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A method for discriminating varieties of tea plant based on their visible/near infrared

reflectance (Vis/NIR) spectral characteristics was developed. Field experiments were

conducted in three different tea gardens, and 293 samples of the three tea varieties were

selected for Vis/NIR spectroscopy measurement. The spectral data were pretreated to

eliminate system noise and external disturbances; several pretreatments were evaluated

for their discrimination accuracies. Diagnostic information was extracted mathematically

to build the discrimination model. The methods were the integrated wavelet transform

(WT), principal component analysis and artificial neural networks (ANN). The diagnostic

information from WT was re-expressed and visualised in principal components (PCs)

space, to determine the structure correlating with the different varieties. The first eight

PCs, which accounted for 99.29% of the original variation, were used as the input to the

ANN model. The ANN model yielded good classification accuracy with the proper spectral

pretreatment and optimum WT parameter. The discrimination accuracy was 77.3% for

these three varieties in the prediction set. The potential of Vis/NIR spectral characteristics

was proved primarily for discrimination of tea plant varieties.

& 2007 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Tea (Camellia sinensis (L) O. Kuntze) originated in China more

than 2000 years ago. At present, there are over 600 varieties of

tea planted in China, 196 of which are the main ‘splendid’

varieties. And variety is a very important factor for the tea

industry for the following three reasons. Firstly, splendid

variety tea plants can produce high-quality tender shoot,

from which dry tea is processed. Secondly, the cultivation

techniques are different for different varieties. For example,

tea plant varieties such as C. sinensis cv. Longjing 43, which is

usually processed as green tea, should be treated with more

nitrogenous fertiliser, while the tea plants processed as

Oolong tea should be given less. Thirdly, a splendid variety

of tea plant can produce more tender shoot and may be more
Published by Elsevier Ltd.
disease-resistant. The role for variety discrimination has

three main aspects. It can be used for tea breeding for a

‘splendid’ variety, as variety is an essential factor for

development of tea industry and tea is xenogamic. It can be

used by the farmer to select a splendid variety for building the

tea garden, where the selected variety must be suitable for the

climate and environment of the region, and the varieties

maturing at different stages should be arranged in groups

properly. It can be coupled with other nutrition determination

(Noh et al., 2006; Karimi et al., 2005) technologies to enhance

the efficiency of field management equipment.

Near-infrared spectroscopy (NIRS) has quickly evolved

from a laboratory technique into a main tool for a variety

of qualitative and quantitative analysis tasks. The analy-

tical capabilities of NIRS rely on the broad and repetitive
All rights reserved.
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Nomenclature

a constant (in ANN formula)

b number of nodes in the hidden layer of ANN (by

formula)

CA1 wavelet-reconstructed signal based on the low-

frequency coefficient (cA1)

CD1 wavelet-reconstructed signal based on the high-

frequency coefficient (cD1)

cA1 low-frequency coefficient from wavelet transform

at 1 level decomposition

cD1 high-frequency coefficient from wavelet trans-

form at 1 level decomposition

cAj low-frequency coefficient from wavelet transform

at j-level decomposition

cDj high-frequency coefficient from wavelet trans-

form at j-level decomposition

cAj+1 low-frequency coefficient from wavelet transform

at j+1-level decomposition

cDj+1 high-frequency coefficient from wavelet trans-

form at j+1-level decomposition

m number of nodes in the input layer of ANN

n number of nodes in the output layer on ANN

X original spectral signal
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absorption bands of carbon–hydrogen, oxygen–hydrogen and

nitrogen–hydrogen bonds. The overlapping of absorption

bands makes direct interpretation of absorption spectra

difficult, while chemometrics techniques can be used to

produce accurate calibration equations for many constituents

and quality attributes with little or no sample preparation.

The modern NIR analytical technique combined with chemo-

metrics has the advantage of speed, high-level efficiency, low

cost and being non-destructive, and has been applied in the

food industry, petroleum chemical engineering and the

medicine industry. NIRS has been used to discriminate melon

genotypes (Seregely et al., 2004), coffee varieties (Pizarro,

2004), wheat (Armanino et al., 2002), wine (Boscaini et al., 2004)

and varieties of dry tea (He et al., 2007). According to the

report by Zwiggelaar (1998), the difference between the

reflectance spectra in certain wavelength regions could be

used to distinguish different plant species. Several studies

have focused on the optical properties of plant leaves of

different varieties. Cannabis sativa L. was discriminated based

on the reflectance spectra over the 400–1000 nm wavelength

range (Daughtry & Walthall, 1998). Lianas and trees were

separated based on their reflectance spectra (306–1138 nm) at

leaf scale, with low classification errors (4–16% in most case)

(Castro-Esau et al., 2002). In the above-mentioned studies, the

leaves were destructively picked from the plants and trans-

ported to the laboratory for spectral measurement. With

regard to field studies, Karimi et al. (2005) demonstrated that

the hyperspectral characteristics of corn plants (in field) were

closely correlated with the chlorophyll levels of plants.

