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Abstract

We present dependency-based n-gram
models for general-purpose, wide-
coverage, probabilistic sentence realisa-
tion. Our method linearises unordered
dependencies in input representations
directly rather than via the application
of grammar rules, as in traditional chart-
based generators. The method is simple,
efficient, and achieves competitive accu-
racy and complete coverage on standard
English (Penn-II, 0.7440 BLEU, 0.05
sec/sent) and Chinese (CTB6, 0.7123
BLEU, 0.14 sec/sent) test data.

1 Introduction

Sentence generation,1 or surface realisation can be
described as the problem of producing syntacti-
cally, morphologically, and orthographically cor-
rect sentences from a given semantic or syntactic
representation.

Most general-purpose realisation systems de-
veloped to date transform the input into sur-
face form via the application of a set of gram-
mar rules based on particular linguistic theories,
e.g. Lexical Functional Grammar (LFG), Head-
Driven Phrase Structure Grammar (HPSG), Com-
binatory Categorial Grammar (CCG), Tree Ad-
joining Grammar (TAG) etc. These grammar rules
are either carefully handcrafted, as those used in
FUF/SURGE (Elhadad, 1991), LKB (Carroll et al.,
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1In this paper, the term “generation” is used generally for
what is more strictly referred to by the term “tactical genera-
tion” or “surface realisation”.

1999), OpenCCG (White, 2004) and XLE (Crouch
et al., 2007), or created semi-automatically (Belz,
2007), or fully automatically extracted from an-
notated corpora, like the HPSG (Nakanishi et
al., 2005), LFG (Cahill and van Genabith, 2006;
Hogan et al., 2007) and CCG (White et al.,
2007) resources derived from the Penn-II Treebank
(PTB) (Marcus et al., 1993).

Over the last decade, probabilistic models have
become widely used in the field of natural lan-
guage generation (NLG), often in the form of a re-
alisation ranker in a two-stage generation architec-
ture. The two-stage methodology is characterised
by a separation between generation and selection,
in which rule-based methods are used to generate a
space of possible paraphrases, and statistical meth-
ods are used to select the most likely realisation
from the space. By and large, two statistical mod-
els are used in the rankers to choose output strings:

• N-gram language models over different units,
such as word-level bigram/trigram mod-
els (Bangalore and Rambow, 2000; Langk-
ilde, 2000), or factored language models inte-
grated with syntactic tags (White et al., 2007).

• Log-linear models with different syntactic
and semantic features (Velldal and Oepen,
2005; Nakanishi et al., 2005; Cahill et al.,
2007).

To date, however, probabilistic models learn-
ing direct mappings from generation input to sur-
face strings, without the effort to construct a gram-
mar, have rarely been explored. An exception is
Ratnaparkhi (2000), who presents maximum en-
tropy models to learn attribute ordering and lexi-
cal choice for sentence generation from a semantic
representation of attribute-value pairs, restricted to
an air travel domain.
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(a.) c-structure (b.) f-structure

string We believe in the law of averages
position 1 2 3 4 5 6 7

f1 SUBJ PRED OBL
f3 PFORM OBJ
f4 SPEC PRED ADJ
f7 PFORM OBJ

(c.) linearised grammatical functions / bilexical dependencies

Figure 1: C- and f-structures for the sentenceWe believe in the law of averages.

In this paper, we develop an efficient, wide-
coverage generator based on simple n-gram mod-
els to directly linearise dependency relations from
the input representations. Our work is aimed at
general-purpose sentence generation but couched
in the framework of Lexical Functional Grammar.
We give an overview of LFG and the dependency
representations we use in Section 2. We describe
the general idea of our dependency-based gener-
ation in Section 3 and give details of the n-gram
generation models in Section 4. Section 5 explains
the experiments and provides results for both En-
glish and Chinese data. Section 6 compares the re-
sults with previous work and between languages.
Finally we conclude with a summary and outline
future work.

