{x} f_{t}+2 \mu(f) f^{2}+f f_{x}^{2}+f \phi_{x}^{2}-\gamma_{1} f f_{x x}-2 \gamma_{2} \phi_{x} f_{x}+2 \gamma_{3} \phi_{x}^{2}-\phi_{x} \phi_{t}$.
The variational principle $\delta \mathcal{S}=0$ gives the Euler-Lagrange equation

$$
\begin{align*}
& -f_{x t}=2 \mu(f) f+\mu\left(f^{2}\right)-\frac{1}{2} f_{x}^{2}-f f_{x x}+\frac{1}{2} \phi_{x}^{2}-\gamma_{1} f_{x}+\gamma_{2} \phi_{x x} \tag{4.6}\\
& \phi_{x t}=\left(f \phi_{x}\right)_{x}-\gamma_{2} f_{x x}+2 \gamma_{3} \phi_{x x}
\end{align*}
$$

If we set $\phi_{x}=v$ and take the x-derivative of the first term in (4.6), this yields the $2-\mu \mathrm{HS}$ equation (1.4).

5. Relation between Hamiltonian nature and variational nature

Recall that we have shown that the $2-\mu \mathrm{HS}$ equation (1.4) is bi-Hamiltonian and has two different variational principles. In the last section we will study the relation between Hamiltonian natures and bi-variational principles and prove that

Theorem 5.1. The two variational formulations for the $2-\mu H S$ equation (1.4) formally correspond to the two Hamiltonian formulations of this equation with the Hamiltonian functionals H_{1} and H_{2}.

Proof. The action is related to the Lagrangian by $\mathcal{S}=\int\left(\int \mathcal{L} \mathrm{d} x\right) \mathrm{d} t$. The first variational principle has the Lagrangian density

$$
\mathcal{L}_{1}=\frac{1}{2} f_{x}^{2}+\frac{1}{2} \mu(f) f+\frac{1}{2} v^{2}-v z_{x}+w\left(f z_{x}-z_{t}+\tilde{\gamma}_{3} v\right)+\gamma_{2} w_{x} f-2 \gamma_{1} f .
$$

The momenta conjugate to the velocities f_{t}, v_{t}, z_{t} and w_{t}, respectively, are

$$
\frac{\partial \mathcal{L}_{1}}{\partial f_{t}}=0, \quad \frac{\partial \mathcal{L}_{1}}{\partial w_{t}}=0, \quad \frac{\partial \mathcal{L}_{1}}{\partial z_{t}}=-w, \quad \frac{\partial \mathcal{L}_{1}}{\partial w_{t}}=0 .
$$

Consequently, the Hamiltonian density is

$$
\begin{aligned}
\mathcal{H} & =-z_{t} w-\mathcal{L}_{1} \\
& =-\frac{1}{2} f_{x}^{2}-\frac{1}{2} \mu(f) f-\frac{1}{2} v^{2}+v z_{x}-w\left(f z_{x}+\tilde{\gamma}_{3} v\right)-\gamma_{2} w_{x} f+2 \gamma_{1} \\
& =\frac{1}{2} \mu(f) f-\frac{1}{2} f_{x}^{2}+\frac{1}{2} v^{2}-f f_{x x}, \quad \text { by using (4.2). }
\end{aligned}
$$

Therefore, the Hamiltonian is

$$
\begin{aligned}
H & =\int \mathcal{H} \mathrm{d} x=\int\left(\frac{1}{2} \mu(f) f-\frac{1}{2} f_{x}^{2}+\frac{1}{2} v^{2}-f f_{x x}\right) \mathrm{d} x \\
& =\frac{1}{2} \int\left(\mu(f) f-f f_{x x}+v^{2}\right) \mathrm{d} x
\end{aligned}
$$

which is exactly H_{1} defined in (3.1).
In the second principle the Lagrangian density is

$$
\mathcal{L}_{2}=-f_{x} f_{t}+2 \mu(f) f^{2}+f f_{x}^{2}+f \phi_{x}^{2}-\gamma_{1} f f_{x x}-2 \gamma_{2} \phi_{x} f_{x}+2 \gamma_{3} \phi_{x}^{2}-\phi_{x} \phi_{t}
$$

The momenta conjugate to the velocities f_{t} and ϕ_{t}, respectively, are

$$
\frac{\partial \mathcal{L}_{2}}{\partial f_{t}}=-f_{x}, \quad \frac{\partial \mathcal{L}_{2}}{\partial \phi_{t}}=-\phi_{x} .
$$