However, few studies have focused on the spectral character-

istics of tea on the spot (in field). He et al. (2007) have studied

the potential of visible/near infrared reflectance (Vis/NIR)

spectroscopy for discriminating varieties of dry tea using dry

samples of mate leaves available in the market. The dry tea

was produced from the tender shoot of tea through a set of

physical and chemical processes including fermentation and

decrease in enzyme activity. Hence dry tea is very different

from fresh leaves in shape and internal components such as

saccharide, polyphenols and amino acids. He et al. made their

spectroscopic measurements in a dark room. The present

study was conducted in tea gardens (outdoors) with non-

detached leaves and included the identification of appro-

priate data pretreatment to eliminate external disturbances.
The main objective of this research is to investigate the

relationship between the spectral reflectance characteristics

of a tea plant and its variety. The specific objectives are to

evaluate the potential of Vis/NIRS for discriminating the

varieties of tea plant with a portable spectroradiometer, to

build a robust model to differentiate between three varieties

of tea plant based on the spectra of leaf and to select the

optimum pretreatment to eliminate noise from the spectra

obtained in real-time measurement.
2. Materials and methods

2.1. Materials

In this study, the three varieties of tea selected were C. sinensis

cv. Luyafoshou (LY), C. sinensis cv. Meizhan (MZ) and C. sinensis

cv. Zhenghe-dabaicha (ZH), all of which come originally from

the Fujian Province of China. To increase the diversity, three

groups of samples were obtained from three different tea

gardens. All the tea plants in the same garden were fertilised

uniformly. On 24 May in 2006, 92 samples of attached leaves

(group A) of these three varieties were measured in the Tea

Plantation (Germplasm Resources) of Zhejiang University

(TPGRZU) (120.191E, 30.261N), China. The three varieties were

planted in adjacent rows. On 16 June in 2007, 104 attached

leaves (group B) of these three varieties were measured in the

Experimental Tea Farm of the Zhejiang University Tea

Research Institute (ETFZUTRI) (120.31E, 30.431N), China. In

this garden, the three varieties were not planted in adjacent

rows but in the same block. On 29 June in 2007, 97 attached

leaves (group C) of these three varieties were measured in the

China National Germplasm Hangzhou Tea Repository

(CNGHTR) (120.091E, 30.141N). The three varieties were

distributed in two blocks at CNGHTR. The distance between

the two blocks is about 2 km. And Zhenghe-dabaicha (ZH) and

Luyafoshou (LY) varieties were planted in the same block. For

all measurements the fully expanded leaves near the top of

the plants were randomly selected as samples, regardless of

their colour, size or physiological age. The detailed informa-

tion about soil, fertiliser usage and tree age is shown in

Table 1. All samples were grouped into two parts: 196 samples

were randomly selected for calibration with about 2/3
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Table 1 – Detailed information of the materials

Location Fertilisers (every year) Soil PA (years)

Group A TPGRZU(120.19 E, 30.26 N) 0 kg ha�1 (2004, 2005, 2006 and 2007) Red soil 30

Group B ETFZUTRI(120.3 E, 30.43 N) Compound fertiliser 525 kg ha�1, Urea 225 kg ha�1 Red soil 48

Group C CNGHTR(120.09 E, 30.14 N) Rapeseed cake 3750 kg ha�1, Urea 450 kg ha�1 Red soil 15

Note: PA—physiological age of the tea plant.

Table 2 – Detailed information of reflectance spectra collection

Time Va. Azimuth Elevation No.