2 LFG-Based Generation

2.1 Lexical Functional Grammar

Lexical Functional Grammar (Kaplan and Bres-
nan, 1982) is a constraint-based grammar for-
malism which postulates (minimally) two lev-
els of representation: c(onstituent)-structure and
f(unctional)-structure. As illustrated in Figure 1,
a c-structure is a conventional phrase structure
tree and captures surface grammatical configu-
rations. The f-structure encodes more abstract
functional relations likeSUBJ(ect), OBJ(ect) and
ADJ(unct). F-structures are hierarchical attribute-

value matrix representations of bilexical labelled
dependencies, approximating to basic predicate-
argument/adjunct structures.2 Attributes in f-
structure come in two different types:

• Grammatical Functions (GFs) indicate the re-
lationship between the predicate and depen-
dents. GFs can be divided into:

– arguments are subcategorised for by the
predicate, such asSUBJ(ect), OBJ(ect),
and thus can only occur once in each lo-
cal f-structure.

– modifiers likeADJ(unct), COORD(inate)
are not subcategorised for by the predi-
cate, and can occur any number of times
in a local f-structure.

• Atomic-valued features describe linguistic
properties of the predicate, such asTENSE,
ASPECT, MOOD, PERS, NUM, CASE etc.

2.2 Generation from F-Structures

Work on generation in LFG generally assumes that
the generation task is to determine the set of strings
of the language that corresponds to a specified f-
structure, given a particular grammar (Kaplan and
Wedekind, 2000). Previous work on generation

2F-structures can be also interpreted as quasi-logical
forms (van Genabith and Crouch, 1996), which more closely
resemble inputs used by some other generators.



within LFG includes the XLE,3 Cahill and van
Genabith (2006), Hogan et al. (2007) and Cahill et
al. (2007). The XLE generates sentences from f-
structures according to parallel handcrafted gram-
mars for English, French, German, Norwegian,
Japanese, and Urdu. Based on the German XLE
resources, Cahill et al. (2007) describe a two-stage,
log-linear generation model. Cahill and van Gen-
abith (2006) and Hogan et al. (2007) present a
chart generator using wide-coverage PCFG-based
LFG approximations automatically acquired from
treebanks (Cahill et al., 2004).

3 Dependency-Based Generation: the
Basic Idea

Traditional LFG generation models can be re-
garded as the reverse process of parsing, and
use bi-directional f-structure-annotated CFG rules.
In a sense, the generation process is driven by
an input dependency (or f-structure) representa-
tion, but proceeds through the “detour” of us-
ing dependency-annotated CFG (or PCFG) gram-
mars and chart-based generators. In this paper,
we develop a simple n-gram and dependency-
based, wide-coverage, robust, probabilistic gener-
ation model, which cuts out the middle-man from
previous approaches: the CFG-component.

Our approach is data-driven: following the
methodology in (Cahill et al., 2004; Guo et al.,
2007), we automatically convert the English Penn-
II treebank and the Chinese Penn Treebank (Xue
et al., 2005) into f-structure banks. F-structures
such as Figure 1(b.) are unordered, i.e. they do
not carry information on to the relative surface or-
der of local GFs. In order to generate a string
from an f-structure, we need to linearise the GFs
(at each level of embedding) in the f-structure (and
map lemmas and features to surface forms). We
do this in terms of n-gram models over GFs. In or-
der to build the n-gram models, we linearise the f-
structures automatically produced from treebanks
by associating the numerical string position (word
offset from start of the sentence) with the predicate
in each local f-structure, producing GF sequences
as in Figure 1(c.).

Even though the n-gram models are exemplified
using LFG f-structures, they are general-purpose
models and thus suitable for any bilexical labelled
dependency (Nivre, 2006) or predicate-argument
type representations, such as the labelled feature-

3http://www2.parc.com/isl/groups/nltt/xle/

value structures used in HALogen and the func-
tional descriptions in the FUF/SURGE system.

4 N-Gram Models for Dependency-Based
Generation

4.1 Basic N-Gram Model

The primary task of a sentence generator is to de-
termine the linear order of constituents and words,
represented as lemmas in predicates in f-structures.
At a particular local f-structure, the task of gen-
erating a string covered by the local f-structure
is equivalent to linearising all the GFs present at
that local f-structure. E.g. inf4 in Figure 1, the
unordered set of local GFs{SPEC, PRED, ADJ}
generates the surface sequence “the law of aver-
ages”. We linearise the GFs in the set by com-
puting n-gram models, similar to traditional word-
based language models, except using the names of
GFs (includingPRED) instead of words. Given
a (sub-) f-structureF containingm GFs, the n-
gram model searches for the best surface sequence
Sm

1
=s1...sm generated by the GF linearisation

GFm
1

= GF1...GFm, which maximises the prob-
ability P (GFm

1
). Using n-gram models,P (GFm

1
)

is calculated according to Eq.(1).

