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A Novel Lossless Compression for Hyperspectral
Images by Context-Based Adaptive Classified
Arithmetic Coding in Wavelet Domain

Jing Zhang and Guizhong Liu

Abstract—A novel hyperspectral-image lossless compression
scheme in the wavelet domain is proposed in this letter.
This scheme is based on the context-based adaptive classified
arithmetic-coding technique. The adaptive classified scheme di-
vides each of the residual images between the two adjacent wavelet
images into different classes, resulting in not only skipping the
coding of a lot of insignificant zeros but also making the similar
coefficients cluster together. Through experiments, we found that,
when similar coefficients are clustered together, the arithmetic
coding can achieve a higher performance than no clustering.
Therefore, we can say that the adaptive classified scheme makes a
better use of the characteristics of hyperspectral images and the
characteristics of the arithmetic-coding technique. Experiments
show that our proposed scheme is capable of providing high
compression performance.

Index Terms—Context-based adaptive classified arithmetic
coding, hyperspectral images, lifting integer wavelet transforms.

I. INTRODUCTION

YPERSPECTRAL images represent the intensities of

energy reflected or emitted by the ground targets, with
possibly hundreds of different wavelength bands. As a result, a
sequence of hyperspectral images consists of a series of images
corresponding to hundreds of continuous spectral bands; such a
3-D representation creates a huge number of data for computer
processing and data transmission. Unlike natural images, hy-
perspectral images have two types of correlations, which are the
spatial correlation and the spectral correlation. Making the best
use of these two types of correlations is the key to an efficient
compression algorithm.

Nowadays, the wavelet transform has been proven successful
in many areas. It is employed in most state-of-the-art com-
pression schemes. Many promising 3-D image compression
algorithms based on wavelet transforms were proposed re-
cently. The classical 3-D wavelet-image coding algorithm is
3D-SPIHT proposed by Kim and Pearlman [1]. It is an exten-
sion of the original 2D-SPIHT [2] and has a 3-D tree structure.
3D-SPIHT has been applied to multispectral image compres-
sion by Dragotti ef al. [3]. Another more efficient 3D-SPIHT
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named asymmetry-3D-SPIHT for hyperspectral image com-
pression is proposed in [4]. Xu et al. [5] extend an embed-
ded block coding with optimized truncation to video coding,
which is 3-D embedded subband coding with optimized trun-
cation (3D-ESCOT). Tang et al. [6] extend 2DSPECK [7] to
3DSPECK for hyperspectral image compression. Asymmetry-
3DSPECK for hyperspectral image compression is proposed
in [8]. Some algorithms [9], [10] use JPEG2000 and spectral
decorrelation to compress the hyperspectral images.

Lossless coding is a very important feature for hyperspec-
tral image compression. In this letter, we propose a novel
lossless compression algorithm based on wavelet transforms.
This algorithm is not only simple but also efficient for hy-
perspectral images. As we all know, discrete wavelet trans-
forms [11] cannot be used to achieve lossless compression.
The integer wavelet transform based on the lifting scheme
introduced by Sweldens [12] can be carried out to achieve
lossless compression while reducing computational complex-
ity. In this letter, we use the integer wavelet transform [13]
to compress 3-D hyperspectral images. Each residual image
of two adjacent bands in the wavelet domain is divided into
different classes according to the significance maps of the
wavelet coefficients, and these coefficients are derived from
the reference bands. Then, context-based adaptive arithmetic
coding is performed for each class independently.

This letter is organized as follows. In Section II, adap-
tive classified arithmetic coding in the wavelet domain is de-
scribed in detail. Section III shows some characteristics of the
arithmetic-coding technique. In Section I'V, the whole compres-
sion algorithm is proposed. We discuss the experimental results
in Section V. Some conclusions are given in Section V1.

II. ADAPTIVE CLASSIFIED ARITHMETIC
CODING IN THE WAVELET DOMAIN

In this section, according to the spectral correlation, each of
the residual images between the two adjacent wavelet images
is divided into different classes, with each class having similar
coefficients.

As is well known, for hyperspectral images, the values of
pixels having the same spatial location but in different spectral
bands are different energies reflected or emitted by the same
ground target. As a result, the spectral correlations are very
strong. Therefore, we suppose that for all the bands, after the
2-D spatial wavelet transform, the spectral correlations are still
very strong. Fig. 1 describes the two adjacent spectral bands
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Fig. 1. Images before and after the wavelet transforms of bands 39 and 40
belonging to the first scene of Jasper Ridge AVIRIS image. (a) Band 39 before
wavelet transforms. (b) Band 40 before wavelet transforms. (c) Band 39 after
wavelet transforms. (d) Band 40 after wavelet transforms.

before and after wavelet transforms [a 256 x 256 area of bands
39 and 40, which exhibits all key features present in the images,
belonging to the first scene of Jasper Ridge Airborne Visible-
Infrared Imaging Spectrometer (AVIRIS) image].