Group A 23 May 2006 9:34 a.m.–12:20 p.m. LY 89.8–138.11 43.75–77.35 30

12:28 p.m.–14:07 p.m. MZ 145.44–242.91 78.42–90–71.28 31

14:41 p.m.–16:30 p.m. ZH 253.87–271.74 64.45–41.16 31

Group B 16 June 2007 9:40 a.m.–12:15 p.m. MZ 86.62–123.06 45.35–77.84 31

12:35 p.m.–14:10 p.m. ZH 141.17–249.96 81.07–90–72.75 38

14:40 p.m.–16:00 p.m. LY 258.5–271.2 66.52–49.38 35

Group C 29 June 2007 9:50 a.m.–12:35 p.m. ZH 87.14–136.17 46.69–80.71 30

12:45 p.m.–14:30 p.m. LY 148.74–255.65 82.03–90–69.42 30

14:51 p.m.–16:10 p.m. MZ 260.51–272.15 64.98–47.96 37

Note: Va.—variety; No.—number.
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from each variety in each group and the remaining 97

samples were used for prediction (McGlone & Kawano, 1998;

Saranwong et al., 2004).
2.2. Vis/NIR spectra collection

Reflectance spectra were acquired from 9:30 a.m. to 4:30 p.m.

(GMT+8) under clear sky conditions with a portable spectro-

radiometer (FieldSpecs HandHeld, Analytical Spectral

Devices, Inc.), which covers a spectral range of 350–1075 nm

at a sampling interval of 1.5 nm. The FieldSpec Vis/NIR

incorporates a 512-channel silicon photodiode array. The

spectral resolution (full-width-half-maximum (FWHM) of a

single emission line) is approximately 3 nm at around 700 nm.

The spectroradiometer was fixed on a tripod about 100 mm

above the surface of the sample (attached leaf) with a 101

field-of-view (FOV), and the angle between the spectro-

radiometer and horizontal was 451. The sun was used as the

light source. The elevation and azimuth angle of the sun

changed during the measurements. Azimuth is measured

clockwise from true north to the point on the horizon directly

below the object with a range from 01 to 3601. Elevation is

measured vertically from that point on the horizon up to the

object with a range from 01 to 901. The solar radiation

intensity is closely correlated with the elevation angle of the

sun, and it reaches the maximum when the elevation angle is

901. Two methods were adopted to reduce the effect of

changes in solar radiation intensity, azimuth angle and

elevation angle, etc. One was to calibrate the spectroradi-

ometer using a white reference panel (approximately 100%

reflectance across the entire spectrum) every half hour.

Reflectance was computed using measurements from both
the target material and the white reference panel. The other

was to arrange the time of measurements so as to obtain

reflectance spectral data of each variety in different solar

radiation. The detailed information on data collection time

can be seen in Table 2. During the measurement, the shadow

on the sample caused by the spectroradiometer was avoided.

Spectrum averaging was used to reduce the noise in the

desired spectral signal. For each sample, five reflectance

spectra were taken at the same position; ten scans were taken

for each reflectance spectrum giving a total of 50 scans for

each sample. All sample reflectance spectra were trans-

formed to log absorbance (log R�1) values, which could show

the internal characteristics of the samples more clearly. The

absorbance spectra of three varieties of tea plant are shown in

Fig. 1. Due to high levels of noise at the low and high ends of

the spectral data, the first and last 75 wavelength bands were

discarded, and so analyses were based on wavelengths from

400 to 1000 nm.
2.3. Pretreatment of the spectral data

Raw data require pretreatment to reduce the ‘‘noise’’ intro-

duced by external effects. For field experiments, these include

solar elevation, solar azimuth, solar radiation intensity, wind

and background disturbance. There were many baseline

shifts in the spectral curve, which could be seen in Fig. 1. To

obtain better discrimination, the spectral data must be pre-

processed (Cen & He, 2007). Ten types of pretreatments were

tried including Savitzky–Golay smoothing (Savitzky & Golay,

1964), normalisation (Zeaiter et al., 2005) and derivative

(Candolfi et al., 1999). To reduce the random noises induced

by the system internal factors, moving averages were used to
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Fig. 1 – Leaf spectral curves of three varieties of tea plant.
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smooth the absorbance spectra. First and second derivatives

were adapted to the raw spectra to sharpen their profiles and

eliminate the disturbances caused by potential baseline

shifting and background noises. Because of the uneven

surfaces of the leaf samples, multiplicative effects including

scattering, particle size and multi-colinearity changes may

cause large variation in diffuse reflectance spectroscopy

(Martens & Naes, 1987). Thus, it was important to apply

wavelength selection or mathematical pretreatments, such as

the standard normal variate transformation (SNV), multi-

plicative scattering correction (MSC) (Lu, 2001) and baseline

correction (Zeaiter et al., 2005; Cen & He, 2007), to minimise or

avoid the effect. The pretreatments and calculations were

carried out using Unscrambler V9.5 (CAMO PROCESS AS,

OSLO, Norway), a statistical software package for multivariate

calibration.