P (GF
m
1 ) = P (GF1...GFm)

=
m
∏

k=1

P (GFk|GF
k−1

k−n+1) (1)

4.2 Factored N-Gram Models

In addition to the basic n-gram model over bare
GFs, we integrate contextual and fine-grained
lexical information into several factored models.
Eq.(2) additionally conditions the probability of
the n-gram on the parent GF label of the cur-
rent local f-structurefi, Eq.(3) on the instantiated
PRED of the local f-structurefi, and Eq.(4) lexi-
calises the model, where eachGF is augmented
with its own predicate lemma.

P
g(GF

m
1 ) =

m
∏

k=1

P (GFk|GF
k−1

k−n+1, GFi) (2)

P
p(GF

m
1 ) =

m
∏

k=1

P (GFk|GF
k−1

k−n+1, P redi) (3)

P
l(GF

m
1 ) =

m
∏

k=1

P (Lexk|Lex
k−1

k−n+1) (4)



To avoid data sparseness, the factored n-gram
modelsP f are smoothed by linearly interpolating
the basic n-gram modelP , as in Eq.(5).

P̂
f (GF

m
1 ) = λP

f (GF
m
1 ) + (1 − λ)P (GF

m
1 ) (5)

Additionally, the lexicalised n-gram modelsP l

are combined with the other two models con-
ditioned on the additional parent GFP g and
PREDP p, as shown in Eqs. (6) & (7), respectively.

P̂
lg(GF

m
1 ) = λ1P

l(GF
m
1 ) + λ2P

g(GF
m
1 )

+λ3P (GF
m
1 ) (6)

P̂
lp(GF

m
1 ) = λ1P

l(GF
m
1 ) + λ2P

p(GF
m
1 )

+λ3P (GF
m
1 ) (7)

where
∑

λi = 1

Table 1 exemplifies the different n-gram models
for the local f-structuref4 in Figure 1.

Model N-grams Cond.
basic(P ) SPEC PRED ADJ
gf (P g ) SPEC PRED ADJ OBL
pred(P p) SPEC PRED ADJ ‘law’
lex (P l) SPEC PRED[‘law’] ADJ[‘of’]

Table 1: Examples of n-grams forf4 in Figure 1

Besides grammatical functions, we also make
use of atomic-valued features likeTENSE, PERS,
NUM (etc.) to aid linearisation. The attributes and
values of these features are integrated into the GF
n-grams for disambiguation (see Section 5.2).

4.3 Generation Algorithm

Our basic n-gram based generation model im-
plements the simplifying assumption that lineari-
sation at one sub-f-structure is independent of
linearisation at any other sub-f-structures. This
assumption is feasible for projective dependen-
cies. In most cases (at least in English and
Chinese), non-projective dependencies are only
used to account for Long-Distance Dependen-
cies (LDDs). Consider sentence (1) discussed
in Carroll et al. (1999) and its corresponding f-
structure in Figure 2. In LFG f-structures, LDDs
are represented via reentrancies between “dislo-
cated”TOPIC, TOPIC REL, FOCUS (etc.) GFs and
“source” GFs subcategorised for by local predi-
cates, but only the dislocated GFs are instantiated
in generation. Therefore traces of the source GFs
in input f-structures are removed before genera-
tion, and non-projective dependencies are trans-
formed into simple projective dependencies.

(1) How quickly did the newspapers say the ath-
lete ran?
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Figure 2: schematic f-structure forHow quickly
did the newspapers say the athlete ran?

In summary, given an input f-structuref , the
core algorithm of the generator recursively tra-
versesf and at each sub-f-structurefi:

1. instantiates the local predicate atfi and per-
forms inflections/declensions if necessary

2. calculates the GF linearisations present atfi

by n-gram models

3. finds the most probable GF sequence among
all possibilities by Viterbi search

4. generates the string covered byfi according
to the linearised GFs

5 Experiments and Evaluation

To test the performance and coverage of our n-
gram-based generation models, experiments are
carried out for both English and Chinese, two lan-
guages with distinct properties.

