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a b s t r a c t

In order to analytically study the overall elastic stiffness of the composite containing periodically dis-
persed sphere particles, a new micro-mechanics model is developed in this paper. Three kinds of typical
particle packing arrangements in the form of simple cubic lattice, body-centered cubic lattice and face-
centered cubic lattice are considered and compared. The special characteristics of regular distribution
are fully considered by incorporating the necessary geometrical symmetry conditions into strain Green’s
function. It is found that particle arrangement obviously affects the macroscopic elastic response of such
the kind of composite. Moreover, most of the predictions by the present model are in good agreement
with the FEM computations. The effective Young’s modulus of BCC composite the effective shear modulus
of SC composite are not in the range of the Hashin–Shtrikman bounds. The present model is also useful to
verify some other numerical results mainly obtained by the unit-cell model, for instance, damage vari-
ables, matrix plasticity, etc.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that particle arrangement in the matrix evi-
dently affects the local stress/strain field, and in turn influences
the macro-mechanics behaviors of the whole composite. Ganguly
and Poole [1] calculated and compared the reinforcement stress
for different reinforcement arrangements by using an iterative
algorithm based on the two-dimensional representative volume
element. Numerical results showed that particle stress is sensitive
to the angular orientation of the neighboring reinforcements. Sun
et al. [2] analyzed the effect of particle arrangement on stress con-
centration by using finite element method (FEM), and found that
the stress concentration surrounding a particle is largely affected
by the orientation of the two particles to each other. As a funda-
mental evidence for the existing computer simulations, Barfuss
et al. [3] used a photo-elastic analogue to directly observe the local
micro-stress field around two particles. However, most of the con-
ventional effective medium methods, such as the Mori–Tanaka
(M–T) model [4], self-consistent (SC) method [5], generalized
self-consistent (GSC) model [6], double inclusion (DI) model [7],
Ponte Castaneda Willis (PCW) model [8] and effective self-consis-
tent (ESC) method [9], are originally proposed for studying the
composite containing randomly distributed particles. They cannot
ll rights reserved.
well account for the effect of particle arrangement. Therefore, FEM
and boundary element method (BEM) are often adopted to study
the local stress field of the composite with periodical microstruc-
tures, i.e., all the particles are assumed to be regularly dispersed
in the matrix. Generally, single-cell [10–15], double-cell [11,12]
and four-cell [13,14] are usually selected for considering different
particle distribution, and they are equivalent to simple cubic lat-
tice, body-centered cubic lattice and face-centered cubic lattice,
respectively. FEM is a powerful tool to establish the direct correla-
tion of microstructures with material properties, but a lot of effort
and time need to be cost on the construction of a geometry model
and the corresponding meshing. Fortunately, many effective prop-
erties of a heterogeneous material often rely on their average re-
sponse of the microstructures and properties of constituents, one
does not need to construct a fairly complicated FEM model, and
some micro-mechanics theories maybe more efficient in analyzing
such problems. In the previous work, the authors [16,17] proposed
an analytical method to study the effect of the interphase on the
effective stiffness of the composite with regularly located particles.
Now, this method is further extended and applied to many more
composites with periodical microstructures.

The main objective of this research is to study the effective elas-
tic properties of the composite reinforced by periodically distrib-
uted particles. In order to analytically predict the overall
stiffness, a new micro-mechanics model will be developed. Three
typical particle arrangements will be analyzed and compared,
and the correctness of the present model is verified by the compar-
ison with FEM.

http://dx.doi.org/10.1016/j.compstruct.2009.07.010
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2. The effective elastic stiffness of PRC

2.1. General expression for the strain field eðxÞ

In this paper, the terms for the reinforcement and matrix are
represented by symbols with the subscripts ‘P’ and ‘0’, respectively,
and the overall terms of the composite are denoted by symbols
with a over-line and tensors and vectors are denoted by bold face
letters. Consider an infinite heterogeneous material with elasticity
tensors CðxÞ at the point x, and where an eigenstrain e�ðxÞ (e.g., res-
idue stress) is also in existence. Stress r0 is applied at infinity if the
material is homogeneous with elasticity tensor C0, i.e., having no
inclusions, the corresponding strain field is denoted by e0.