2.4. Mathematical method

In this study, discrimination was focused on two steps. One is

extraction of characteristic information from mass spectra

by wavelet transform (WT). The WT enables the signal

(spectrum) to be analysed as a sum of functions (wavelets)

with different spatial and frequency properties (Boscaini et al.,

2004). In the application, proper wavelet parameters were

chosen with high accuracy of discrimination models firstly.

Then, ten pretreatments were evaluated for their ability to

improve signal-to-noise. Once the best WT parameters and

pretreatment were identified, they were used as the standard

to process data.

The other is establishing recognition models based on the

characteristic information. The models include qualitative

recognition by principal component analysis and quantitative

recognition by artificial neural networks. Principal compo-

nent analysis is a very effective data reconstruction technique

for spectroscopic data (Muhammed & Larsolle, 2003). It

summarises data by forming new variables, which are linear

composites of the original variables. Neural networks are
known as useful tools for pattern recognition, identification

and classification. A neural network model can determine the

input–output relationships for a complicated system, and

such a model can provide data approximation and signal-

filtering functions beyond optimal linear techniques (Dubey

et al., 2006). In this research, the training of the ANN was done

with a basic error back propagation (BP) algorithm, in which

the network processed example patterns and the output

expressed the likelihood that an object corresponds to a

training pattern.

PCA was performed using the Unscrambler 9.5

software. The Matlab wavelet toolbox was used to perform

the standard discrete wavelet transform. The Matlab

neural networks toolbox was used to build the BP network

model.
3. Results and discussion

3.1. Absorbance spectra of three varieties of tea plant at
leaf scale

Fig. 1 shows typical spectra of leaves of tea plants. The spectra

of samples from all three varieties have similar gross patterns

of absorbance. From 400 to 500 nm, the spectral curve is flat

and the absorbance values are close to 1. After 500 nm, the

absorbance values begin to decrease, and there is a deep

valley near 550 nm. From 550 to 675 nm, the absorbance

values increase with a sharp absorption peak at 675 nm and

then decline rapidly. From 750 to 1000 nm the spectral curve is

flat and the absorbance values are the lowest. This shows that

the leaves absorb blue (400–500 nm) and red (680 nm) light

strongly, and reflect green light (550 nm) in the visible range

(Min & Lee, 2005). The lowest absorbance in the 750–1000 nm

range indicated that leaves strongly reflected near-infrared

light. In Fig. 1, the differences between the three varieties are

hardly detectable.



ARTICLE IN PRESS

X

LPF

HPF

2

2

LPF

HPF

2

2

Extracting

Extracting

Extracting Low−frequency
coefficient

High−frequency
coefficientExtracting

cA1
cAj

level j

cAj+1

cDj+1

level j+1

cD1

Fig. 2 – Dyadic filter tree of the j+1-level decomposing structure.

Table 3 – Accuracy of these models using different
wavelet parameters on raw spectral data (the training
function was ‘trainlm’, the maximal training time was
2000 and the permission regression error was 0.001)

Model Wavelet transform Artificial
neural

network
Function Level Accuracy (%)

1 db1 1 58.8

2 db2 1 47.4

3 db3 1 46.4

4 db4 1 53.6

5 db5 1 57.7

6 db6 1 56.7

7 db7 1 57.7

8 db8 1 62.9

9 db1 2 53.6

10 db2 2 52.6

11 db3 2 58.8

12 db4 2 42.3

13 db5 2 57.7

14 db6 2 52.6

15 db7 2 51.5

16 db8 2 62.9

Note: The dbN are explained in detail by Daubechies (1994).
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3.2. Wavelet transform

3.2.1. Extracted low-frequency coefficient by wavelet
decomposition
The WT is used to select diagnostic information from

spectra. Daubechies (1994) proposed a class of wavelet

families, which have compact support and maximum num-

ber of vanishing moments for any given smoothness. For the

Daubechies-n wavelet, n specifies the order of the mother

wavelet, and is related to the number of coefficients

necessary to represent the associated low-pass and

high-pass filters in the dyadic filter tree implementation

(Daubechies, 1994).

In this research, WT was implemented by using a dyadic

filter tree, as shown in Fig. 2. The input to the filter bank,

X, is the raw spectral signal, and the signal is passed

through a series of low-pass filters (LPF) and high-pass

filters (HPF). After each filter, the signal is decomposed

into a low-frequency coefficient (cAj) and a high-frequency

coefficient (cDj).