5.1 Experiment Design

Experiments on English data are carried out on
the WSJ portion of the PTB, using standard train-
ing/test/development splits, viz 39,832 sentences
from sections 02-21 are used for training, 2,416
sentences from section 23 for testing, while 1,700
sentences from section 22 are held out for develop-
ment. The latest version of the Penn Chinese Tree-
bank 6.0 (CTB6), excluding the portion of ACE
broadcast news, is used for experiments on Chi-
nese data.4 We follow the recommended splits (in
the list-of-file of CTB6) to divide the data into test
set, development set and training set. The training
set includes 756 files with a total of 15,663 sen-
tences. The test set includes 84 files with 1,708

4Sentences labelled as fragment are not included in our
development and test set.



sentences. The development set includes 50 files
with 1,116 sentences. Table 2 shows some of the
characteristics of the English and Chinese data ob-
tained from the development sets.

Development Set English Chinese
num of sent 1,700 1,116
max length of sent (#words) 110 145
ave length of sent (#words) 23 31
num of local fstr 23,289 15,847
num of local fstr per sent 13.70 14.20
max length of local fstr (#gfs) 12 16
ave length of local fstr (#gfs) 2.56 2.90

Table 2: Comparison English and Chinese data

The n-gram models are created using the
SRILM toolkit (Stolcke, 2002) with Good-Turning
smoothing for both the Chinese and English data.
For morphological realisation of English, a set of
lexical macros is automatically extracted from the
training data. This is not required for Chinese sur-
face realisation as Chinese has very little morphol-
ogy. Lexical macro examples are listed in Table 3.

lexical macro surface word
pred=law, num=sg, pers=3 law
pred=average, num=pl, pers=3 averages
pred=believe, num=pl, tense=pres believe

Table 3: Examples of lexical macros

The input to our generator are unordered f-
structures automatically derived from the develop-
ment and test set trees of our treebanks, which do
not contain any string position information. But,
due to the particulars of the automatic f-structure
annotation algorithm, the order of sub-f-structures
in set-valued GFs, such asADJ, COORD, happens
to correspond to their surface order. To avoid un-
fairly inflating evaluation results, we lexically re-
order the GFs in each sub-f-structure of the devel-
opment and test input before the generation pro-
cess. This resembles the “permute, no dir” type
experiment in (Langkilde, 2002).

5.2 Experimental Results

Following (Langkilde, 2002) and other work
on general-purpose generators, BLEU score (Pa-
pineni et al., 2002), average NIST simple
string accuracy (SSA) and percentage of exactly
matched sentences are adopted as evaluation met-
rics. As our system guarantees that all input f-
structures can generate a complete sentence, spe-
cial coverage-dependent evaluation (as has been

adopted in most grammar-based generation sys-
tems) is not necessary in our experiments.

Experiments are carried out on an Intel Pentium
4 server, with a 3.80GHz CPU and 3GB mem-
ory. It takes less than 2 minutes to generate all
2,416 sentences (with average sentence length of
21 words) of WSJ section 23 (average 0.05 sec per
sentence), and approximately 4 minutes to gener-
ate 1,708 sentences (with average sentence length
of 30 words) of CTB test data (average 0.14 sec
per sentence), using 4-gram models in all experi-
ments. Our evaluation results for English and Chi-
nese data are shown in Tables 4 and 5, respectively.

Different n-gram models perform nearly consis-
tently in all the experiments on both English and
Chinese data. The results show that factored n-
gram models outperform the basic n-gram models,
and in turn the combined n-gram models outper-
form single n-gram models. The combined model
interpolating n-grams over lexicalised GFs with n-
grams conditioned onPRED achieves the best re-
sults in both experiments on English (with feature
names) and Chinese (with feature names & val-
ues), with BLEU scores of 0.7440 and 0.7123 re-
spectively, and full coverage.

Lexicalisation plays an important role in both
English and Chinese, boosting the BLEU score
without features from 0.5074 to 0.6741 for En-
glish, and from 0.5752 to 0.6639 for Chinese.