The correlation factor of the two images in Fig. 1(a)
and (b) is 0.9761, and the correlation factor of the two images
in Fig. 1(c) and (d) is 0.9715. Fig. 1 confirms that wavelet trans-
forms just change the spatial structure of the bands; the spectral
correlation is still high. In order to make a better use of the spec-
tral correlation in the wavelet domain, now, we analyze the cor-
relation of the two images in Fig. 1(c) and (d). First, we define
a significance map [14] of a given threshold 7" and an image [
in (1). Let |I(z, y)| represent the absolute value of the wavelet
coefficient at the location (x,y), and Sy (z,y) represent the
value at (z,y) of the significance map for the threshold 7', i.e.,

It (T < |I(w,y)] < 2'T)
ST(xmy) =1

else St(x,y) =0. (1)

Fig. 2 shows some significance maps of the wavelet-
transformed images in Fig. 1(c) and (d) with two different
thresholds. From Fig. 2, it is evident that the significance
maps of the two adjacent spectral bands are similar in the
wavelet domain. The proportion of the equal values of the two
significance maps in Fig. 2(a) and (b) is 99.4%. The proportion
of the equal values of the two significance maps in Fig. 2(c)
and (d) is 95.9%. Therefore, in the two adjacent spectral bands,
in the same position, the coefficients have either big values or
small values at the same time. We suppose that the difference
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Fig. 2. Significance maps at different thresholds of images in Fig. 1(c) and
(d). (a) T =20, band 39. (b) T = 29, band 40. (c) T = 29, band 39.
(d) T = 29, band 40.

of the two big coefficients is potentially big, and the difference
of the two small coefficients is potentially small. If we want to
divide the residual image of the two adjacent wavelet images
into different classes with each class having similar values,
we can use these significance maps, one significance map
corresponding to one class. Let us compare the number of
coding bits in the classification case with the no-classification
case for the residual image of Fig. 1(d) from (c). The results
shown in Table I confirm that this supposition is sound, as
similar residual coefficients are clustered together, saving a lot
of bits to be coded. For one residual band, the numbers of
coding bitplanes are different for the classes, which are always
smaller than the maximum number of coding bitplanes of all
the coefficients, as shown in the third column of Table I. If there
was no classification, all of the coefficients would be coded with
the maximum possible number of coding bitplanes for all the
classes. Therefore, the adaptive binary arithmetic coding [15]
is performed for each class independently, saving a lot of bits
to be coded. Because of the similarity of significance maps for
the two adjacent spectral bands, the significance maps of the
previous spectral band are used to classify the residual image.
In the decoder, before decoding the residual image, the previous
spectral band has been decoded, and the significance maps can
be obtained. That means that the class map does not need
to be transmitted. The introduction of the classification just
skips coding many insignificant zeros, does not lose any useful
information, and improves the compression performance.

III. CHARACTERISTICS OF ARITHMETIC CODING

In this section, we restrict our attention to arithmetic coding.
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TABLE 1
COMPARISON OF CODING BITS OF CLASSIFICATION AND NO CLASSIFICATION FOR THE RESIDUAL IMAGE OF FIG. 1(d) FROM (c)

Threshold Number of coding bitplanes Number of significant symbols | Number of saved bits | Total saved bits
P 10 31 31
510 11 215 0
9 10 2020 2020
8 10 8490 8490
2 74269
57 11 15755 0
Classification 20 10 15093 15093
23 9 10290 20580
24 9 6312 12624
93 9 3627 7254
22 9 1979 3958
5! 9 953 1906
q
5 0 8 509 1527
0 8 262 786
No classification 11 65536 0

TABLE II
EFFECT OF THE INTRODUCTION OF CLASSIFICATION
TO ARITHMETIC CODING

Bit rate (bpp)
Bands No Classification | Classification
of JR1 | classification | without class with class
map map
1 7.68 5.09 7.63
2 8.41 5.80 8.35
3 8.38 5.77 8.31
4 8.20 5.53 8.08
5 7.94 5.28 7.86
6 7.48 4.86 7.46
7 7.13 4.54 7.15
8 7.17 4.55 7.16
9 7.16 4.52 7.15
10 6.86 4.29 6.88