3.2.2. Selecting the optimum wavelet parameters
A good performance of WT relies on the proper wavelet

parameters. Hence, the optimum wavelet function and

decomposition level need to be selected. The performances

of different wavelet functions and decomposition levels were

evaluated in relation to the accuracy of the discrimination

models. Sixteen models were built with different wavelet

parameters (Table 3). All these models were based on the raw

spectral data and the same parameters of an artificial neural

network. The quality of these models was affected by

different wavelet parameters. The first eight models were

based on data from eight types of transform functions

(db1–db8) (Daubechies, 1994), respectively, at the first-level

decomposition. The last eight models were based on the data

from eight types of transform functions (db1–db8) at the

second-level decomposition. After comparing the first eight

models, the highest accuracy was for model 8 (62.9%). In the

last eight models, model 16 was selected as the optimal

model with an identical accuracy of 62.9%. Model 8 and model

16 were built with the same wavelet function db8. Hence, the

wavelet function db8 was selected as the proper wavelet
function for WT. The accuracies of models based on wavelet

first-level decomposition were almost always higher than

those based on wavelet second-level decomposition, and the

structure of first-level decomposition is simpler. Therefore,

the db8 wavelet function and first-level decomposition were

selected as the optimal wavelet parameters.

Fig. 3 shows the reconstructed signals based on wavelet

coefficients of function db8 at first-level decomposition.

Signal X is the sum of signal CA1 and signal CD1. There are

many high-frequency surges and excursions in the signal CD1

(Chen et al., 2004), which makes signal X slightly noisy, and

signal CD1 is far smaller than signal CA1, and therefore it

contributes little to signal X. It can be found that signal

CA1 is very similar to the raw signal X, which means that the

low-frequency wavelet coefficient contains the diagnostic
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Table 4 – Discrimination models with different spectral
pretreatments

Model Pretreatment Artificial neural network

Architecture Accuracy
(%)

1 No 8-19-2 62.9

2 Smooth (3) 8-19-2 70.2

3 Smooth (9) 8-19-2 64.9

4 Normalisation 8-19-2 67.1

5 MSC 8-19-2 57.7

6 First derivative 8-19-2 49.5

7 Second derivative 8-19-2 48.5

8 Baseline

correction

8-19-2 77.3

9 SNV 8-19-2 59

10 Reduce 8-19-2 70.2
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information of the original spectra. The low-frequency

wavelet coefficient was therefore used to replace the spectral

signal.

3.2.3. Selecting the optimum spectral data pretreatment
The performances of many pretreatments were evaluated

with the accuracy of discrimination models. Ten models were

built corresponding to ten types of pretreatments. Table 4

shows the status of the ten classification models. It can be

found that model 8 obtained the highest prediction correct-

ness (77.3%) with baseline correction. The prediction correct-

ness of model 1 was 62.9% with the raw spectral data

(no pretreatment). It could be concluded that there were

many disturbances in the raw spectral data, and the accuracy

of discrimination was low. However, the signal-noise ratio

could be greatly enhanced after proper data pretreatment

(baseline correction), and the accuracy of discrimination

could be increased greatly. Hence, the baseline correction

was selected as the optimum spectral pretreatment for these

spectral data. Models 5, 6, 7 and 9 had lower accuracy of

discrimination compared with that of model 1, suggesting

that improper pretreatment would decrease the performance

of the model.

3.3. Clustering analysis based on PCA

The principal components analysis aimed to re-express

wavelet coefficients and thus to visualise the data more

straightforwardly (Lattin et al., 2003). PCA was performed on

the wavelet coefficients of each sample, and it reduced the

wavelet coefficients to 20 principal components. If the scores

of one particular principal component were organised accord-

ing to the number of the samples, a new plot called a ‘PCA

scores image’ could be created as shown in Fig. 4. The

advantage of using the principal components scores image

was to display the clustering information of varieties from

multiple variables (Daughtry & Walthall, 1998).
Fig. 4 shows the PCA scatter plot of PC1 (80.33% variability)

vs. PC2 (15.61% variability) scores. The samples of LY and MZ

are each clustered closely, and can be distinguished by the

scores of PC2. On the other hand, the samples of ZH scatter

over the lower half of the plot and overlap the MZ samples.

Variety separation was clearer than in Fig. 1, which indicates

that the PCs from WT and PCA can provide diagnostic

information, and these PCs strongly correlate with the

varieties of tea plant. However, the quantitative discrimina-

tion cannot be achieved in the PCs space. Therefore, an

artificial neural network algorithm was applied to classify

these varieties with the quantitative classification result.
3.4. Quantitative discrimination of different varieties
by ANN

After PCA, the first 8 principal components which explain

99.2% of the variation were set as the input of ANN. As there



ARTICLE IN PRESS

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

PC
2 

(1
5.