Atomic-valued features play an important role
in English, and boost the BLEU score from 0.5074
in the baseline model to 0.6842 when feature
names are integrated into the n-gram models.
However, feature names in Chinese only increase
the BLEU score from 0.5752 to 0.6160. This
is likely to be the case as English has a richer
morphology than Chinese, and important func-
tion words such as ‘if’, ‘to’, ‘that’ are encoded
in atomic-valued features in English f-structures,
which helps to determine string order. However,
combined feature names and values work better on
Chinese data, but turn out to hurt the n-gram model
performance for English data. This may suggest
that the feature names in English already include
enough information, while the value of morpho-
logical features, such asTENSE, NUM does not pro-
vide any new information to help determine word
order, but aggravate data sparseness instead.



WSJ Sec23 Without Features Feature Names Feature Names & Values
Model ExMatch BLEU SSA ExMatch BLEU SSA ExMatch BLEU SSA

baseline 5.30% 0.5074 57.29% 15.27% 0.6842 69.48% 15.15% 0.6829 69.15%
gf 6.62% 0.5318 60.06% 16.76% 0.6969 71.51% 16.68% 0.6977 71.55%

pred 8.03% 0.5697 60.73% 16.72% 0.7035 70.12% 16.76% 0.7042 71.08%
lex 12.87% 0.6741 69.43% 19.41% 0.7384 74.76% 18.96% 0.7375 74.12%

lex+gf 12.62% 0.6611 69.41% 19.70% 0.7388 74.98% 19.74% 0.7405 75.08%
lex+pred 12.25% 0.6569 68.04% 19.83% 0.7440 75.34% 19.58% 0.7422 75.04%

Table 4: Results for English Penn-II WSJ section 23

Test Without Features Feature Names Feature Names & Values
Model ExMatch BLEU SSA ExMatch BLEU SSA ExMatch BLEU SSA

baseline 8.96% 0.5752 51.92% 11.77% 0.6160 54.64% 12.30% 0.6239 55.20%
gf 9.54% 0.6009 53.02% 12.53% 0.6391 55.78% 13.47% 0.6486 56.60%

pred 10.07% 0.6180 53.80% 13.35% 0.6608 56.72% 14.46% 0.6720 57.67%
lex 13.93% 0.6639 59.61% 15.16% 0.6770 60.44% 15.98% 0.6804 60.20%

lex+gf 14.81% 0.6773 59.92% 15.52% 0.6911 60.97% 16.80% 0.6957 61.07%
lex+pred 16.04% 0.6952 60.82% 16.22% 0.7060 61.45% 17.51% 0.7123 61.54%

Table 5: Results for Chinese CTB6 test data

WSJ Sec23 Sentence length≤ 20 words All sentences
Coverage ExMatch BLEU SSA Coverage ExMatch BLEU SSA

Langkilde(2002) 82.7% 28.2% 0.757 69.6%
Callaway(2003) 98.7% 49.0% 88.84%
Nakanishi(2005) 90.75% 0.7733 83.6% 0.705
Cahill(2006) 98.65% 0.7077 73.73% 98.05% 0.6651 68.08%
Hogan(2007) 100% 0.7139 99.96% 0.6882 70.92%
White(2007) 94.3% 6.9% 0.5768
this paper 100% 35.40% 0.7625 81.09% 100% 19.83% 0.7440 75.34%

Table 6: Cross system comparison of results for English WSJ section 23

6 Discussion

6.1 Comparison to Previous Work

It is very difficult to compare sentence generators
since the information contained in the input rep-
resentation varies greatly between systems. The
most direct comparison is between our system and
those presented in Cahill and van Genabith (2006)
and Hogan et al. (2007), as they also use treebank-
based automatically generated f-structures as the
generator inputs. The labelled feature-value struc-
tures used in HALogen (Langkilde, 2002) and
functional descriptions in FUF/SURGE (Callaway,
2003) also bear some broad similarities to our f-
structures. A number of systems using different
input but adopting the same evaluation metrics and
testing on the same data are listed in Table 6.