The total strain emnðxÞ is expressed by [18],

emnðxÞ ¼ e0
mn þ

Z
V

gmnijðx� x0Þ � ½C0
ijklðx0Þ � e�klðx0Þ

� dCijklðx0Þ � eklðx0Þ�dx0 ð1Þ

with

CðxÞ ¼ C0 þ dCðxÞ ð2Þ

gmnijðx� x0Þ ¼ �1
2
½Gmi;njðx� x0Þ þ Gni;mjðx� x0Þ� ð3Þ

where displacement Green’s function Gknðx� x0Þ in the infinite
medium C0 gives the displacement in the direction k at point x
when a unit force fi ¼ dindðx� x0Þ is applied at point x0 in the direc-
tion n. din is the Kronecker delta and dðx� x0Þ is the three-dimen-
sional Dirac delta function, and gðx� x0Þ is strain Green’s function.

If the eigenstrain e�ðxÞ is assumed to be zero, i.e., the inhomoge-
neity does not bear its own eigenstrain. Therefore, the following
simple equation is reached.

eðxÞ ¼ e0 �
Z

V
gðx� x0Þ � ½Cðx0Þ � C0� � eðx0Þdx0 ð4Þ
2.2. The equivalent elastic stiffness of PRC

Fig. 1 shows a schematic diagram for two sphere particles in the
matrix, and the volume fraction of particles is denoted by fP . Based
on Eq. (4), the average strain in the particle is expressed by

�eX0 ¼ e0 � S � K�1
P � �eX0 �

XN

j¼1

1
X0

Z
X0

Z
Xj

gðx� x0Þ � K�1
P � �eXj

dx0dx

ð5Þ
Fig. 1. Schematic diagram for two particles in a composite system.
where X0 also represents the volume of the region X0. Since
�eX0 ¼ �eXj

, the average strain in the region X0 is expressed by

�eX0 ¼ T � e0 ð6Þ

with

T ¼ Iþ S � K�1
P þ

XN

j¼1

1
X0

Z
X0

Z
Xj

gðx� x0Þdx0dx � K�1
P

" #�1

ð7Þ

here I denotes the four-ordered unit identity tensor. S is Eshelby’s
tensor for the sphere particle and listed in Appendix A, KP are two
fourth-order mismatch tensors, which are defined by
KP ¼ ðCP � C0Þ�1 � C0. So, the effective stiffness of PRC is expressed
by

C ¼ C0 � ½Iþ fPK�1
P � T � A

�1� ð8Þ

A ¼ I� fPS � K�1
P � T ð9Þ
3. Randomly and regularly distributed particles composite

3.1. Randomly distributed composites

The effective stiffness of composites C is expressed by

C ¼ C0 � ½Iþ B � ðI� S � BÞ�1� ð10Þ

with B ¼ fPðSþ KPÞ�1. It is worth noting that C is a transversely iso-
tropic tensor for the effective stiffness of PRC containing randomly
located, aligned ellipsoid particles.

3.2. Regularly distributed composites

For the sake of simplicity, P ¼ 1
X0

R
X0

R
Xj

gðx� x0Þdx0dx is
introduced. According to Jiang’s conclusions in Ref. [16], P is written
as
P ¼ Xj