61
%

)

PC1 (80.33%)

Fig. 4 – Scatter plot of PC1 vs. PC2 scores of all samples ( symbol–LY; symbol—ZH; symbol—MZ).

0.00

Pr
ed

ic
ti

on
 e

rr
or

Pr
ed

ic
ti

on
 e

rr
or

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 20 40
Number of sample in prediction set

60 80 100

0 20 40 60 80 100

First bit of output code

Second bit of output code

Fig. 5 – Error of discrimination model for the 97 samples in the prediction set.

B I O S Y S T E M S E N G I N E E R I N G 9 9 ( 2 0 0 8 ) 3 1 3 – 3 2 1 319
were three different varieties, the output vectors of these

samples were assumed as two bits of binary code. The output

binary vectors (0 0), (0 1) and (1 0) were denoted as the LY, MZ

and ZH varieties, respectively. The transfer functions of

hidden and output layer were tan-sigmoid (Vogl et al., 1988)

and log-sigmoid (Hagan et al., 1996) transfer functions,

respectively. The ANN was trained using the Levenberg–Mar-

quardt algorithm (Fletcher, 1987). The permitted regression

error was set as 0.001 and the maximal time of training was

set as 2000. The number of nodes in the hidden layer was

determined by a combination of the ‘trial and error’ method

(Despagne & Massart, 1998; Emilio et al., 2007) and an

empirical equation: b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

mþ n
p

þ a (Guo & Sun, 2005), where

m is the number of nodes in the input layer, n is the number of

nodes in the output layer and a is a constant between 1

and 20. According to this equation, the number of nodes
in the hidden layer was varied from 4 to 23. When the

number of nodes in the hidden layer is 19, a minimal

mean square error (MSE) was obtained. Finally, the optimum

network architecture was obtained with topological architec-

ture 8-19-2.

Fig. 5 shows the discrimination error of model for the

samples in the prediction set. In Fig. 5, the abscissa represents

the 97 samples in order. The ordinates represent the

errors between the prediction output vectors and standard

vectors of these samples. It can be found that the

errors of many samples are close to zero. The result of

discrimination for calibration and prediction sets is shown

in Table 5. The discrimination accuracy for calibration

model is 100%. When the model is used for prediction, an

accuracy of 77.3% is obtained. However, the prediction

accuracy is not enough for practical applications such as
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Table 5 – Calibration and prediction (validation) accuracy rate

Varieties Calibration Prediction

No. I.N. A.R. (%) No. I.N. A.R. (%)

C. sinensis cv. Luyafoshou 63 0 100 32 4 87.5

C. sinensis cv. Meizhan 65 0 100 34 12 64.7

C. sinensis cv. Zhenghe-dabaicha 68 0 100 31 6 80.6

Total number 196 0 100 97 22 77.3

Note: No.—total number of samples, I.N.—number of incorrect predictions, A.R.—accuracy rate.
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variety breeding and farmer selection of variety. In future

research, the prediction accuracy might be greatly increased

through hardware and software improvements. For hardware,

a fibre optic probe with source and detector fibres

can be equipped to eliminate the variation of the light

source. A more effective method of pattern recognition

including support vector machines can be adopted to build

a discrimination model, and more samples covering large

variation could be taken in developing the discrimination

model for enhancing the precision and stability of the

model.

There are probably two reasons for the significant success

in tea plant discrimination based on the Vis/NIR spectroscopy.