Surprisingly (or not), the best results are
achieved by a purely symbolic generation
system—FUF/SURGE (Callaway, 2003). How-
ever the approach uses handcrafted grammars
which are very time-consuming to produce and
adapt to different languages and domains. Langk-
ilde (2002) reports results for experiments with
varying levels of linguistic detail in the input

given to the generator. The type “permute, no dir”
is most comparable to the level of information
contained in our f-structure in that the modifiers
(adjuncts, coordinates etc.) in the input are not
ordered. However her labelled feature-value
structure is more specific than our f-structure
as it also includes syntactic properties such as
part-of-speech, which might contribute to the
higher BLEU score of HALogen. And moreover,
in HALogen nearly 20% of the sentences are only
partially generated (or not at all). Nakanishi et
al. (2005) carry out experiments on sentences up
to 20 words, with BLEU scores slightly higher
than ours. However their results without sentence
length limitation (listed in the right column), for
500 sentences randomly selected from WSJ Sec22
are lower than ours, even at a lower coverage.
Overall our system is competitive, with best results
for coverage (100%), second best for BLEU and
SSA scores, and third best overall on exact match.
However, we admit that automatic metrics such as
BLEU are not fully reliable to compare different
systems, and results vary widely depending on the
coverage of the systems and the specificity of the
generation input.



6.2 Error Analysis and Differences Between
the Languages

Though our dependency-based n-gram models per-
form well in both the English and Chinese exper-
iments, we are surprised that experiments on En-
glish data produce better results than those for Chi-
nese. It is widely accepted that English generation
is more difficult than Chinese, due to morpholog-
ical inflections and the somewhat less predictable
word order of English compared to Chinese. This
is reflected by the results of the baseline models.
Chinese has a BLEU score of 0.5752 and 8.96%
exact match, both are higher than those of English.
However with feature augmentation and lexicali-
sation, the results for English data exceed Chinese.
This is probably because of the following reasons:

Data size of the English training set is more than
twice that of Chinese.

Grammatical functions are more fine-grained
in English f-structures than those in Chinese.
There are 32 GFs defined for English compared to
20 for Chinese in our input f-structures.

Properties of the languages and data setsare
different. For example, due to lack of inflection
and case markers, many sequences of VPs in Chi-
nese have to be treated as coordinates, whereas
their counterparts in English act as different gram-
matical functions, e.g. (2).

(2) Ý℄ z� ,ïù�ó§
invest million build this construction
‘invest million yuanto build the construction’

This results in a total of 7,377 coordinates (4.32
per sentence) in the Chinese development data,
compared to 2,699 (1.12 per sentence) in the En-
glish data. The most extreme case in the Chinese
data features 14 coordinates of country names in
a local f-structure. This may account for the low
SSA score for the Chinese experiments, as many
coordinates are tied in the n-gram scoring method
and can not be ordered correctly. Examining the
development data shows different types of coordi-
nation errors:

• syntactic coordinates, but not semantic coor-
dinates, as in sentence (2).

• syntactic and semantic coordinates, but usu-
ally expressed in a fixed order, e.g. (3).

(3) U� m�
reform opening-up
‘reform and opening up’

• syntactic and semantic coordinates, which
can freely swap positions, e.g. (4).

(4) ¿�� °å Ú ¯$�g�
plentiful energy and quick thinking
‘energetic and agile’

At the current stage, our n-gram generation
model only keeps the most likely realisation for
each local f-structure. We believe that packing all
equivalent elements, like coordinates in a local f-
structure into equivalent classes, and outputing n-
best candidate realisations will greatly increase the
SSA score and may also further benefit the effi-
ciency of the algorithm.

7 Conclusions and Further Work

We have described a number of increasingly so-
phisticated n-gram models for sentence genera-
tion from labelled bilexical dependencies, in the
form of LFG f-structures. The models include
additional conditioning on parent GFs and differ-
ent degrees of lexicalisation. Our method is sim-
ple, highly efficient, broad coverage and accurate
in practice. We present experiments on English
and Chinese, showing that the method generalises
well to different languages and data sets. We are
currently exploring further combinations of con-
ditioning context and lexicalisation, application to
different languages and to dependency represen-
tations used to train state-of-the-art dependency
parsers (Nivre, 2006).
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