40pð1� v0Þr3 �75
rmrnrirj

r4 þ 15v0
rmri

r2 djn þ
rnri

r2 djm þ
rmrj

r2 din

�h
þ rnrj

r2 dim

�
þ 15

rirj

r2 dmn þ 15ð1� 2v0Þ
rmrn

r2 dij � 5ð1� 2v0Þdijdmn

þ5ð1� 2v0Þðdimdjn þ dindjmÞ
�
þ 3Xja2

20pð1� v0Þr5 35
rmrnrirj

r4

h
�5

rmri

r2 djn þ
rnri

r2 djm þ
rmrj

r2 din þ
rnrj

r2 dim

� �
� 5

rirj

r2 dmn

�5
rmrn

r2 dij þ dijdmn þ ðdimdjn þ dindjmÞ
i

ð11Þ

where r ¼ jx� x0j, and a is the radius of sphere particle Xj.
Fig. 2 demonstrates PRCs with three typical particle packing

arrangement, which are simple cubic (SC), body centered cubic
(BCC) and face centered cubic (FCC). According to the geometrical
symmetry conditions of particle packing arrangement, the above
tensor P can be further rephrased as,

Pab ¼
Xj

8pð1�v0Þr7

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
sym C44 0 0

C55 0
C66

2
666666664

3
777777775

� 3Xja
2

20pð1�v0Þr9

T11 T12 T13 0 0 0
T22 T23 0 0 0

T33 0 0 0
sym T44 0 0

T55 0
T66

2
666666664

3
777777775

ð12Þ
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Fig. 3. Comparisons of Young’s modulus (a) and Poisson’s ratio (b) of the SC and
BCC composites between FE results [11] and the present model.
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where a; b ¼ 1—3, the specific expressions of C11—C66 and T11—T66

are listed in Appendix A. After some algebra deductions, Pab is sim-
plified as

Pab ¼
/

1� v0
H1

r �
2/5=3

1� v0
H2

r

 !
M; ðr ¼ SC;BCC; FCCÞ ð13Þ

with

/ ¼ 3f P

4p
; M ¼

�2 1 1 0 0 0
�2 1 0 0 0

�2 0 0 0
sym 1 0 0

1 0
1

2
666666664

3
777777775
:

For the SC case, H1
SC and H2

SC are written as,

H1
SC ¼ lim

n!1

Xn

k¼�n

Xn

j¼�n

Xn

i¼�n

i4 þ j4 þ k4 � 3i2j2 � 3i2k2 � 3j2k2

6ði2 þ j2 þ k2Þ7=2

� 0:673 ð14:aÞ

H2
SC ¼ lim

n!1

Xn

k¼�n

Xn

j¼�n

Xn

i¼�n

7ði4 þ j4 þ k4 �3i2j2 � 3i2k2 �3j2k2Þ
30ði2 þ j2 þ k2Þ9=2

� 1:243

ð14:bÞ

For the BCC case, H1
BCC and H2

BCC are written as,

H1
BCC¼ lim

n!1

Xn

k¼�n

Xn

j¼�n

Xn

i¼�n

ðiþ1=2Þ4þðjþ1=2Þ4þðkþ1=2Þ4

6½ðiþ1=2Þ2þðjþ1=2Þ2þðkþ1=2Þ2�7=2

(

�3ðiþ1=2Þ2ðjþ1=2Þ2þ3ðiþ1=2Þ2ðkþ1=2Þ2þ3ðjþ1=2Þ2ðkþ1=2Þ2

6½ðiþ1=2Þ2þðjþ1=2Þ2þðkþ1=2Þ2�7=2

)
��1:192

ð15:aÞ

H2
BCC¼ lim

n!1

Xn

k¼�n

Xn

j¼�n

Xn

i¼�n

7
ðiþ1=2Þ4þðjþ1=2Þ4þðkþ1=2Þ4

30½ðiþ1=2Þ2þðjþ1=2Þ2þðkþ1=2Þ2�9=2

(

�3ðiþ1=2Þ2ðjþ1=2Þ2þ3ðiþ1=2Þ2ðkþ1=2Þ2þ3ðjþ1=2Þ2ðkþ1=2Þ2

30½ðiþ1=2Þ2þðjþ1=2Þ2þðkþ1=2Þ2�9=2

)