Firstly, the spectral reflectance characteristics of plants are

determined by the chemical composition and physical

properties of the plants (Zwiggelaar, 1998). There are obvious

differences between these three varieties in the content

of the main chemical composition including amino acid,

polyphenol, catechin and caffeine, etc (Bai, 2001; Han &

Vogelmann, 1999). Secondly, the spectral reflectance from

the plant is also influenced by the physical structure of the

surface and the cells in the leaves (Han et al., 1999). The

reflectance from plants is caused by scattering from disconti-

nuities in the refractive index within the leaves. Typical

refractive indices important for leaves are n ¼ 1.4 for cell

walls, n ¼ 1.3 for water, and n ¼ 1 for air (Yan, 1990). From

these values it is clear that the spectral reflectance depends

on the cell structure in the leaves as these determine

the number of air/water/cell–wall interfaces and therefore

determine the number of scattering points in the leaves

(Zwiggelaar, 1998). The structure of a fresh tea leaf varies

between varieties of tea. The C. sinensis cv. Luyafoshou and

the C. sinensis cv. Zhenghe-dabaicha belong to macrophyll tea

plants, whose cuticle is thin at about 2–4mm. The C. sinensis

cv. Meizhan belongs to notophyll tea plants, whose cuticle is

thicker at about 4–8mm (Yan, 1990). The density of stomata on

the macrophyll tea plant is smaller than that of the notophyll

and microphyll tea plant, while the stomata of the macro-

phyll tea plant are larger than those of the notophyll and

microphyll tea plant. Additional differences may arise from

the degree of compactness of the palisade tissue and spongy

tissue in the mesophyll for different varieties (Castro-Esau

et al., 2002; Yan, 1990). These differences in the chemical

composition and structure of the leaf lay the foundation for

discriminating the varieties of tea plant based on Vis/NIR

spectroscopy.
4. Conclusion

The above results indicate that Vis/NIR spectroscopy has

significant potential for discrimination of varieties of tea

plants non-destructively in the field. All experiments were

conducted in tea gardens, and the reflectance spectra were

measured in real-time. There were many obvious sources of

noise and disturbance caused by the background, solar angle,

solar radiation intensity and wind. Baseline correction was

the pretreatment that enhanced the accuracy of the classifi-

cation model the most. Different WT models were compared

and the best one was the db8 wavelet function at first-level

decomposition. The discrimination accuracy for prediction

set by the optimum model was 77.3%, while the discrimina-

tion accuracy by the model based on raw spectral data was

only 62.9%. The integration of WT, PCA and ANN is an

effective method for discriminating three varieties of tea

plants based on the reflectance spectra, obtained using non-

destructive real-time measurements made with a portable

spectroradiometer.
Acknowledgements

This study was supported by the National Science and

Technology Support Program (2006BAD10A09, 2006BAD10A0403),

the Natural Science Foundation of China (Project No: 30671213,

30600371), the Specialized Research Fund for the Doctoral

Program of Higher Education (Project No: 20040335034) and the

Science and Technology Department of Zhejiang Province

(Project No. 2005C12029).
R E F E R E N C E S

Armanino C; Acutis R D; Festa M R (2002). Wheat lipids to
discriminate species, varieties, geographical origins and crop
years. Analytica Chemica Acta, 454(2), 315–326

Bai K Y (2001). China Tea Varieties. Shanghai Scientific &
Technical Publishers, China

Boscaini E; Mikoviny T; Wisthaler A; Hartungen E V; Tilmann D M
(2004). Characterization of wine with PTW-MS. International
Journal of Mass Spectromety, 239(2), 215–219

Candolfi A; Maesschalck R D; Jouan-Rimbaud D; Hailey P A;
Massart D L (1999). The influence of data pre-processing in the



ARTICLE IN PRESS

B I O S Y S T E M S E N G I N E E R I N G 9 9 ( 2 0 0 8 ) 3 1 3 – 3 2 1 321
pattern recognition of excipients near-infrared spectra. Jour-
nal of Pharmaceutical and Biomedical Analysis, 21(1), 115–132

Castro-Esau K L; Sanchez-Azofeifa G A; Caelli T (2002). Discrimi-
nation of lianas and trees with leaf-level hyperspectral data.
Remote Sensing of Environment, 90(30), 353–372

Cen H; He Y (2007). Theory and application of near infrared
reflectance spectroscopy in determination of food quality.
Trends in Food Science & Technology, 18(2), 72–83

Chen B; Huang C X; Lu D L (2004). Use of multi-resolution
decomposition and principal components analysis in infor-
mation abstraction from NIR spectrum. Journal of Jiangsu
University (Natural Science Edition), 25(2), 105–108

Daughtry C S T; Walthall C L (1998). Spectral discrimination of
cannabis sativa L. leaves and canopies. Remote Sensing of
Environment, 64(2), 192–201

Daubechies I (1994). Ten Lectures on Wavelets, Vol. 61. CBMS,
SIAM pp194–202

Despagne F; Massart D -L (1998). Variable selection for neural
networks in multivariate calibration. Chemometrics and
Intelligent Laboratory Systems, 40(2), 145–163

Dubey B P; Bhagwat S G; Shouche S P; Sainis J K (2006). Potential of
artificial neural networks in varietal identification using mor-
phometry of wheat grains. Biosystems Engineering, 95(1), 61–67

Emilio C A; Magallanes J F; Litter M I (2007). Chemometric study
on the TiO2-photocatalytic degradation of nitrilotriacetic acid.
Analytica Chimica Acta, 595(1–2), 89–97