A. Effect of Classification

The performance of the arithmetic coding depends mainly
on the estimation of the probability model that the coder will
use and the arithmetic coding will approach the entropy of
the source. The smaller the entropy of the input data is, the
higher the compression ratio is. The adaptive binary arithmetic
coding can adaptively explore the local entropy of the image. If
the local entropy is smaller, the compression ratio is higher.
How to decrease the local entropy is a key of the coding.
Through experiments, we have found that, if all the coefficients
are divided into different classes, which have similar values,
then each class is coded independently, and the local entropy
becomes smaller. This is due to the fact that, when coding
similar values, lots of “0s” or “Is” appear successively at the
local positions; the probability of 0 and the probability of 1
are very unbalanced, and this leads to smaller entropy. The
results in Table II confirm this fact. “Classification without
class map” means that all the coefficients are divided into
different classes with all coefficients in one class having the
same number of coding bitplanes, and then, each class is coded
independently. It can decrease the bit rate, but, in practice, it

cannot be realized. If we want to decode, the class map must be
known, but this algorithm does not code the class map. The
results in Table II also show that if the class map is coded,
the bit rate increases and becomes even higher than in the
case of no classification. We assume that, if we can divide all
the coefficients into different classes but the class map is not
coded, good performance can be achieved. The classification
algorithm proposed in Section II can realize this assumption.
It classifies all the coefficients into different classes according
to the spectral correlation. The classification is based on the
significance maps of the previous spectral band, so the class
information does not need to be coded.

B. Effect of Context

After classification, in each of the classes, there are three
types of symbols that should be coded: the first “1” and its
previous insignificant “0,” the “1” or “0” after the first “1,” and
the sign. The characteristic of the sign is different from other
symbols, so when the sign is coded, a fixed context is used
for these symbols in all the classes. In the same way, when the
“1” or “0” after the first “1” is coded, another fixed context is
used for these symbols in all the classes. In each of the classes,
the characteristics of the first “1” and its previous insignificant
“0” are different, so for each class, we assign a context for
these symbols. A lot of experiments show that the introduction
of context can improve the performance of arithmetic coding.
Therefore, in our proposed algorithm, the context-based adap-
tive classified arithmetic-coding technique is used.

IV. PROPOSED COMPRESSION ALGORITHM

Our compression scheme is described next.

1) Do the 2-D spatial five-level (5,3) lifting integer wavelet
transforms for each of the spectral bands. The residual
images are the different images of the two adjacent
wavelet images.
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TABLE III
EFFECT OF THE INTRODUCTION OF CLASSIFICATION

Average compression ratio
Image No Classification | Classification+
name | Classifi- + Independent+
cation Independent Context

JR1 3.02 3.13 3.19

JR2 3.05 3.15 3.21

LL1 3.06 3.12 3.18

LL2 3.02 3.10 3.16
CUl 3.04 3.12 3.18
Ccu2 2.96 3.06 3.11

2) For the first spectral band, we code all the wavelet
coefficients using the binary arithmetic coding in raster
order from the most significant bitplane toward the least
significant bitplane.

3) According to the spectral correlation, divide each of the
residual images into different classes as described in
Section II. Then, save the maximum number of coding
bitplanes of each class in every residual image as the side
information transmitted to the decoder.

4) Perform the context-based adaptive binary arithmetic
coding for each class independently.

5) The final code stream is made up of the entire compres-
sion code stream and the side information. To decode
the code stream, just carry out the reverse process of the
encoding.

V. EXPERIMENTAL RESULTS

The performance of the proposed algorithm has been
tested on several AVIRIS hyperspectral images. AVIRIS is a
Jet Propulsion Laboratory instrument having 224 continuous
bands ranging from the visible to the near-infrared regions
(400-2500 nm) (http://aviris.jpl.nasa.gov). The spectral com-
ponents are sampled with a 12-bit precision; after radiometric
correction, data are stored as 16-bit signed integers. The unit
of the recorded hyperspectral images is the so-called scene,
which is a data cube of 512 rows by 614 columns by 224 bands.
Typical hyperspectral images consist of three or more consec-
utive scenes. The hyperspectral images for our test are the first
and the second scene of Jasper Ridge, Lunar Lake, and Cuprite
(JR1, LL1, CUI, JR2, LL2, CU2). For the sake of simplicity,
the bands are 256 x 256 pixels, starting at the coordinates
(200,180) of the original size 512 x 614.

First we test the performance of the introductions of the clas-
sification. Table III shows the average compression ratios (CRs)
of 224 bands. “No classification” in the table means the coding
of each of the residual images using the adaptive binary arith-
metic coding directly. “Classification + independent” means
that the classification is introduced, and each class is coded
independently. “Classification + independent + context” uses
the context-based adaptive binary arithmetic coding. According
to Section III, we can see that if the similar coefficients are clus-
tered together, the arithmetic coding has a good performance,
but coding the class map will weaken the performance. In our
proposed algorithm, we can divide the coefficients into different
classes, which have similar values, without coding the class
map. The introduction of our proposed classification not only
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TABLE IV
COMPARISON OF THE 224-BAND AVERAGE COMPRESSION RATIO