��2:167

ð15:bÞ

For the FCC case, H1
FCC and H2

FCC are,

H1
FCC¼ lim

n!1

Xn

k¼�n

Xn

j¼�n

Xn

i¼�n

ðiþ1=2Þ4þ j4þðkþ1=2Þ4

6½ðiþ1=2Þ2þ j2þðkþ1=2Þ2�7=2

(

�3ðiþ1=2Þ2j2þ3ðiþ1=2Þ2ðkþ1=2Þ2þ3j2ðkþ1=2Þ2

6½ðiþ1=2Þ2þ j2þðkþ1=2Þ2�7=2

)

��0:5316
ð16:aÞ
Fig. 2. Three typical particle pa
H2
FCC¼ lim

n!1

Xn

k¼�n

Xn

j¼�n

Xn

i¼�n

7
ðiþ1=2Þ4þ j4þðkþ1=2Þ4

30½ðiþ1=2Þ2þ j2þðkþ1=2Þ2�9=2

(

�3ðiþ1=2Þ2j2þ3ðiþ1=2Þ2ðkþ1=2Þ2þ3j2ðkþ1=2Þ2

30½ðiþ1=2Þ2þ j2þðkþ1=2Þ2�9=2

)

��1:088
ð16:bÞ

For the SC composites, the tensor TSC is,

TSC ¼ Iþ S � K�1
P þ

0:673/� 2:486/5=3

1� v0
M � K�1

P

" #�1

ð17Þ

For the BCC composites, the tensor TBCC is,

TBCC ¼ Iþ S � K�1
P þ

�0:26/þ 1:848ð/=2Þ5=3

1� v0
M � K�1

P

" #�1

ð18Þ
cking arrangement for PRC.
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Fig. 4. Comparisons of Young’s modulus (a), shear modulus (b) and Poisson’s ratio
(c) of the SC and BCC composites between FE results [12] and the present model.
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For the FCC composites, the tensor TFCC is,

TFCC ¼ Iþ S � K�1
P þ

0:0354/� 0:31ð/=4Þ5=3

1� v0
M � K�1

P

" #�1

ð19Þ

The H–S bound is used to compare with the present model, and
listed here,

CHS ¼
X

r

frCr � ½Iþ S � C�1
� � ðCr � C�Þ��1

( )

�
X

r

fr½Iþ S � C�1
� � ðCr � C�Þ��1

( )�1

ð20Þ
The H–S upper and lower bounds are separately determined by
choosing C� as the largest and lowest stiffness among the
constituents.

4. Results and discussion

Firstly, the exactness of the present model should be verified,
and five cases of FEM results are used for the comparison with
the present predictions. Predictions with the classic M–T method
are also listed for every case at the same time. Fig. 3a and b shows
the predictions of the overall Young’s and Poisson’s ratio of PRC
with the SC and BCC distributions, respectively. The comparisons
with the FEM results [11] show that the present model can predicts
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the overall stiffness of the composites very well. Material
properties are: EP ¼ 75 GPa; mP ¼ 0:24; EM ¼ 1:7 GPa; mM ¼ 0:35.
Figs. 4–7 show the comparisons of (a) Young’s modulus and (b)
Poisson’s ratio of the composites between FE results and the pres-
ent model for different material systems. In Fig. 4, material proper-
ties are [12]: EP ¼ 70 GPa; mP ¼ 0:25; EM ¼ 3:5 GPa; mM ¼ 0:35. In
Fig. 5, material properties are [13]: EP ¼ 117 GPa; mP ¼ 0:28; EM ¼
6:5 GPa; mM ¼ 0:45. In Fig. 6, material properties are [14]:
EP ¼ 355 GPa; mP ¼ 0:2; EM ¼ 80:5 GPa; mM ¼ 0:2. In Fig. 7, material
properties are [14]: EP ¼ 210 GPa; mP ¼ 0:26; EM ¼ 3:5 GPa; mM ¼
0:36. Most of the predictions are in good agreement with the cor-
responding FE results. Compare to the predictions of the BCC case
and FCC case, the predictions of the SC composite deviate from the
corresponding FEM results.