Fletcher R (1987). Practical Methods of Optimization. Wiley,
Chichester, UK

Guo J; Sun W -J (2005). Neural Network Theory and Realization
with Matlab 7. Publishing House of Electronics Industry,
Beijing, China

Hagan M T; Demuth H B; Beale M (1996). Neural Network Design.
PWS Publishing Co., Boston, MA, USA

Han T; Vogelmann T C (1999). A photoacoustic spectrometer for
measuring heat dissipation and oxygen quantum yield at the
microscopic level within leaf tissues. Journal of Photochemi-
stry and Photobiology B: Biology, 48(2), 158–165

He Y; Li X L; Deng X F (2007). Discrimination of varieties of tea using
near infrared spectroscopy by principal component analysis
and BP model. Journal of Food Engineering, 79(4), 1238–1242

Karimi Y; Prasher S O; McNairn H; Bonnell R B; Dutilleul P; Goel P
K (2005). Discriminant analysis of hyperspectral data for
assessing water and nitrogen stresses in corn. Transactions of
the ASAE, 48(2), 805–813

Lattin M J; Carroll J D; Green P E (2003). Analysis Multivariate Data.
China Machine Press, China
Lu R (2001). Predicting Firmness and Sugar Content of Sweet
Cherries Using Near-Infrared Diffuse Reflectance Spectro-
scopy. Transactions of the ASAE, 44(5), 1265–1271

Martens H; Naes T (1987). Multivaraiate calibration by data
compression. In: Near-Infrared Technology in the the Agri-
cultural and Food Industries American Association of Cereal
Chemists (Williams B; Norris B, eds). St. Paul, MN, USA

McGlone V A; Kawano S (1998). Firmness, dry-matter and soluble-
solids assessment of postharvest kiwifruit by NIR spectro-
scopy. Posthavest Biology and Technology, 13(2), 131–141

Min M; Lee W S (2005). Determination of significant wavelengths
and prediction of nitrogen content for citrus. Transaction of
the ASAE, 48(2), 455–461

Muhammed H H; Larsolle A (2003). Feature vector based analysis
of hyperspectral crop reflectance data for discrimination and
quantification of fungal disease severity in wheat. Biosystems
Engineering, 86(2), 125–134

Noh H; Zhang Q; Shin B; Han S; Feng L (2006). A neural network
model of maize crop nitrogen stress assessment for a multi-
spectral imaging sensor. Biosystems Engineering, 94(4),
477–485

Pizarro C (2004). An evaluation of orthogonal signal correction
method for the characterisation of arabica and robusta coffee
varieties by NIRS. Analytica Chimica Acta, 514(1), 57–67

Seregely Z; Deak T; Bisztray G D (2004). Distinguishing melon
genotypes using NIR spectroscopy. Chemometrics and Intelli-
gent Laboratory Systems, 72(2), 195–203

Saranwong S; Sornsrivichai J; Kawano S (2004). Prediction of ripe-
stage eating quality of mango fruit from its harvest quality
measured nondestructively by near infrared spectroscopy.
Postharvest Biology and Technology, 31(2), 137–145

Savitzky A; Golay M J E (1964). Smoothing and differentiation of
data by simplified least squares procedures. Analytical
Chemistry, 36(8), 1627–1631

Vogl T P; Mangis J K; Rigler A K; Zink W T; Alkon D L (1988).
Accelerating the convergence of the backpropagation method.
Biological Cybernetics, 59(4-5), 257–263

Yan X C (1990). Morpha, Structure and Quality Appraisal of Tea.
Agriculture Publishers, China

Zeaiter M; Roger J M; Bellon-Maurel V (2005). Robustness of
models developed by multivariate calibration, part II: the
influence of pre-processing methods. Trends in Analytical
Chemistry, 24(5), 437–445

Zwiggelaar R (1998). A review of spectral properties of plants and
their potential use for crop/weed discrimination in row–crops.
Crop Protection, 17(3), 189–206


	Discriminating varieties of tea plant based on Vis/NIR spectral characteristics and using artificial neural networks
	Introduction
	Materials and methods
	Materials
	Vis/NIR spectra collection
	Pretreatment of the spectral data
	Mathematical method

	Results and discussion
	Absorbance spectra of three varieties of tea plant at leaf scale
	Wavelet transform
	Extracted low-frequency coefficient by wavelet decomposition
	Selecting the optimum wavelet parameters
	Selecting the optimum spectral data pretreatment

	Clustering analysis based on PCA
	Quantitative discrimination of different varieties �by ANN

	Conclusion
	Acknowledgements
	References