Average compression ratio
Image 3D- A3D- M- The Reordering+
name SPIHT | SPIHT | CALIC | proposed | the proposed
algorithm algorithm
JR1 2.54 2.81 2.89 3.19 3.29
JR2 2.57 2.85 295 3.21 3.31
LL1 2.70 3.00 3.05 3.18 3.29
LL2 2.60 291 3.00 3.16 3.26
Cul 2.61 291 3.00 3.18 3.33
Cu2 2.49 2.79 2.90 3.11 3.24
Average | 2.58 2.88 2.96 3.17 3.29

skips the coding of many insignificant zeros but also makes
better use of the characteristics of the arithmetic coding, so it
shows significant compression performance. From Table III,
the introduction of context can further improve the perfor-
mance, whereas the computational complexity does not in-
crease because the contexts come from the class map, which
is known before arithmetic coding.

Next, we compare the proposed lossless compression al-
gorithm with some of the existing algorithms for hyperspec-
tral images. The 224-band average compression ratios are
shown in Table IV. “Reordering + the proposed algorithm”
is the algorithm; before performing the proposed algorithm,
the adaptive spectral-band reordering algorithm proposed in
[16] is executed. The adaptive spectral-band reordering algo-
rithm finds out the nearly best reference band for each of the
bands. If the reference band is the same as the current band,
perform “intraband coding” as in [16] for the current band;
otherwise, the residual images are the differences between each
of the bands and its nearly best reference band. “3D-SPIHT” is
the algorithm using the dyadic 3-D decomposition in [17],
and the three-level (5,3) integer wavelet transforms in spatial
domain and the three-level Haar integer wavelet transforms in
the spectral domain are used in a group-of-picture (GOP) of 16
adjacent spectral bands. “A3D-SPIHT” is the algorithm using
an asymmetric tree structure for the 3-D wavelet transform in a
GOP of 16 adjacent spectral bands; first, do the five-level (5,3)
integer wavelet transforms in the spatial domain, and then do
the four-level Haar integer wavelet transforms in the spectral
domain. The asymmetric tree structure is the same as in [4].
“M-CALIC” is the algorithm proposed in [18], and all of the
parameters here are the same as in [18].

All the results in Table IV are obtained by our own programs.
SPIHT is very attractive for lossy compression, because it
provides a high peak signal-to-noise ratio at low bit rate, but
it is not so good for lossless compression. Because of the high
spatial complexity of the hyperspectral images, 3D-SPIHT
cannot show its advantage. We can see that A3D-SPIHT is bet-
ter than 3D-SPIHT; it means that the asymmetric 3-D wavelet
transform is more fit for the hyperspectral image. M-CALIC is
a complicated context-based algorithm; the introductions of the
prediction context and the coding context can achieve a better
compression performance. Therefore, it can make a better use
of the high spectral correlation of hyperspectral images. Our
proposed algorithm is effective and outperforms M-CALIC. It
is worth noticing that our proposed algorithm cannot realize
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TABLE V
ENCODING TIME OF THE 224 BANDS

Encoding time of 224 bands (seconds)
Image 3D- A3D- M-CALIC | The proposed
name SPIHT SPIHT algorithm
JR1 103.0 264.4 180.0 119.1
LL1 95.1 2109 179.1 121.1
CU1 98.7 212.3 179.0 118.7
Average 98.9 229.2 179.4 119.6

lossless, lossy, and near-lossless compression capabilities in
one and the same code stream simultaneously. If the spectral-
band reordering is introduced before the proposed algorithm as
“reordering + the proposed algorithm,” a further improvement
can be achieved. In order to evaluate the complexity of the
proposed algorithm, we have run 3D-SPIHT, A3D-SPIHT,
M-CALIC, and the proposed algorithm programs in lossless
mode on a workstation with a Pentium IV 2.4-GHz processor
and Windows XP operating system. We have measured the
encoding time of 224 bands for each algorithm by using the
clock() function. Each of the encoding times is an average over
20 time trials. The experimental results are shown in Table V.
It is clear that the encoding time of our proposed algorithm
is close to 3D-SPIHT and much less than A3D-SPIHT and
M-CALIC. From Tables IV and V, we can see that our pro-
posed algorithm has a moderate computational complexity and
achieves a higher compression ratio. Therefore, it is an efficient
lossless compression algorithm for hyperspectral images.

VI. CONCLUSION

In this letter, we propose a novel algorithm for hyperspectral-
image lossless compression. The introduction of the classifi-
cation not only makes full use of the spectral correlation and
spatial correlation but also makes a better use of the character-
istics of the arithmetic coding. The computational complexity
of the proposed algorithm is moderate. Therefore, it is a novel
and efficient lossless compression algorithm for hyperspectral
images.
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