Comparisons show that the discrepancy between the predicted
Poisson ratios by FEM and the present method are very high, and
which would be explained as follows. In the FEM computation,
since the strain fields in the particle and matrix are different, and
thus the applied surface and side surfaces of the unit-cell model
would not be plane after the deformation. This problem is not very
serious for the prediction of the tensile and shear modulus, which
can be easily solved by applying the displacement boundary and
summing the reaction force over all the elements located in the
applied surface. But it is not easy to predict the effective Poisson’s
ratio by the same method. For the sake of simplicity and conve-
nience, some compulsory boundary conditions, such as multi-
points constraint, should be enforced on the applied and lateral
planes. However, there is no such extra restraint in the real com-
posite materials, and such kind of treatment inevitably brings
about a large errors. As expected, the error would increase with
increasing the volume fraction of particles for the SC and BCC cases,
and which is obviously displayed in Figs. 3b, 4c, 6b and 7b. For the
FCC case, since the particle density on every surface is relatively
uniform, so the induced error by the special boundary conditions
is lower than the other cases.

Fig. 8 shows the comparison of the overall Young’s modulus (a),
Shear modulus (b) and Poisson’s ratio (c) of the composite with dif-
ferent particle arrangements predicted by the present model, M–T
method and H–S bounds [19]. Material properties used here are as
follows: EP ¼ 70 GPa; mP ¼ 0:25; EM ¼ 1:7 GPa; mM ¼ 0:35. Particle
arrangement affects the macro-mechanics behavior of the compos-
ites. After comparing these results, at the same volume fraction of
particles, the sequence for the Young’s modulus of different
arrangement is, SC > FCC > M–T > BCC, and the sequence for the
shear modulus is, SC < FCC < M–T < BCC. Additionally, the differ-
ence between the FCC case and the M–T predictions for all the
effective moduli and Poisson’s ratio is very small, even can be ne-
glected to some extent. The effective Young’s modulus of BCC com-
posite the effective shear modulus of SC composite exceed the
range of the H–S bounds, and the predictions by the classical M–
T method coincides with the H–S lower bound.

5. Conclusions

A new micro-mechanics model is proposed for studying the
effective elastic modulus of the composites containing regularly
distributed sphere particles. Three typical particle arrangements
in the form of simple cubic lattice, body-centered cubic lattice
and face-centered cubic lattice are investigated. Most of the predic-
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tions by the present model are in good agreement with FEM re-
sults. Several important conclusions are reached.

[1] Particle distribution has an obvious effect on the macro-
mechanics behavior of the composites. As for the Young’s
modulus of the composites with the same volume fraction
of particles, the sequence of different arrangement is,
SC > FCC > M–T > BCC, and as for the shear modulus, the
sequence is, SC < FCC < M–T < BCC.

[2] The effective elastic properties of the FCC composite are very
near to the predictions of the M–T method, i.e., the overall
elastic properties of the FCC composite are very equivalent
to those of the random composite.

[3] The effective Young’s modulus of the BCC composite the
effective shear modulus of the SC composite are not in the
range of the H–S bounds, and predictions with the M–T
method coincide with the H–S lower bound.
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Appendix A