Consequently, the Hamiltonian density is

$$
\begin{aligned}
\mathcal{H} & =-f_{x} f_{t}-\phi_{x} \phi_{t}-\mathcal{L}_{2} \\
& =-2 \mu(f) f^{2}-f f_{x}^{2}-f \phi_{x}^{2}+\gamma_{1} f f_{x x}+2 \gamma_{2} \phi_{x} f_{x}-2 \gamma_{3} \phi_{x}^{2}
\end{aligned}
$$

Now let us set $\phi_{x}=v$ and so
$H=\int\left(-2 \mu(f) f^{2}-f f_{x}^{2}-f v^{2}+-\gamma_{1} f f_{x x}+2 \gamma_{2} v f_{x}-2 \gamma_{3} v^{2}\right) \mathrm{d} x=-\frac{H_{2}}{2}$,
where H_{2} is defined in (3.2).

Acknowledgments

The author would like to thank Professor Khesin Boris and Professor Partha Guha for [6, 21], respectively, and the anonymous referee for several useful suggestions. This work is partially supported by the Fundamental Research Funds for the Central Universities and NSFC (10971209,10871184).

References

[1] Arnold V I 1966 Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluids parfaits Ann. Inst. Fourier (Grenoble) 16 319-61
[2] Gelfand I M and Fuchs D B 1968 The cohomology of the Lie algebra of vector field in a circle Funct. Anal. Appl. 2 342-3
[3] Ebin D G and Marsden J 1970 Groups of diffeomorphisms and the notion of an incompressible fluid Ann. Math. 92 102-63
[4] Fokas A S and Fuchssteiner B 1981 Symplectic structures, their Bäcklund transformation and hereditary symmetries Physica D 447-66
[5] Fuchs D B 1986 Cohomology of Infinite Dimensional Lie Algebras (New York: Plenum)
[6] Ovsienko V Yu and Khesin B 1987 KdV super equation as an Euler equation Funct. Anal. Appl. 21 329-31
[7] Arbarello E, De Concini C, Kac V G and Procesi C 1988 Moduli spaces of curves and representation theory Commun. Math. Phys. 117 1-36
[8] Hunter J K and Saxton R 1991 Dynamics of director fields SIAM J. Appl. Math. 51 1498-521
[9] Camassa R and Holm D D 1993 An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 1661-4
[10] Misiolek G 1998 A shallow water equation as a geodesic flow on the Bott-Virasoro group J. Geom. Phys. 24 203-8
[11] Guha P 2000 Integrable geodesic flows on the (super)extension of the Bott-Virasoro group Lett. Math. Phys. 4 311-28
[12] Devchand C and Schiff J 2001 The supersymmetric Camassa-Holm equation and geodesic flow on the superconformal group J. Math. Phys. 1 260-73
[13] Khesin B and Misiolek G 2003 Euler equations on homogeneous spaces and Virasoro orbits Adv. Math. 176 116-44
[14] Constantin A and Kolev B 2003 Geodesic flow on the diffeomorphism group of the circle Comment. Math. Helv. 78 787-804
[15] Constantin A and Kolev B 2006 Integrability of invariant metrics on the diffeomorphism group of the circle J. Nonlinear Sci. 16 109-22
[16] Guha P and Olver P J 2006 Geodesic flow and two (super) component analog of the Camassa-Holm equation Symmetry Integrability Geom: Methods Appl. 2054
[17] Chen M, Liu S-Q and Zhang Y 2006 A two-component generalization of the Camassa-Holm equation and its solutions Lett. Math. Phys. $751-15$
[18] Falqui G 2006 On a Camassa-Holm type equation with two dependent variables J. Phys. A: Math. Gen. 39 327-42
[19] Constantin A, Kappeler T, Kolev B and Topalov P 2007 On geodesic exponential maps of the Virasoro group Ann. Glob. Anal. Geom. 31 155-80
[20] Lenells J 2008 A bi-hamiltonian supersymmetric geodesic equation Lett. Math. Phys. 85 55-63
[21] Guha P 2008 Geodesic flow on extended Bott-Virasoro group and generalized two-component peakon-type dual systems Rev. Math. Phys. 20 1191-208
[22] Khesin B, Lenells J and Misiolek G 2008 Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms Math. Ann. 342 617-56
[23] Lenells J and Lechtenfeld O 2009 On the $N=2$ supersymmetric Camassa-Holm and Hunter-Saxton equations J. Math. Phys. 5017
[24] Sachse C, Guha P and Devchand C 2009 Superconformal algebras and supersymmetric integrable flows arXiv:0912.4458v1