C11 ¼ ð�8þ 4v0Þr4
1 þ ð1� 2v0Þr4

2 þ ð1� 2v0Þr4
3 þ ð8þ 2v0Þr2

1r2
2

þ ð8þ 2v0Þr2
1r2

3 þ ð2� 4v0Þr2
2r2

3

C22 ¼ ð1� 2v0Þr4
1 þ ð�8þ 4v0Þr4

2 þ ð1� 2v0Þr4
3 þ ð8þ 2v0Þr2

1r2
2

þ ð2� 4v0Þr2
1r2

3 þ ð8þ 2v0Þr2
2r2

3

C33 ¼ ð1� 2v0Þr4
1 þ ð1� 2v0Þr4

2 þ ð�8þ 4v0Þr4
3 þ ð2� 4v0Þr2

1r2
2

þ ð8þ 2v0Þr2
1r2

3 þ ð8þ 2v0Þr2
2r2

3

C12 ¼ ð2� 4v0Þr4
1 þ ð2þ 2v0Þr4

2 � ð1� 2v0Þr4
3 � ð11þ 2v0Þr2

1r2
2

þ ð1� 2v0Þr2
1r2

3 þ ð1þ 4v0Þr2
2r2

3

C13 ¼ ð2� 4v0Þr4
1 � ð1� 2v0Þr4

2 þ ð2þ 2v0Þr4
3 þ ð1� 2v0Þr2

1r2
2

� ð11þ 2v0Þr2
1r2

3 þ ð1þ 4v0Þr2
2r2

3

C23 ¼ �ð1� 2v0Þr4
1 þ ð2� 4v0Þr4

2 þ ð2þ 2v0Þr4
3 þ ð1� 2v0Þr2

1r2
2

þ ð1þ 4v0Þr2
1r2

3 � ð11þ 2v0Þr2
2r2

3

C44 ¼ ð1� 2v0Þr4
1 þ ð1þ v0Þr4

2 þ ð1þ v0Þr4
3 � ð13� 2v0Þr2

2r2
3

þ ð2� v0Þr2
1r2

3 þ ð2� v0Þr2
1r2

2

C55 ¼ ð1þ v0Þr4
1 þ ð1� 2v0Þr4

2 þ ð1þ v0Þr4
3 þ ð2� v0Þr2

2r2
3

� ð13� 2v0Þr2
1r2

3 þ ð2� v0Þr2
1r2

2

C66 ¼ ð1þ v0Þr4
1 þ ð1þ v0Þr4

2 þ ð1� 2v0Þr4
3 þ ð2� v0Þr2

2r2
3

þ ð2� v0Þr2
1r2

3 � ð13� 2v0Þr2
1r2

2

T11 ¼ 8r4
1 þ 3r4

2 þ 3r4
3 þ 6r2

2r2
3 � 24r2

1r2
3 � 24r2

1r2
2

T22 ¼ 3r4
1 þ 8r4

2 þ 3r4
3 � 24r2

2r2
3 þ 6r2

1r2
3 � 24r2

1r2
2

T33 ¼ 3r4
1 þ 3r4

2 þ 8r4
3 � 24r2

2r2
3 � 24r2

1r2
3 þ 6r2

1r2
2

T12 ¼ �4r4
1 � 4r4

2 þ r4
3 þ 27r2

1r2
2 � 3r2

1r2
3 � 3r2

2r2
3

T13 ¼ �4r4
1 þ r4

2 � 4r4
3 � 3r2

1r2
2 þ 27r2

1r2
3 � 3r2

2r2
3

T23 ¼ r4
1 � 4r4

2 � 4r4
3 � 3r2

1r2
2 � 3r2

1r2
3 þ 27r2

2r2
3

T44 ¼ r4
1 � 4r4

2 � 4r4
3 � 3r2

1r2
2 � 3r2

1r2
3 þ 27r2

2r2
3

T55 ¼ �4r4
1 þ r4

2 � 4r4
3 � 3r2

1r2
2 þ 27r2

1r2
3 � 3r2

2r2
3

T66 ¼ �4r4
1 � 4r4

2 þ r4
3 þ 27r2

1r2
2 � 3r2

1r2
3 � 3r2

2r2
3

where, r1; r2; r3 are the three coordinates of the particle center.
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